
3. The object system(s)

Thomas Lumley

Ken Rice

Universities of Washington and Auckland

Seattle, July 2013

Generics and methods

Many functions in R are generic. This means that the function

itself (eg plot, summary, mean) doesn’t do anything. The work is

done by methods that know how to plot, summarize or average

particular types of information.

If you call summary on a data.frame, R works out that the correct

function to do the work is summary.data.frame and calls that

instead. If there is no specialized method to summarize the

information, R will call summary.default

You can find out all the types of data that R knows how to

summarize with two functions...

3.1

Generics and methods

> methods("summary")

[1] summary.Date summary.POSIXct summary.POSIXlt

[4] summary.aov summary.aovlist summary.connection

[7] summary.data.frame summary.default summary.ecdf*

[10] summary.factor summary.glm summary.infl

[13] summary.lm summary.loess* summary.manova

[16] summary.matrix summary.mlm summary.nls*

[19] summary.packageStatus* summary.ppr* summary.prcomp*

[22] summary.princomp* summary.stepfun summary.stl*

[25] summary.table summary.tukeysmooth*

Non-visible functions are asterisked

> getMethods("summary")

NULL

There are two functions because S has two object systems, for
historical reasons.

3.2

Generics and methods

Use the class argument to see which generics are available

> methods(class="lm")

[1] add1.lm* alias.lm*

[3] anova.lm case.names.lm*

[5] confint.lm* cooks.distance.lm*

[7] deviance.lm* dfbeta.lm*

[9] dfbetas.lm* drop1.lm*

[11] dummy.coef.lm* effects.lm*

[13] extractAIC.lm* family.lm*

[15] formula.lm* hatvalues.lm

[17] influence.lm* kappa.lm

... and many more; packages you load may have their own

generics

3.3

Methods

The class and method system makes it easy to add new types of

information (e.g. survey designs) and have them work just like

the built-in ones.

Some standard methods are

• print, summary: everything should have these

• plot or image: if you can work out an obvious way to plot

the thing, one of these functions should do it.

• coef, vcov: Anything that estimates parameters and corre-

sponding covariance matrices should have these.

• anova, logLik, AIC: models fitted by maximum likelihood

should have these.

• residuals: anything that has residuals should have this.

[Informal analogue of Java interfaces]

3.4

New classes: S3

Creating a new class is easy

class(x) <- "duck"

R will now automatically look for the print.duck method, the

summary.duck method, and so on.

There is no formal registration or documentation of the structure

of the object. You need to make sure that anything of class duck

can look.duck, walk.duck, quack.duck.

Yes, this is different from Java and C++.

3.5

Generic functions: S3

A generic function has a call to UseMethod(), which does the
method dispatching.

> print

function (x, ...)

{

UseMethod("print")

}

By default, method dispatch is on the first argument. It can be
on any (single) argument.

> svymean

function (x, design, na.rm = FALSE, ...)

{

UseMethod("svymean", design)

}

3.6

Example: ROC curves

The Receiver Operating Characteristic (ROC) curve describes
the ability of an ordinal variable T to predict a binary variable D.

The ROC curve graphs P (T > c|D = 1) against P (T > c|D = 0)
for every cutpoint c;

●

su
rv

iv
al

D
=

0
de

at
h

D
=

1

0.1 0.2 0.3 0.4 0.5 0.6

ordinal variable T

ou
tc

om
e

●●
●

●
●

●● ●●
● ●

●
●

●
●
●

●
● ●●

●
●● ●●● ●●

● ●●●
●

● ●●
●
●

●
● ●

● ●● ●
●

●
●

●
●

● ●● ● ●
●

●
● ●●

●●
●

●
●

●
●

● ● ●
●

● ● ●●
●

●
●

●
● ●
● ●

●● ●
●●● ●● ●● ●●●● ●

●
● ●●

●● ●● ●● ● ●● ●●●
● ●● ●

●
●● ● ●●●

●● ●●
●

●●● ● ●
●

● ●●● ● ●●
●●● ●

●
●●

●●
●

●
●

●
●

●
● ●● ●●

●
●

●
●

●
●

●●
● ●●●

●
●

●● ●●
●● ●● ●●

●
●

Outcome (D) vs predictor (T)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 − Specificity, a.k.a. 'False Positive Rate'

S
en

si
tiv

ity
, a

.k
.a

. '
Tr

ue
 P

os
iti

ve
 R

at
e'

ROC curve (color−coded)

3.7

Example: ROC curves

Here’s a simple way to code it:

ROC <- function(test, disease){ #test = e.g. levels of a biomarker
where is the curve going to change?
cutpoints <- c(-Inf, sort(unique(test)), Inf)

what values will it take when it does change?
sensitivity <- sapply(cutpoints,

function(result){ mean(test>result & disease)/mean(disease)}
)

specificity <- sapply(cutpoints,
function(result){mean(test<=result & !disease)/mean(!disease)}
)

plot the curve, return the coordinates
plot(1-specificity, sensitivity, type="l")
abline(0,1,lty=2)

return(list(sens=sensitivity, spec=specificity))
}

3.8

Example: ROC curve

Here’s a more efficient version of the calculation;

drawROC<-function(T,D){

DD <- table(-T,D)

tpr <- cumsum(DD[,2])/sum(DD[,2])

fpr <- cumsum(DD[,1])/sum(DD[,1])

plot(fpr, tpr, type="l")

}

Note that we use the vectorized cumsum() rather than the implied

loop of sapply().

We want to make this return an ROC object that can be plotted

and operated on in other ways

3.9

ROC curve object

ROC<-function(T,D){

DD <- table(-T,D)

tpr <- cumsum(DD[,2])/sum(DD[,2])

fpr <- cumsum(DD[,1])/sum(DD[,1])

rval <- list(tpr=tpr, fpr=fpr,

cutpoints=rev(sort(unique(T))),

call=sys.call())

class(rval)<-"ROC"

rval

}

Instead of plotting the curve we return the data needed for the

plot – plus some things that might be useful later; sys.call() is

a copy of the call.

3.10

Methods

We need a print method to stop the whole contents of the object

being printed

print.ROC<-function(x,...){

cat("ROC curve: ")

print(x$call)

}

3.11

Methods

A plot method

plot.ROC <- function(x, xlab="1-Specificity",

ylab="Sensitivity", type="l",...){

plot(xfpr, xtpr, xlab=xlab, ylab=ylab, type=type, ...)

}

We specify some graphical parameters in order to set defaults

for them. Others are automatically included in

3.12

Methods

We want to be able to add lines to an existing plot

lines.ROC <- function(x, ...){

lines(xfpr, xtpr, ...)

}

and also be able to identify cutpoints by clicking on a graph

identify.ROC<-function(x, labels=NULL, ...,digits=1)

{

if (is.null(labels))

labels<-round(x$cutpoints,digits)

identify(xfpr, xtpr, labels=labels,...)

}

3.13

Syntax notes

Methods should have at least the same arguments as the generic,

in the same order, with the same defaults (so the first argument

to a print method is x, but to a summary method is object).

For inheritance to work, methods must have a ... argument to

allow unknown arguments to be ignored.

The language does not enforce these requirements, but the

package checking system does.

3.14

Inheritance

The class attribute can be a vector, e.g. c("glm", "lm")

R will look for a method for each element in turn until it finds

one.

Inside a method, use NextMethod() to call the next method in the

inheritance.

Inheritance is not used much: statisticians extend by generaliza-

tion, not by specialization. The relationship of glm to lm should

really be delegation, not inheritance.

An exception is data infrastructure (e.g. Bioconductor), which

tends to use S4 methods.

3.15

S4 classes

Introduced in version 4 of Bell Labs’ S, since extended and refined

in R.

Still uses generic functions, with methods belonging to functions

rather than to classes.

• Formal declaration of class structure: setClass()

• Formal declaration of methods: setMethod()

• Multiple dispatch

• Multiple inheritance

3.16

Example: ROC curve

Define ROC class

setClass("ROC",

representation(tpr="numeric",fpr="numeric",

cutpoints="numeric",call="call")

)

Or we could factor out the ’curve’ structure and declare

setClass("xycurve", representation(x="numeric", y="numeric"))

setClass("ROC", contains="xycurve",

representation(cutpoints="numeric",call="call")

)

taking advantage of inheritance

3.17

Example: ROC curve

Other options include validity checks at object creation

setClass("ROC",

representation(tpr="numeric",fpr="numeric",

cutpoints="numeric",call="call"),

validity=function(object){

if(length(object@tpr)!=length(object@fpr) ||

length(object@tpr)!=length(object@cutpoints))

return("length mismatch")

if(any(object@tpr>1) || any(object@fpr>1) ||

any(object@tpr<0) || any(object@fpr<0))

return("outside [0,1]")

return(TRUE)

})

3.18

Example: ROC constructor

Objects are created with new(); code is otherwise the same.

ROC <- function(T,D){

DD <- table(-T,D)

tpr <- cumsum(DD[,2])/sum(DD[,2])

fpr <- cumsum(DD[,1])/sum(DD[,1])

new("ROC",tpr=tpr, fpr=fpr,

cutpoints=rev(sort(unique(T))),call=sys.call())

}

3.19

Example: ROC methods

setMethod specifies a method for a generic function and an
argument signature giving the classes of all the arguments used
for dispatch.

Use @ to refer to slots (not $), otherwise similar to S3

setMethod("show",signature="ROC",

function(object){

cat("S4 ROC curve:")

print(object@call)

}

)

(Note that S4 uses show rather than print)

This generic has only one argument, so the signature is a single
string.

3.20

Example: ROC methods

setMethod("plot",signature("ROC","ANY"),

function(x,y,type="l", xlab="1 - Specificity",

ylab="Sensitivity",...){

plot(1-x@spec, x@sens, type=type, xlab=xlab, ylab=ylab ,...)

}

)

This generic, for plot(), has two arguments (x, y).

The signature specifies this method when x is ROC and y is

ANYthing.

3.21

Example: ROC methods

lines() is not an S4 generic, but we can re-use the S3 version;

setGeneric("lines")

setMethod("lines",signature("ROC"),

function(x,...){

lines(1-x@spec, x@sens,...)

}

)

setGeneric() creates an S4 generic that defaults to calling the

original lines() function.

3.22

Multiple dispatch

Generic functions with method choice based on all arguments are

strictly more expressive than the Java/C++ model of methods

belonging to classes.

Java/C++ style can be translated mechanically:

object.method(arg1, arg2) maps to generic(object, arg1, arg2)

The price is slower method lookup, but most of the cost is at

installation time, and slower method lookup is inevitable for a

system that allows one package to declare methods for another

package’s objects.

3.23

Multiple dispatch

Generic function style ;

• allows symmetric treatment of argument, e.g. matrix

multiplication: multiply(A, B) not A.rightmultiply(B) or

B.leftmultiply(A)

• allows the programmer to describe whether methods for two

objects are actually doing the same thing.

• allows first-class functions, which mathematicians and statis-

ticians like.

3.24

Multiple dispatch

filter() in the flowCore package for flow cytometry has two

arguments: a data set, and an object specifying a subsetting

operation. Methods are dispatched based on both arguments.

> showMethods("filter")

Function: filter (package flowCore)

x="flowFrame", filter="filter"

x="flowFrame", filter="filterSet"

x="flowSet", filter="filter"

x="flowSet", filter="filterList"

x="flowSet", filter="filterSet"

x="flowSet", filter="list"

The Matrix package has 70 multiplication methods for different

combinations of matrix types (showMethods("%*%"))

3.25

More complex example

Class AnnDbBimap is used in the AnnotationDbi package in Biocon-

ductor, to provide conversions from one system of identifiers to

another (eg probe ids, gene ids, gene symbols, GO categories).

More details in Session 9.

Examine the structure and inheritance relationships of the class

with getClass()

3.26

More complex example

> getClass("AnnDbBimap")
Class "AnnDbBimap" [package "AnnotationDbi"]
Slots:
Name: L2Rchain direction Lkeys Rkeys ifnotfound datacache
Class: list integer character character list environment
Name: objName objTarget
Class: character character

Extends:
Class "Bimap", directly
Class "AnnDbObj", directly
Class "AnnObj", by class "AnnDbObj", distance 2

Known Subclasses:
Class "InpAnnDbBimap", directly
Class "GoAnnDbBimap", directly
Class "GOTermsAnnDbBimap", directly
Class "AnnDbMap", directly
Class "ProbeAnnDbBimap", directly
Class "Go3AnnDbBimap", by class "GoAnnDbBimap", distance 2
Class "IpiAnnDbMap", by class "AnnDbMap", distance 2
Class "AgiAnnDbMap", by class "AnnDbMap", distance 2
Class "ProbeAnnDbMap", by class "AnnDbMap", distance 2 [..etc..]

3.27

More complex example

setClass("AnnDbBimap",

contains=c("Bimap", "AnnDbObj"),

representation(

L2Rchain="list", # list of L2Rlink objects

direction="integer", # 1L for left-to-right,

Lkeys="character",

Rkeys="character",

ifnotfound="list"

),

prototype(

direction=1L, # left-to-right by default

Lkeys=as.character(NA),

Rkeys=as.character(NA),

ifnotfound=list() # empty list => raise an error

)

)

3.28

More complex example

Multiple inheritance used for ’mix-in’ behavior:

• "Bimap" is a virtual class that is used only to define a set of

methods for its subclasses

• Some implementation is inherited from "AnnDBObj"

3.29

is(), as()

• is(object, "class") tests whether object inherits from "class"

• as(object, "class") attempts to convert object to "class".

This will only work if object inherits from "class" or a

conversion function has been provided with setAs()

setAs("ROC", "numeric",

function(from){ cbind(from@fpr, from@tpr, from@cutpoints) }

)

3.30

New generics

When creating a completely new function with methods, you

need to specify the arguments to the generic function:

setGeneric("increment",

function(object, step, ...)

standardGeneric("increment")

)

Recall in S3 we’d have just defined increment.ROC, increment.lm,

etc, which a generic increment() function would pick from with

UseMethod("increment")

In S4, methods for increment will have a signature specifying

classes for object and step

3.31

Some Bioconductor infrastructure

• eSet: basic data structure including genomic data, pheno-

type, metadata; specializes to ExpressionSet, SnpSet, others

• IRanges: for manipulating numeric sequences.

• Xstring: stores long strings (specializes to DNAstring, RNAstring,

AAstring)

• AnnDbObj, Bimap: Storage and lookup of annotation data

3.32

eSet

assayData Contains matrices with equal dimensions, and with
column number equal to nrow(phenoData). Class:AssayData-
class

phenoData Contains experimenter-supplied variables describing
sample (i.e., columns in assayData) phenotypes. Class:
AnnotatedDataFrame-class

featureData Contains variables describing features (i.e., rows
in assayData) unique to this experiment. Use the annota-
tion slot to efficiently reference feature data common to
the annotation package used in the experiment. Class:
AnnotatedDataFrame-class

experimentData Contains details of experimental methods.
Class: MIAME-class

annotation Label associated with the annotation package used
in the experiment. Class: character

protocolData Contains microarray equipment-generated vari-
ables describing sample (i.e., columns in assayData) phe-
notypes. Class: AnnotatedDataFrame-class

3.33

eSet

eSet has accessor functions to extract or modify the data; the

slots should not be used directly.

eSet is a virtual class that abstracts a set of data properties.

Actual objects must be defined using a subclass of eSet, and

new("eSet") is an error.

ExpressionSet is a subclass where the assayData slot contains one

or more matrices (all the same size) for gene expression data

SnpSet is a subclass where the assayData slot contains two

matrices of the same size, for SNP calls and call probabilities

3.34

Sequences

The IRanges package provides an alternative infrastructure to

vectors, mostly as virtual classes.

• Sequence: virtual class for (potentially large) vectors

• View: virtual class for subsequences of a Sequence

• Ranges: sets of intervals of consecutive integers.

• IntervalTree: find overlaps between two Ranges

3.35

Biostrings package

DNAString and RNAString represent genomic sequences, AAString

represents an amino-acid sequence

> d <- DNAString("TTGAAAA-CTC-N")
> length(d)
[1] 13
> alphabet(d) # DNA_ALPHABET
[1] "A" "C" "G" "T" "M" "R" "W" "S" "Y" "K" "V" "H" "D" "B" "N" "-" "+"

> alphabet(d, baseOnly=TRUE) # DNA_BASES
[1] "A" "C" "G" "T"
>
> d

13-letter "DNAString" instance
seq: TTGAAAA-CTC-N
> reverseComplement(d)

13-letter "DNAString" instance
seq: N-GAG-TTTTCAA
> RNAString(d)

13-letter "RNAString" instance
seq: UUGAAAA-CUC-N

3.36

Efficiency

The underlying sequence is not copied on assignment.

The subseq() function (from IRanges) makes a view of a subset

of the string without copying

...allows manipulation of whole-chromosome sequences.

> data(yeastSEQCHR1)
> yeast1 <- DNAString(yeastSEQCHR1)
> str(yeast1)
Formal class ’DNAString’ [package "Biostrings"] with 6 slots

..@ shared :Formal class ’SharedRaw’ [package "IRanges"] with 2 slots

..@ xp :<externalptr>

..@ .link_to_cached_object:<environment: 0x1cf45fdc>

..@ offset : int 0

..@ length : int 230208

..@ elementMetadata: NULL

..@ elementType : chr "ANY"

..@ metadata : list()

3.37

Efficiency

> dinucleotideFrequency(yeast1)
AA AC AG AT CA CC CG CT GA

23947 12493 13621 19769 15224 9218 7089 13112 14478
GC GG GT TA TC TG TT

8910 9438 12938 16181 14021 15617 24151
> trinucleotideFrequency(yeast1)
AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC AGG

8576 4105 4960 6306 3924 2849 2186 3534 4537 2680 2707
AGT ATA ATC ATG ATT CAA CAC CAG CAT CCA CCC

3697 5242 3849 4294 6384 5147 2722 3091 4264 3696 1622
CCG CCT CGA CGC CGG CGT CTA CTC CTG CTT GAA

1444 2456 2158 1380 1446 2105 2755 2556 3074 4727 5437
GAC GAG GAT GCA GCC GCG GCT GGA GGC GGG GGT

2384 2645 4012 2993 1960 1259 2698 2983 1905 1594 2955
GTA GTC GTG GTT TAA TAC TAG TAT TCA TCC TCG

3490 2455 2798 4195 4787 3282 2925 5187 4611 2786 2200
TCT TGA TGC TGG TGT TTA TTC TTG TTT

4424 4800 2945 3691 4181 4694 5161 5451 8845

3.38

Efficiency

> ## Get the least and most represented 6-mers:
> f6 <- oligonucleotideFrequency(yeast1, 6)
> f6[f6 == min(f6)]
CCCGGG

3
> f6[f6 == max(f6)]
TTTTTT

705

3.39

Comparisons

The S3 system has less overhead, is more widely understood,

and is very slightly faster. It is still useful for single-programmer

work.

The S4 system is better for multi-person efforts or code that is

likely to be reused by others

• Formal definition of class structure, so the contents of an

object can be relied on

• Registration of methods means that reflection (looking up

what methods are available) is reliable.

• Multiple inheritance is useful for mix-in behavior

• Multiple dispatch is only rarely important, but when you need

it you really need it.

3.40

	Generics and methods
	Methods
	New classes: S3
	Generic functions: S3
	Example: ROC curves
	Example: ROC curve
	ROC curve object
	Methods
	Methods
	Methods
	Syntax notes
	Inheritance
	S4 classes
	Example: ROC curve
	Example: ROC constructor
	Example: ROC methods
	Multiple dispatch
	More complex example
	is(), as()
	New generics
	Some Bioconductor infrastructure
	eSet
	Sequences
	Biostrings package
	Efficiency
	Comparisons

