
10. The End

Ken Rice

Tim Thornton

University of Washington

Seattle, July 2013

In this session

• Notes on the Special Exercise

• What next?

10.1

Game of Life: The Rules

Cells live on a grid, they can be alive (1) or dead (0). At each

generation they have a number of live neighbors. Cells live, die,

and become alive according to these rules;

If alive==1 and #neighbors <2, alive <− 0
If alive==1 and #neighbors ==2 or 3, alive <− 1
If alive==1 and #neighbors >3, alive <− 0
If alive==0 and #neighbors ==3, alive <− 1

– other dead cells stay dead.

This is a simple evolutionary model – the simplest Conway

could devise that does anything useful. Much of what he

learned/proved about it was based on computer simulations, like

ours.

10.2

Game of Life: The Rules

An example update;

10.3

Game of Life: The Rules

An example update;

10.4

Game of Life: The Rules

An example update;

10.5

Game of Life: What do we need?

Objects;

• A matrix of cells, each 1 or 0

• A matrix containing # neighbours each cell has

• Another matrix of cells, each 1 or 0 – containing the updated

values

Code to do the following jobs;

• Count number of neighbors for cells

• Updating the alive/dead status

• Plot the current status, for all cells

10.6

Game of Life: Counting neighbors

First option for neighbors; count based on what’s visible.

10.7

Game of Life: Counting neighbors

First option for neighbors; count based on what’s visible.

10.8

Game of Life: Counting neighbors

First option for neighbors; count based on what’s visible.

10.9

Game of Life: Counting neighbors

Pseudo-code for counting neighbors;

neebs <- matrix(NA, nrows, ncols)

for(i in 1:nrows){

for(j in 1:ncols){

if(<in corner>){ add up over 3 relevant cells }

if(<on side>){ add up over 5 relevant cells }

if(<other>){ add up over 8 relevant cells }

neebs[i,j] <- #neighbors we just counted

}

}

• neebs stores the number of neighbors

• Which cells are relevant depends on i and j

10.10

Game of Life: Counting neighbors

Doing the ‘wrap-around’ version, always count 8 neighbors;

Same basic commands, ‘wrap’ with modular arithmetic;
> 1:13 %% 7
[1] 1 2 3 4 5 6 0 1 2 3 4 5 6

> ((1:13 - 1) %% 7) + 1
[1] 1 2 3 4 5 6 7 1 2 3 4 5 6

10.11

Game of Life: Updating status

Not-so-pseudo code;

alive.new <- matrix(0, nrows, ncols) # note full of zeros

for(i in 1:nrows){

for(j in 1:ncols){

if(alive[i,j]==1 & neebs[i,j]<2){ alive[i,j] <- 0 }

if(alive[i,j]==1 & neebs[i,j]%in%2:3){ alive[i,j] <- 1 }

if(alive[i,j]==1 & neebs[i,j]>3){ alive[i,j] <- 0 }

if(alive[i,j]==0 & neebs[i,j]==3){ alive[i,j] <- 1 }

}

}

alive <- alive.new

• Other alive==0 cells stay dead, so no need for another line

• Possible to do fewer updates, if start with

alive.new <- alive

10.12

Game of Life: Plotting status

There are many ways to do this. rect() offers one simple way;
if i indexes rows and j columns, we need e.g.

xleft j − 1/2
ybottom i− 1/2
xright j + 1/2
ytop i− 1/2

... and also specify color – e.g. 1 for black/dead, 2 for red/alive.

for(i in 1:nrows){

for(j in 1:ncols){

rect(j-0.5, i-0.5, j+0.5, i+0.5,

col=alive[i,j] + 1, border="cyan")

}

}

Also need to set up an ‘empty’ plot first; type="n"

10.13

Game of Life: Putting it together

Other notes;

• Do each task separately, on a small grid (i.e. a small dataset)

and make sure it works right

• As per session 9, it helps to write a function for each task

Final pseudo-code;

alive <- <initial setup>

<setup empty plot>

refresh.grid(alive) # plot the initial status

for(k in 1:n.steps){

alive <- do.update(alive) # counting and updating

refresh.grid(alive) # plotting

}

10.14

Game of Life: Some cute tricks

If the arguments to rect() are vectors, it draws multiple

rectangles. To do this, we need to make a copy of alive in ‘long’

format, i.e. in a long tall matrix, where each row corresponds to

a cell

a.long <- cbind(alive=as.vector(alive),

expand.grid(row=1:side, clm=1:side))

this is a side^2 x 3 matrix

rect(a.long$clm-0.5,

a.long$row-0.5,

a.long$clm+0.5,

a.long$row+0.5, col=a.long$alive+1, border="cyan")

This is slightly easier to type, but doesn’t actually speed things

up much.

10.15

Game of Life: Some cute tricks

A much cuter trick; to count neighbors, slide the grid in all 8

directions, and add;

10.16

Game of Life: Some cute tricks

A much cuter trick; to count neighbors, slide the grid in all 8

directions, and add;

N E S W

NE SE SW NW

10.17

Game of Life: Some cute tricks

A much cuter trick; to count neighbors, slide the grid in all 8

directions, and add; (it works!)

10.18

Game of Life: Some cute tricks

This enables counting neighbors without any explicit loops;

al.E <- alive[,c(ncols, 1:(ncols-1))] # moved E

al.W <- alive[,c(2:nrows, 1)] # moved W

al.N <- alive[c(nrows, 1:(nrows-1)),]

al.S <- alive[c(2:nrows, 1),]

al.SW <- rbind(alive[2:(nrows), c(2:nrows,1)],

alive[1, c(2:ncols,1)])

<etc>

neebs <- al.W + al.NW + al.N + al.NE +

al.E + al.SE + al.S + al.SW

This does notably speed up the code – faster than the graphics

can cope, on my laptop. Much of the processor time is spent

managing the for() loop, and this ‘vectorized’ version means all

that work is done in C/Fortran instead.

10.19

Game of Life: Some cute tricks

Our final trick is ‘logical subscripting’. We can reassign elements
of a matrix indexed by the TRUE elements of another matrix,
without losing the original matrix structure.

alive.new <- alive
alive.new[alive==0 & neebs==3] <- 1
alive.new[alive==1 & neebs<2] <- 0
alive.new[alive==1 & neebs>3] <- 0
alive <- alive.new

A simpler example – to show this really is a trick;

> x <- matrix(1:10, 2, 5)
> x

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> y <- x>5
> x[y]
[1] 6 7 8 9 10
> x[y] <- 0
> x

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 0 0
[2,] 2 4 0 0 0

10.20

Game of Life: Nicer output

Standard R graphics are not built for animations. If your code
goes too fast for them, export to a file format that does permit
animations – e.g. animated GIFs, which the caTools package will
write.

Storing every version of alive in a nrows × ncols × nsteps array

object.

all.alive <- array(NA, c(nrows, ncols, nsteps))

alive <- <initial setup>

for(k in 1:n.steps){

all.alive[,,k] <- alive # store current status

alive <- do.update(alive) # counting and updating

}

install.packages("caTools")

library("caTools")

write.gif(image=all.alive, filename="gol.gif", scale="always",

col="jet")

10.21

Game of Life: Nicer output

R can’t display animated GIFs. So, to open this file in the default
application on your computer;

shell.exec("gol.gif")

Assuming your machine knows what to do with URLs, also try

shell.exec("http://www.google.com/")

And having done that, try this last mammals example;

mammals <- read.table("mammals.txt", header=TRUE)
plot(log(brain)~log(body), data=mammals) # usual plot

repeat({
mychoice <- identify(y=log(mammals$brain), x=log(mammals$body),

labels=row.names(mammals), n=1)
shell.exec(

paste("http://images.google.com/images?q=",
row.names(mammals)[mychoice], sep=""))

})

10.22

What next?

This concludes our course. To learn more;

• Take the next one! ‘Elements of R’ follows on, with

genetics/bioinformatics examples (and lots of programming)

• See the recommended books, on the course site

• To find simple examples/functions, ask Google (in a web

browser

• There are several R mailing lists; R-help is the main one. But

contributors expect you to have read the documentation –

all of it! CrossValidated is friendlier to beginners

• Emailing package authors may also work

• For questions about any software, say;

– What you did (ideally, with an example)

– What you expected it to do

– What it did instead

10.23

http://www.r-project.org/mail.html
http://stats.stackexchange.com/

What next week?

Calling anyone who can sing (or just read music) – no auditions

for two ‘open reading’ sessions.

www.nwmahlerfestival.org

10.24

http://www.nwmahlerfestival.org/schedule.html

	In this session
	Game of Life: The Rules
	Game of Life: What do we need?
	Game of Life: Counting neighbors
	Game of Life: Updating status
	Game of Life: Plotting status
	Game of Life: Putting it together
	Game of Life: Some cute tricks
	Game of Life: Nicer output
	What next?
	What next week?

