
9. Handling large data

Thomas Lumley

Ken Rice

Universities of Washington and Auckland

Seattle, July 2014

Large data

“R is well known to be unable to handle large data sets.”

Solutions:

• Get a bigger computer: 8-core Linux computer with 32Gb

memory for < $3000

• Don’t load all the data at once (methods from the mainframe

days).

9.1

Large data

Data won’t fit in memory on current computers: R can

comfortably handle data up to

• About 1/3 of physical RAM

• About 10% of address space (ie, no more than 400MB for

32-bit R, no real constraint for 64-bit R)

R can’t (currently) handle a single matrix with more than 231 −
1 ≈ 2 billion entries even if your computer has memory for it.

Storing data on disk means extra programming work, but has the

benefit of making you aware of data reads/writes in algorithm

design.

9.2

Storage formats

R has two convenient data formats for large data sets

• For ordinary large data sets, direct interfaces to relational

databases allow the problem to be delegated to the experts.

• For very large ‘array-structured’ data sets the ncdf package

provides storage using the netCDF data format.

9.3

SQL-based interfaces

Relational databases are the natural habitat of large datasets.

• Optimized for loading subsets of data from disk

• Fast at merging, selecting

• Standardized language (SQL) and protocols (ODBC, JDBC)

9.4

Elementary SQL

Basic statement: SELECT var1, var2 FROM table

• WHERE condition to choose rows where condition is true

• table1 INNER JOIN table2 USING(id) to merge two tables on

a identifier

• Nesting: table can be a complete SELECT statement

9.5

R database interfaces

• RODBC package for ODBC connections (mostly Windows)

• DBI: standardized wrapper classes for other interfaces

– RSQLite: small, zero-configuration database for embed-

ded storage

– RJDBC: Java interface

– also for Oracle, MySQL, PostgreSQL.

9.6

Setup: DBI

Needs DBI package + specific interface package

library("RSQLite") ## also loads DBI package

sqlite <- dbDriver("SQLite")

conn <- dbConnect(sqlite, "example.db")

dbListTables(conn) ## what tables are available?

see also dbListFields()

dbDisconnect(conn) ## when you are done

Now use conn to identify this database connection in future

requests

9.7

Queries: DBI

• dbGetQuery(conn, "select var1, var2, var22 from smalltable"):

runs the SQL query and returns the results (if any)

• dbSendQuery(conn, "select var1, var2, var22 from hugetable")

runs the SQL and returns a result set object

• fetch(resultset, n=1000) asks the database for the next 1000

records from the result set

• dbClearResult(resultset) releases the result set

9.8

New databases: DBI

First part of this should look familiar;

library("RSQLite") ## also loads DBI package

sqlite <- dbDriver("SQLite")

conn <- dbConnect(sqlite, "mynewdatabase.db")

Then to write data to mynewdatabase.db, use

dbWriteTable(conn, "tablename", dataframe)

• Optional setting row.names=FALSE stops writing probably-

unwanted junk to the file

• Close the connection after writing – or no-one else will be

able to read it

9.9

Whole tables: DBI

Other whole-table commands;

• dbWriteTable(conn, "tablename", dataframe) writes the whole

data frame to a new database table (use append=TRUE to

append to existing table)

• dbReadTable(conn, "tablename") reads a whole table

• dbDropTable(conn, "tablename") deletes a table.

9.10

Setup: ODBC

Just needs RODBC package. Database must be given a ”Data

Source Name” (DSN) using the ODBC adminstrator on the

Control Panel

library("RODBC")

conn <- odbcConnect(dsn)

close(conn) ## when you are done

Now use conn to identify this database connection in future

requests

9.11

Queries: ODBC

• sqlQuery(conn, "select var1, var2, var22 from smalltable"):

runs the SQL query and returns the results (if any)

• odbcQuery(conn, "select var1, var2, var22 from hugetable")

runs the SQL and returns a result set object

• sqlGetResults(con, max=1000) asks the database for the next

1000 records from the result set

9.12

Whole tables: ODBC

• sqlSave(conn, dataframe, "tablename") writes the whole data

frame to a new database table (use append=TRUE to append

to existing table)

• sqlFetch(conn, "tablename") reads a whole table

9.13

SQLite and Bioconductor

Bioconductor AnnotationDBI system maps from one system of

identifiers (eg probe ID) to another (eg GO categories).

Each annotation package contains a set of two-column SQLite

tables describing one mapping.

’Chains’ of tables allow mappings to be composed so, eg, only

gene ids need to be mapped directly to GO categories.

Original annotation system kept all tables in memory; they are

getting too large now.

9.14

AnnotationDBI

> library("hgu95av")

> hgu95av2CHR[["1001_at"]]

[1] "1"

> hgu95av2OMIM[["1001_at"]]

[1] "600222"

> hgu95av2SYMBOL[["1001_at"]]

[1] "TIE1"

> length(hgu95av2GO[["1001_at"]])

[1] 16

9.15

Under the hood

> ls("package:hgu95av2.db")
[1] "hgu95av2" "hgu95av2_dbconn" "hgu95av2_dbfile"
[4] "hgu95av2_dbInfo" "hgu95av2_dbschema" "hgu95av2ACCNUM"
[7] "hgu95av2ALIAS2PROBE" "hgu95av2CHR" "hgu95av2CHRLENGTHS"

[10] "hgu95av2CHRLOC" "hgu95av2CHRLOCEND" "hgu95av2ENSEMBL"
> hgu95av2_dbconn()
<SQLiteConnection: DBI CON (7458, 1)>
> dbGetQuery(hgu95av2_dbconn(), "select * from probes limit 5")

probe_id gene_id is_multiple
1 1000_at 5595 0
2 1001_at 7075 0
3 1002_f_at 1557 0
4 1003_s_at 643 0
5 1004_at 643 0

9.16

Under the hood

The [[method calls the mget method, which also handles

multiple queries.

These (eventually) produce SQLite SELECT statements with INNER

JOINs across the tables needed for the mapping.

9.17

Databases for data

Large phenotype data sets are usually entered and stored in a

relational database, and exported for statistical analysis.

Querying the database directly can save time and memory: only

load variables as needed

To automate

• use all.vars() to give all the variable names in a formula or

expression

• construct a SELECT statement with the variables

9.18

Databases for data

> all.vars(a~b+d+log(d)+ns(e))

[1] "a" "b" "d" "e"

> all.vars(quote(a+f(b+g(c+d)+elephant)))

[1] "a" "b" "c" "d" "elephant"

> v <- all.vars(a~b+d+log(d)+ns(e))

> vlist <- paste(v, collapse=", ")

> sub("@",vlist, "select @ from phenotypes")

[1] "select a, b, d, e from phenotypes"

Implemented in survey package to allow database-backed data

objects with the same user interface as in-memory objects

Method for database-backed objects loads data and then calls

method for in-memory object.

9.19

Databases for data

Translating an R expression to a SQL WHERE condition is a little
more difficult because R and SQL syntax are not identical

Need to change %in% to IN, & to AND, | to OR, remove c from
vectors, change from expression to string.

Work recursively on an R expression (inorder traversal of tree)

> sqlexpr(quote(a==b+c))

[1] "((a==(b+c)))"

> sqlexpr(quote(a==b+c & g>h))

[1] "(((a==(b+c)) AND (g>h)))"

> sqlexpr(quote(a==b+c & g>h | id %in% c(3,4,7)))

[1] "((((a==(b+c)) AND (g>h)) OR (id IN (3,4,7))))"

See also translate sql() in Hadley Wickham’s dplyr package. (It
also provides R functions filter(), arrange(), select(), mutate()
and summarise() that work on SQL datasets.)

9.20

netCDF

netCDF was designed by the NSF-funded UCAR

consortium, who also manage the National

Center for Atmospheric Research.

Atmospheric data are often array-oriented: eg temperature,

humidity, wind speed on a regular grid of (x, y, z, t).

Need to be able to select ‘rectangles’ of data – eg range of

(x, y, z) on a particular day t.

Because the data are on a regular grid, the software can work out

where to look on disk without reading the whole file: efficient

data access.

Many processes can read the same netCDF file at once: efficient

parallel computing.

9.21

Current uses in biology

• Whole-genome genetic data (us and people we talk to)

– Two dimensions: genomic location × sample, for multiple

variables

– Data sizes in tens to thousands of gigabytes.

• Flow cytometry data (proposed new FCS standard)

– 5–20 (to 100, soon) fluorescence channels × 10,000–

10,000,000 cells × 5–5000 samples

– Data sizes in gigabytes to thousands of gigabytes.

9.22

Using netCDF data

With the ncdf package:

open.ncdf() opens a netCDF file and returns a connection to the

file (rather than loading the data)

get.var.ncdf() retrieves all or part of a variable.

close.ncdf() closes the connection to the file.

9.23

Dimensions

Variables can use one or more array dimensions of a file

!"#$

!%&'()$

*)+,-.')/$

012,&,/,&)$

9.24

Example

Finding long homozygous runs (possible deletions)

library("ncdf")

nc <- open.ncdf("hapmap.nc")

read all of chromosome variable

chromosome <- get.var.ncdf(nc, "chr", start=1, count=-1)

set up list for results

runs<-vector("list", nsamples)

for(i in 1:nsamples}{

read all genotypes for one person

genotypes <- get.var.ncdf(nc, "geno", start=c(1,i),count=c(-1,1))

zero for htzygous, chrm number for hmzygous

hmzygous <- genotypes != 1

hmzygous <- as.vector(hmzygous*chromosome)

9.25

Example

consecutive runs of same value

r <- rle(hmzygous)

begin <- cumsum(c(1, r$lengths))

end <- cumsum(r$lengths)

long <- which (r$lengths > 250 & r$values !=0)

runs[[i]] <- cbind(begin[long], end[long], r$lengths[long])

}

close.ncdf(nc)

Notes

• chr uses only the ’SNP’ dimension, so start and count are
single numbers

• geno uses both SNP and sample dimensions, so start and
count have two entries.

• rle compresses runs of the same value to a single entry.

9.26

Creating netCDF files

Creating files is more complicated

• Define dimensions

• Define variables and specify which dimensions they use

• Create an empty file

• Write data to the file.

9.27

Dimensions

Specify the name of the dimension, the units, and the allowed

values in the dim.def.ncdf function.

One dimension can be ’unlimited’, allowing expansion of the file

in the future. An unlimited dimension is important, otherwise

the maximum variable size is 2Gb.

snpdim <-dim.def.ncdf("position","bases", positions)

sampledim <-dim.def.ncdf("seqnum","count",1:10, unlim=TRUE)

9.28

Variables

Variables are defined by name, units, and dimensions

varChrm <- var.def.ncdf("chr","count",dim=snpdim,

missval=-1, prec="byte")

varSNP <- var.def.ncdf("SNP","rs",dim=snpdim,

missval=-1, prec="integer")

vargeno <- var.def.ncdf("geno","base",dim=list(snpdim, sampledim),

missval=-1, prec="byte")

vartheta <- var.def.ncdf("theta","deg",dim=list(snpdim, sampledim),

missval=-1, prec="double")

varr <- var.def.ncdf("r","copies",dim=list(snpdim, sampledim),

missval=-1, prec="double")

9.29

Creating the file

The file is created by specifying the file name ad a list of

variables.

genofile<-create.ncdf("hapmap.nc", list(varChrm, varSNP, vargeno,

vartheta, varr))

The file is empty when it is created. Data can be written using

put.var.ncdf(). Because the whole data set is too large to read,

we might read raw data and save to netCDF for one person at

a time;

for(i in 1:4000){

temp.geno.data <-readRawData(i) ## somehow

put.var.ncdf(genofile, "geno", temp.geno.data,

start=c(1,i), count=c(-1,1))

}

9.30

Efficient use of netCDF

Read all SNPs, one sample

SNP 

Sample 

Genotypes 

Chromosome 

9.31

Efficient use of netCDF

Read all samples, one SNP

SNP 

Sample 

Genotypes 

Chromosome 

9.32

Efficient use of netCDF

Read some samples, some SNPs.

SNP 

Sample 

Genotypes 

Chromosome 

9.33

Efficient use of netCDF

Random access is not efficient: eg read probe intensities for all

missing genotype calls.

SNP 

Sample 

Genotypes 

Chromosome 

9.34

Efficient use of netCDF

• Association testing: read all data for one SNP at a time

• Computing linkage disequilibrium near a SNP: read all data

for a contiguous range of SNPs

• QC for aneuploidy: read all data for one individual at a time

(and parents or offspring if relevant)

• Population structure and relatedness: read all SNPs for two

individuals at a time.

9.35

	Large data
	Large data
	Storage formats
	SQL-based interfaces
	Elementary SQL
	R database interfaces
	Setup: DBI
	Queries: DBI
	New databases: DBI
	Whole tables: DBI
	Setup: ODBC
	Queries: ODBC
	Whole tables: ODBC
	SQLite and Bioconductor
	AnnotationDBI
	Under the hood
	Databases for data
	netCDF
	Current uses in biology
	Using netCDF data
	Dimensions
	Example
	Creating netCDF files
	Dimensions
	Variables
	Creating the file
	Efficient use of netCDF

