7. Embedding C code

Thomas Lumley
Ken Rice

Universities of Washington and Auckland

Seattle, July 2012

Why C?

e Some tasks are slow and require explicit loops that can’t be
vectorized away.

e C is simple and allows for efficient implementation of exactly
the kinds of algorithms that R is no good at.

e C is standardized, portable, and has good-quality free
compilers on effectively all platforms.

You can also embed C++, Fortran, Java, Perl, Python, or even
OCaml

7.1

A little example

T he convolution of two sequences x1,...,xn and yq1,...,ym is the
sum

Zi = Y Ty
=i

If x and y are probability mass functions, z is the probability mass
function of the sum, so this computation is useful in statistical
calculations.

A simple R version is

m <- length(x)
n <- length(y)
z <- numeric(m+n)
for(j in 1:m){
for (k in 1:n){
z[j+k-11 = z[j+k-1] + x[jl*y[k]
+

7.2

A little example

One loop can be removed easily, but removing both loops doesn’t
seem to be possible (without using mxn memory), so convolution
IS @ good candidate for translating to C.

void convolve(double *x, int *n, double *y, int *m, double *z){
int i, j, nz = *m + *n - 1;
for(i = 0; i < nz; i++) z[i] = 0.0;

for(i = 0; i < *n; i++) {
for(j = 0; j < *m; j++){
z[i + j] += x[i] * y[j];
}

The C code is very similar to the R code, another indication that
the R code will be slow.
7.3

Notes:

e All arguments are passed as pointers, since all R data types
are vectors.

e Lengths of vectors can't be determined in C, so need to be
passed in.

e Return type is void, sO values are returned by modifying
arguments

e [he arguments are copies of the R objects, not the originals.

7.4

Compiling and linking

On Unix or Mac OS, or on Windows with the Rtools toolchain,
from the OS command line

R CMD SHLIB convolve.c

to make a dynamic library (convolve.dll under Windows, convolve.so
under most Unix).

In R

dyn.load("convolve.so")

or

dyn.load(paste("convolve", .Platform$dynlib.ext, sep=""))

for portability. [Or make a package]
7.5

Other compilers

You can make packages with almost any C compiler. On Unix-
like systems this typically just works: the C binary interface is
standardized.

On Windows there is less standardization and you need the right
compiler options. Instructions for some popular ones under Win-
dows. are at http://www.stats.uwo.ca/faculty/murdoch/software/
compilingDLLs/

Not all compilers will correctly compile R itself, in particular it

is difficult to compile R with the Microsoft C/C++4 compiler. R
relies heavily on details of the IEEE floating point standard.

7.6

http://www.stats.uwo.ca/faculty/murdoch/software/compilingDLLs/
http://www.stats.uwo.ca/faculty/murdoch/software/compilingDLLs/

Calling from R

conv <- function(x, y){
.C("convolve", x=as.double(x), n=length(x),
y=as.double(y), m=length(y),
z=numeric(length(x)+length(y)-1))3$z

Need to make sure the arguments are of the correct type (double
or integer), and need to supply an empty vector for the result.
Argument names are ignored by R but help us keep track.

.C() returns a list with copies of all the arguments, but we only
care about the last argument.

7.7

Calling from R

The C code gives the same answers as the R code above, but
much faster

> system.time(for (i in 1:100) conv(rep(1,100),rep(1,100)))
user system elapsed
0.006 0.000 0.006

> system.time(for (i in 1:100) Rconv(rep(1,100),rep(1,100)))
user system elapsed
8.567 0.018 8.600

7.8

More realistic example

Given a gene expression value X and a phenotype Y, find the
best (smallest p-value) way to divide X into two categories to
predict Y.

cutpoints <- sort(unique(x))
n<-length(cutpoints)
pvalues <- sapply(cutpoints[3:(n-2)],
function(c) {
z <- x<c
t.test(y“z)8%p.value
})
best <- which.min(pvalues)
cutpoints[3:(n-2)] [best]

Computing the unique values of X is fast in R; the loop over
cutpoints is slow.
7.9

More realistic example

Design for C

e Sort X in R first

e Keepsums 1:i, (i+1):nof Y and Y2, update by adding/subtracting
tth term in loop

e Compute squared z statistic rather than p-value.

7.10

More realistic example

void bestz(double x[], double y[], int *n, int *best){
double suml = 0, sum2 = 0, sumsql = 0, sumsq2 = O;
double meanl, mean2, varl, var2;
double best_zsq = -1, zsq;
int N = *n;

int 1i;

for(i=2; i<N; i++){

suml += y[i];

sumsql += y[i]x*y[i];
+
sum2=y [0] +y [1];
sumsq2=y [0] *y [0]+y [1]*y [1];
*best = -1;

7.11

More realistic example

for(i=2; i<N-1; i++){
meanl = suml/(N-i);
mean?2 = sum2/i;
varl = (sumsql/(N-i))- meanl*meanl;
var2 = (sumsq2/i) - mean2*mean?2;
zsq= (meanl-mean2)*(meanl-mean2)/(varl/(N-i)+var2/i);
if (zsqg>best_zsq) {
*best=1;

best_zsq=zsq;

+
suml -= y[i];
sum2 += y[i];

sumsql -= y[i]*y[i];
sumsq2 += y[i]l*y[i];
Fo/x i ox/

} /* function x*/

7.12

More realistic example

From R

dyn.load("bestz.so")

bestz <- function(x,y){
i <- order(x)
n <- length(x)
if (length(y)!=n) stop("lengths don’t agree")
best <- .C("bestz", x=as.double(x[i]), y=as.double(yl[il),
n=n, best=integer(1))$best
ibest <- i[best]+1
list(cutpoint= x[ibest], test= t.test(x<x[ibest], y))

7.13

More realistic example

C code is much faster, for two reasons

o In C

e C code is O(n), R code is O(n?) because it recomputes the
means and variances from scratch.

Note: If Y|X has constant variance, an even faster pure-R approach, based
on changepoint theory, is

i<-order(x)
which.max(cumsum(y[i]-mean(y)))

7.14

C In packages

Put C code in the src/ subdirectory of your package. It will be
compiled and linked automatically when the package is installed.

Put useDynLib(pkgname) in the NAMESPACE file to load pkgname.d11l
(or pkgname.so Or whatever).

Calls to .C from code in your package will now automatically
look only in pkgname.dll for compiled routines.

7.15

.Call()

The .C interface is useful only for arithmetic, logical, and string
vectors.

Calling back to R is clumsy and handling more complicated R
objects such as lists is not feasible.

Most error checking must be done in R as it cannot be done in
C and type or length errors will corrupt memory.

.Call provides an alternative interface that passes pointers to R
objects and returns an R object.

7.16

.Call and convolve

#include "Rinternals.h"

SEXP convolve(SEXP x, SEXP y){
int i, j, m,n, nz;

SEXP z;
m = LENGTH(x);
n = LENGTH(y);

PROTECT(z = allocVector (REALSXP, m+n-1));
for(i =0; i< n+m-1; i++) REAL(z) [i]=0;

for(i = 0; i < m; i++) {
for(j = 0; j < n; j++){
REAL(z) [i + j] += REAL(x)[i] * REAL(y) [j1;
+

+
UNPROTECT(1); /*zx/
return z;

7.17

Notes

e SEXP, short for S-expression (from LISP) is the type of R
objects.

e LENGTH() returns the length of vector

e REAL() is a pointer to the actual numbers in the R object
(INTEGER, LOGICAL for other types). REALSXP indicates the
numeric type.

e PROTECT() protects memory from the garbage collector,
UNPROTECT () releases it.

e Pointer protection is a stack: need to match PROTECT and
UNPROTECT calls. The returned value is Someone Else’s
Problem.

7.13

Improvements

Computing the vector lengths in C removes one source of errors.
allocVector () will give an R-level error if memory is not available.

The REAL() function will give an R-level error (rather than
corrupting memory) if the arguments are not numeric.

Still better to check explicitly and to convert integer or logical
arguments to numeric.

Also, there is some overhead to calling REAL() each time.

7.19

Improvements

SEXP xconv,yconv;
double *xdata, *ydata;
[*. .. %/

if (TYPEOF (x)==REALSXP){
xdata = REAL(x);
xconv = 0;
} else {
xconv = coerceVector(x, REALSXP);
xdata= REAL(xconv) ;

+
/* ... %/
for(i = 0; i < n; i++) {
for(j = 0; j < m; j++){
zdatal[i+j] += xdatal[i] * ydatalil;
+
}

/*...%/

if (yconv) UNPROTECT(1);
if (xconv) UNPROTECT(1);
UNPROTECT(1) /* z */

7.20

Lists, functions, expressions

A stripped-down version of lapply() (used in deciding whether
to move lapply() to C). Takes an expression in x rather than a

function.

#include "Rinternals.h"
SEXP elapply(SEXP list, SEXP expr, SEXP rho)

{
R_len_t i, n = length(list);
SEXP ans;
if (!isNewList(list)) error("’list’ must be a list");
if (!isEnvironment (rho)) error("’rho’ should be an environment");
PROTECT (ans = allocVector (VECSXP, n));
for(i = 0; i < n; i++) {
defineVar (install("x"), VECTOR_ELT(list, i), rho);
SET_VECTOR_ELT(ans, i, eval(expr, rho));
+
setAttrib(ans, R_NamesSymbol, getAttrib(list, R_NamesSymbol));
UNPROTECT (1) ;
return ans;
}

7.21

Translation

For each element of the list in turn

e Set x to the ith element of the list

e cvaluate expr with that value of «x

e put the value in the ith element of the answer

1 <- 1list(1, 2, 3, 75)
.Call("elapply", 1, quote(x~2), new.env())

7.22

Notes

e isNewList() checks for a list, isEnvironment() checks for an
environment.

e defineVar() assigns a value to a variable, install("x") puts
x in R's symbol table and returns a code.

e VECTOR_ELT reads an element from a list, SET_VECTOR_ELT writes
an element to a list

e cval evaluates an expression

e getAttrib() and setAttrib() read and set attributes.

7.23

inline package

Allows C (C++4, Fortran, Objective-C) code to be written in-line
in R code, as a character string or vector.

cfunction() writes the C function declaration, includes necessary
header files, compiles the code, and writes an R function that
uses .C() or .Call().

Example: .Call() version of convolve

7.24

inline package

convinline <- cfunction(
sig=signature (x="numeric",
y="numeric"),
body="
int i, j, m,n, nz;
SEXP z;

m
n

LENGTH(x) ;
LENGTH(y) ;

PROTECT(z = allocVector (REALSXP, m+n-1));
for(i =0; i< n+m-1; i++) REAL(z) [i]=0;

for(i = 0; i < m; i++) {

for(j = 0; j < mn; j++){
REAL(z) [i + j] += REAL(x)[i] * REAL(y) [j1;
+
+
UNPROTECT(1); /*zx/

return z;

n
b

convention=".Call", language="C")

7.25

inline package

produces an S4 object inheriting from function

> convinline@.Data

function (x, y)

{
if (!file.exists(libLFile))
1ibLFile <<- compileCode(f, code, language, verbose)
if (! (f %in’% names(getLoadedDLLs())))
dyn.load(libLFile)
.Call("file3c7812be", PACKAGE = f, x, y)
+

7.26

inline package

The C code has been wrapped up into a full program:

> cat(convinline@code)
#include <R.h>

#include <Rdefines.h>
#include <R_ext/Error.h>

SEXP file6f1696f5 (SEXP x, SEXP y) {

int i, j, m,n, nz;

SEXP z;
m = LENGTH(x) ;
n = LENGTH(y);

PROTECT(z = allocVector (REALSXP, m+n-1));

for(i =0; i< n+m-1; i++) REAL(z) [i]=0;
[...snip...]

UNPROTECT(1); /*zx/

return z;

warning("your C program does not return anything!");
return R_NilValue;

¥
7.27

Debugging

You can run R under a debugger, such as gdb

R --debugger="gdb"

Type run to run R, then load the compiled code, then CTRL-C to
get back to the debugger.

Set break points with eg

break elapply
break elapply.c:22

7.23

Valgrind

Under Linux, valgrind is a memory access checker that runs code
in a virtual machine. It catches many typical C errors such as
reading or writing off the end of an array.

==12539== Invalid read of size 4

==12539== at Ox1CDF6CBE: csc_compTr (Mutils.c:273)

==12539== by O0x1CEO7E1E: tsc_transpose (dtCMatrix.c:25)

==12539== by O0x80A67A7: do_dotcall (dotcode.c:858)

==12539== by O0x80CACE2: Rf_eval (eval.c:400)

==12539== by Ox80CB5AF: R_execClosure (eval.c:658)

==12539== by 0x80CB98E: R_execMethod (eval.c:760)

==12b639== by Ox1B93DEFA: R_standardGeneric (methods_list_dispatch.c:624)
==12539== by 0x810262E: do_standardGeneric (objects.c:1012)

==12539== by 0x80CAD23: Rf_eval (eval.c:403)

==12539== by 0x80CB2F0: Rf_applyClosure (eval.c:573)

==12539== by 0x80CADCC: Rf_eval (eval.c:414)

==12539== by 0x80CAA03: Rf_eval (eval.c:362)

==12639== Address Ox1COD2EA8 is 280 bytes inside a block of size 1996 alloc’
==12539== at 0x1B9008D1: malloc (vg_replace_malloc.c:149)

==12539== by 0x80F1B34: GetNewPage (memory.c:610)

==12539== by 0x80F7515: Rf_allocVector (memory.c:1915)

7.29

Other C resources

e Writing R Extensions manual

e The C Programming Language Kernighan & Ritchie (2nd
edition)

e Steve Summit’s notes at http://www.eskimo.com/~scs/cclass/

7.30

http://www.eskimo.com/~scs/cclass/

	Why C?
	A little example
	Notes:
	Compiling and linking
	Other compilers
	Calling from R
	More realistic example
	C in packages
	.Call()
	.Call and convolve
	Notes
	Improvements
	Lists, functions, expressions
	Translation
	Notes
	inline package
	Debugging
	Valgrind
	Other C resources

