
SISG Module 19

Advanced R for Bioinformatics

Thomas Lumley

Ken Rice

Universities of Washington and Auckland

Seattle, July 2012

Introduction: Course Aims

• Programming with R

– Efficient coding

– Code that other people can use

• Using R for sophisticated analyses

– Some useful tools for large-scale problems

– Making R play nicely with others

– Knowing where to look when you need more

0.1

Introduction: About Prof Lumley

• Prof, University of Auckland

• R Core developer

• Genetic/Genomic research in

Cardiovascular Epidemiology

• Sings bass (sometimes)

0.2

Introduction: About Prof Rice

• Associate Prof, UW Biostat

• Not an authoR, but a useR (and

a teacheR)

• Genetic/Genomic research in

Cardiovascular Epidemiology

• Sings bass (in Seattle!)

... and you?

(who are you, what area of genomics, what are you looking for

from the course)

0.3

Introduction: Course structure

10 sessions over 2.5 days

• Day 1; Programming in R, Graphics, Objects

• Day 2; Packages, XML, C code

• Day 2.5; large datasets

Download everything from here;

http://faculty.washington.edu/kenrice/sisg-adv

0.4

Introduction: Session structure

We will alternate teaching (questions welcome) and hands-on

exercises

For some topics, within a single 90 minute session;

• 45 mins teaching (Questions welcome! Please interrupt!)

• 30 mins hands-on

• 15 mins summary, discussion

For other topics, we’ll separate sessions (90 mins) and hands-on

exercises (90 mins)

0.5

1. Introduction to R:

First steps

Ken Rice

Thomas Lumley

Universities of Washington and Auckland

Seattle, July 2012

1.0

Important pre-takeoff announcement:

We are assuming you know;

• How to use R from the command line, and how to write and

use script files (and spot e.g. missing commas and }’s)

• How to manipulate basic data structures in R; in particular

vectors and data frames

• How to write functions

• What NA means, and that 42+NA==NA

• Enough programming (in R or elsewhere) to recognize loops,

and manage files external to your R session

• How to look up help files

Of course, familiarity with (non-advanced) statistical & genetic

concepts will also help

1.1

Programmers: what is R?

• R is a free implementation of a dialect of the S language, the
interactive statistics and graphics environment developed at
Bell Labs.

• R/S are probably the most widely used software for research
in statistical methodology and in genomics, and is popular in
financial modelling and medical statistics.

• John Chambers won the 1999 ACM Software Systems award
for S, which will forever alter the way people analyze,
visualize, and manipulate data.

• Ross Ihaka won the Royal Society of New Zealand’s 2008
Pickering Medal, recognizing excellence and innovation in the
practical application of technology for the creation of R.

1.2

Programmers: a little prehistory

The design of R is largely based on S version 3, which predates

Java, Python, JavaScript, Linux, MacOS X, and usable versions

of Windows.

Much of the design was fixed in S version 2, which predates

C++, Perl, the ANSI C standard, the IBM PC, the GNU project,

and Miami Vice.

The basic graphics system is older than Space Invaders.

Yes, some things would be done differently today.

1.3

Simulation

This really is how calculations and simulation studies were done!

Simulations have always been part of statistical research.

1.4

Simulations: a simple example?

Here’s a simple problem, for which we can work out the exact
answer;

For samples of i.i.d Exp(1) data with n=51...
What is the mean value of the sample median?
What is the mean value of the median-squared?

If you had, say, 51 survival times

to analyze, from a distribution

of times not unlike Exp(1),

these are sane questions.

Exp(1) looks like this (right)

any guesses?

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

de
ns

ity

1.5

Simulations: a simple example?

...guessing these would require a lot of luck;

EY =
2178178936539108674153

3099044504245996706400

EY 2 =
2467282316063667967459233232139257976801959

4802038419648657749001278815379823900480000

• They are 0.70286, 0.51380, to 5 d.p.

• They are about 2/3 and 1/2

• 3–4 significant figures is probably enough for most practical

purposes. Being able compute more accurately is re-assuring

• In the ‘post-genome’ era, being able to compute quickly is

important (again)

1.6

Simulations: a simple example?

Brute force provides perfectly acceptable answers; the replicate()

function replicates evaluation of an expression

> bigB <- bazillion <- 10000

> set.seed(4) # a specific "start" value

> many.medians <- replicate(bigB, { median(rexp(51)) })

> round(mean(many.medians), 3)

[1] 0.702

> round(mean(many.medians^2), 3)

[1] 0.513

The ‘right’ answers averages over an infinite number of replicat-

sions. bigB=10,000 here, which ≈ ∞.

This calculation takes < 2 seconds, on my desktop

1.7

Simulations: a simple example?

Our simulations get us very close to the true distribution of the

median;
Histogram of many.medians

median

D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0.
0

1.
0

2.
0

Having done the ‘hard work’ of simulation, we can also compute

skewness, kurtosis, quantiles, etc – all for ‘free’. This technique

is very powerful – and often under-rated by statisticians.

1.8

Simulations: a simple example?

Here are some other statistical concepts, interpreted in the same

way;

• [If] we simulated data, a bazillion times (B ≈ ∞)...”

• ...and applied our procedure to each dataset – and recorded

the output

• Does our estimate usually get close? [consistency]

• How close does our estimate typically get? [bias]

• How variable is our estimate? [standard error, efficiency]

• How often does our interval cover the truth? [coverage]

• How often does our test make a Type I/Type II error?

[size/power]

1.9

Effective coding

We need to be able to program simulations effectively. A good

default for any simulation study follows this ‘pseudo-code’;

do.one <- function(n, beta, f){
... commands to do one analysis
... last command spits out what you want

}

many.sim <- replicate(bigB, do.one(my.n, my.beta, my.f))
... commands to work out observed coverage, bias, etc

Once this works, wrap it inside further loops, e.g.

n.vals <- c(10, 20, 30, 40, 50, 1000)
coverage.vals <- sapply(n.vals, function(n){

... commands to do the replication, with my.n=n
})

At each stage, you must first write a function, then check it.

This requires a bit of sanity-checking (i.e. trying it where you

know at least roughly what should happen) and debugging.

1.10

Effective coding

The use of sapply() (and apply(), lapply()) can be unfamiliar

– many programmers have used for() loops elsewhere. R does

have for() loops (see ?Control) but;

• ‘Growing’ the dataset is a terrible idea;

for(i in 1:n){
mydata <- cbind(mydata, rnorm(1000, mean=i)) # nooooo!

}
Always set up blank output first, then ‘fill it in’

• Use of replicate(), apply() etc means slightly faster inter-

pretation of code than for() – but not by much. for() loops

are not intrinsically evil

• for() requires more typing than replicate() etc, and is often

more work to edit

• Using functions makes your ultimate R package easier to

produce... right?

1.11

Debugging

A ‘handy’ hint from the Apple Corporation;

1.12

Debugging

Beyond the level of spotting missed commas and mis-matching

parentheses, debugging is difficult.

We’ll discuss use of traceback() and recover(), which can help;

> # a trite example of traceback()
> f1 <- function(x){ print(x); f2(x) }
> f2 <- function(x){ x + i.dont.exist }
> f1(10) # gives this strange error;
[1] 10
Error in f2(x) : object ’i.dont.exist’ not found
> traceback()
2: f2(x)
1: f1(10)

The error occurred inside the execution of f2()

1.13

Debugging

If the error’s not obvious, try using recover();

options(error=recover) # enter c to close
set.seed(4)
replicate(1000, {
y <- rnorm(10)
x <- rbinom(10, 1, 0.5)
lm1 <- lm(y~x) # regress Y on X
c(coef(lm1)[2], vcov(lm1)[2,2]) # terms of interest
})

Hint: look at the highest number frame first

#turn it off! turn it off!
options(error=NULL)

Use ls() to list local objects; the highest frame number is a good

place to start

1.14

Debugging

trace() adds instrumentation to a function

• trace(rnorm) prints a message when rnorm is started/ended

• trace(rnorm, recover) calls the debugger when rnorm() is

entered.

• trace(lm, quote(if(all(mf$x==1)) recover()), at=12) calls the

debugger if mf$x is all 1s at line 12 of lm()

Use untrace(rnorm) to remove tracing from rnorm()

1.15

Exceptions

While you might never see them in practice (due to data
cleaning) in simulation studies your replications may produce
‘pathological’ data, e.g. all X are identical, or all minor allele-
carriers smoke. If your regressions estimate differences per allele-
copy, adjusting for smoking, it should complain.

If this is just too tedious (and rare) to bother fixing, you can use
tryCatch();

one.glm <- function(outcome, x){
tryCatch(

{model <- glm(outcome~x, family=binomial())
coef(summary(model))[2,]

},
error=function(e){rep(NA, 4)} # puts 4 NAs in output
)

}

... but check your simulation output’s rates of NA-ness. It’s
better to pre-empt these problems – but this is not easy

1.16

Timing

Premature optimization is the root of all evil

Donald Knuth

If you already have the capacity to generate reasonably accurate

results within a sane time limit, optimizing code is a waste of

effort

If you need to do things an order of magnitude faster, or use

your code again (repeatedly) then optimizing your code may be

worthwhile

To optimize, you need to know;

• What’s the bottleneck?

• How much faster can I make that step?

1.17

Timing

Obvious bottleneck/easy solution;

1.18

Timing

...What’s the bottleneck?

Experienced useRs may be able to ‘eyeball’ this from code;
measurement is an easier and more reliable approach (!)

To find out how long operations are taking;

• proc.time() returns the current time. Save it before a task
and subtract from the value after a task.
• system.time() times the evaluation of a given expression
• R has a profiler; this records which functions are being run,

many times per second. Rprof(filename) turns on the profiler,
Rprof(NULL) turns it off. summaryRprof(filename) reports how
much time was spent in each function.

Remember: A 1000-fold speedup in a function used 10% of the
time is less helpful than a 2-fold speedup in a function used
50% of the time.

1.19

Timing

A small example of this in action;

what is taking all the time?
Rprof("deleteme.txt")

many.sim <- replicate(1000, {
y <- rnorm(10)
x <- rbinom(10, 1, 0.5)
if(all(x==0)|all(x==1)) return(c(NA,NA))
lm1 <- lm(y~x)
c(coef(lm1)[2], vcov(lm1)[2,2])

})
Rprof(NULL) # turn it off! turn it off!
summaryRprof("deleteme.txt")

1.20

Timing

...How much faster can I make that step?

Some simple tips;

• Pre-process/clean your data before analysis; e.g. sum(x)/length(x)

doesn’t error-check like mean(x)

• Similarly, use glm.fit not glm – use matrix calculations in

place of lm()

• Use vectorized operations, where possible

• Store data as matrices, not data frames

• Delete objects you are finished with

1.21

Timing

More advanced methods;

• Write small but important pieces of code in C, and call

these from R

• Run multiple batches. Store your commands in one script

file (which you should do anyway) and call it with e.g.

R CMD BATCH myscript.R myconsoleoutput.txt &

... and finally assemble all the (saved) results

The second option applies when there is no available speedup; if

your R session is mostly waiting for C to do matrix work, writing

the whole thing in C offers no important benefit

1.22

More advanced: short cuts to C

For a limited number of jobs, it may be worth getting R to send

a (large) number of generated datasets to C simultaneously.

• For example, instead of looping over datasets with n = 20

outcomes Y and n = 20 covariates X , generate B × 20

matrices YYY and XXX; using rowSums(X), rowSums(X*Y) etc to

construct β̂ avoids replicate() or similar

• For large n or large B one can quickly run out of memory

• This is a massive pain! I have only used it productively for

one real job – doing 2.5 million cookie-cutter meta-analyses

• Less of a pain is cor(large.matrix) – for all pairwise corre-

lations of columns of large.matrix, where all the looping is

done in C

For complex methods, this approach will not help

1.23

Bonus tracks: how big?

Q. What’s the ‘Monte Carlo’ error in my estimates?

One quick-and-dirty measure of uncertainty is given by these
intervals;

many.thetahat <- replicate(bigB, {...calculate an estimate...})

lm1 <- lm(many.thetahat~1)

confint.default(lm1)

For binary outcomes, (i.e. when you want coverage, size, power)

z <- replicate(bigB, {... calculate theta.hat/est.std.err ...})

mean(z^2 < 1.96^2) # how many give p>0.05?

lm2 <- lm(I(z^2 < 1.96^2) ~ 1)

confint.default(lm2)

For GWAS-style levels of e.g. 5 × 10−8, simulations with e.g.
B = 1010 may be needed; efficient coding of them can save
many days of processor time.

1.24

	Introduction: Course Aims
	Introduction: Resources
	Introduction: About Prof Lumley
	Introduction: About Prof Rice
	Introduction: Course structure
	Introduction: Session structure
	
	Important pre-takeoff announcement:
	Programmers: what is R?
	Programmers: a little prehistory
	Simulation
	Simulations: a simple example?
	Effective coding
	Debugging
	Exceptions
	Timing
	More advanced: short cuts to C
	Bonus tracks: how big?

