Advanced R Programming for Bioinformatics.

Exercises for session 8: Interfacing to C.

1. The files nnfind.c, bin_heap.c, bin_heap.h, item.h implement an algorithm
based on k-d trees for finding nearest neighbours. Write an R interface to the

functions in nnfind.c:
void within_neighbours(const double *X, int *pNx, const int *pp,
int *neighbours, double *dists)

and

void between_neighbours(const double *X, int *pNx,
const double *Y, const int *pNy, const int *pp,
int *neighbours, double *dists)

In these functions X and Y are matrices of points in p-dimensional space, *pNXx is the
number of rows in X, *pNy is the number of rows inY, *pp is the dimension of the
space (number of columns in X and Y), neighbours is used to return the row number
of the nearest neighbour (from 0 to (n-1)) and dists returns the distance to the
nearest neighbour.

The difference between the two functions is that within_neighbours finds the nearest
neighbour in X of each point in X and between_neighbours finds the nearest
neighbour in X of each point in Y. This means that neighbours and dists have
length *pNx in within_neighbours and *pNy in between_neighbours.

The row numbers returned are C row numbers from 0 to (n-1); you need to add 1 to
get R row numbers.

Test the code by drawing a scatterplot and connecting each point to its nearest
neighbour (with segments()). A nice data example is data(faithful)

2. A 'box-car’ filter is a simple smoother; on a scatterplot of (X1, Y1), (X2, Y2), ... (Yn,
Xn), it provides a smooth line illustrating how Y changes with X. Formally, for given
radius r, at point x it is evaluated as;

Y
_ | X, —x|<r
Il.smouth (x) - 1 4

| X, —x|<r

in other words, it is the average of the Y’s that have X’s within r of x. Typically, we
evaluate the box-car filter at x=Xi, X2, ... Xn.

(continues...)

In R, one simple way to implement the box-car filter is the following;

boxcar <- function (Y, X, radius, n=length(Y)) {
y.smooth <- rep(0,n)
X <= 0
for (i in 1:n){
count <- 0
X <- X[1i]
for (j in 1:n) {
if (abs (X[]j]-x)<radius) {
count <- count+1l
y.smooth[i] <- y.smooth[i] + Y[]]
}
}
y.smooth[i] <- y.smooth[i]/count

}
y.smooth

}

Try this code, for n=1000 data points, and then n=10,000. What takes the time?
Code this approach in C, and see how much faster it becomes.

For keen people; a preliminary sort of the data enables you to implement this filter
without the double loop; think of ‘sliding’ a window of radius r along the sorted X
values. Implement the filter using this observation, and see what speed

improvement you can achieve.

