
9. Writing Functions

Ken Rice

Tim Thornton

University of Washington

Seattle, July 2013

In this session

One of the most powerful features of R is the user’s ability to

expand existing functions and write custom functions. We will

give an introduction to writing functions in R.

• Structure of a function

• Creating your own function

• Examples and applications of functions

9.1

Introduction

Functions are an important part of R because they allow the user

to customize and extend the language.

• Functions allow for reproducible code without copious/error

prone retyping

• Organizing code into functions for performing specified tasks

makes complex programs tractable

• Often necessary to develop your own algorithms or take

existing functions and modify them to meet your needs

9.2

Structure of a function

Functions are created using the function() directive and are

stored as R objects.

Functions are defined by

1. a function name with assignment to the function() directive

(function names can be almost anything. However, the usage

of names of existing functions should be avoided.)

2. the declaration of arguments/variables

3. and the definition of operations (the function body) that

perform computations on the provided arguments.

9.3

Structure of a function

The basic structure of a function is:

my.func <- function(arg1,arg2,arg3, ...) {

commands;

return(output);

}

Function arguments (arg1, arg2, ...) are what is passed to the

function and used by the function’s code to perform calculations.

9.4

Calling a function

Functions are called by their name followed by parentheses
containing possible argument names.

A call to the function generally takes the form

my.func(arg1=expr1,arg2=expr2,arg3=exp3, ...)

or

my.func(expr1,expr2,exp3, ...)

Arguments can be “matched” by name or by position.

A function can also take no arguments, and in this case the
function is called with the name of the function with empty
parenthesis () after the function name.

Typing just the function name without parentheses will print the
definition of a function.

9.5

Function body

The actual expressions (commands/operations) are defined in
the body of the function.

The function body appears within {curly brackets}. The brackets
{} are not required for functions with just one expression.

Individual commands/operations are separated by new lines or
semicolons.

An object is returned by a function with the return() command,
where the object to be returned appears inside the parentheses.

If the end of a function is reached without calling return, the
value of the last evaluated expression will be returned by the
function.

Variables that are created inside the function body exist only
for the lifetime of the function. Thus, they are not accessible
outside of the function in an R session.

9.6

Example: returning a single value

Below is a function for calculating the coefficient of variation
(the ratio of the standard deviation to the mean) for a vector.

coef.of.var <- function(x){

meanval <- mean(x,na.rm=TRUE)

sdval <- sd(x,na.rm=TRUE)

return(sdval/meanval)

}

We can apply this function to obtain the coefficient of variation
for the daily ozone concentrations in New York, summer 1973:

data(airquality)

coef.of.var(airquality$Ozone)

> coef.of.var(airquality$Ozone)

[1] 0.7830151

9.7

Example: returning multiple values

A function can return multiple objects/values by using list() –

which collects objects of (potentially) different types.

The function below calculates and returns the maximum like-

lihood estimates for the mean and standard deviation for a

numeric vector under a normal distribution assumption

gaussian.mle <- function(x) {

n <- length(x)

mean.est <- mean(x,na.rm=TRUE)

var.est <- var(x,na.rm=TRUE)*(n-1)/n

est <- list(mean=mean.est, sd=sqrt(var.est))

return(est)}

9.8

Example: returning multiple values

We can apply the gaussian.mle function to the daily ozone

concentrations in New York data:

> results<-gaussian.mle(airquality$Ozone)

> attributes(results) #list the attributes of the object returned

$names

[1] "mean" "sd"

> results$mean

[1] 42.12931

> results$sd

[1] 32.8799

Elements of lists can also be obtained using double square

brackets, i.e. results[[1]].

9.9

Declaring functions within functions

Functions can be declared and used inside a function.

square.plus.cube <- function(y) {

square <- function(x) { return(x*x) }

cube <- function(x) { return(x^3) }

return(square(y) + cube(y))

}

> square.plus.cube(4)

[1] 80

9.10

Example: function returning a function

A function can also return another function as the return object.

make.power <- function(n){

pow <- function(x) {x^n}

pow

}

cube <- make.power(3)

square <- make.power(2)

> cube(3)

[1] 27

> square(3)

[1] 9

9.11

Example: functions as arguments

Functions can take other functions as arguments. This is helpful
with finding roots of a function; values of x such that f(x) = 0.

With the Newton-Raphson method, a root can be found by the
following iteration procedure until convergence:

xn+1 = xn −
f(xn)

f ′(xn)

9.12

Example: functions as arguments

This function implements the Newton-Raphson method, given

input of arguments, a place to start, and convergence tolerance:

newton.raphson <- function(f,fprime,x0,thresh){

myabsdiff <- Inf

xold <- x0

while(myabsdiff>thresh){ # have we converged yet? If no, move;

xnew <- xold-f(xold)/(fprime(xold))

myabsdiff <- abs(xnew-xold)

xold <- xnew

}

return(xnew)

}

9.13

Example: functions as arguments

We’ll find the roots of f(x) = x2+3x−5, using Newton-Raphson.
We need the derivative of f(x): f ′(x) = 2x + 3

myf <- function(x){ x^2+3*x-5 }

myfprime<-function(x){ 2*x+3 }

We use the newton.raphson() function with initial value of 10 and
a convergence threshold of 0.0001 to obtain a root:

> newton.raphson(f=myf,fprime=myfprime,x0=10,thresh=0.0001)

[1] 1.192582

−10 −5 0 5 10

0
20

40
60

80
10

0

x

m
yf

(x
)

9.14

Tips for writing functions

• Avoid rewriting the same code...use functions!

• Modularize as much as possible: functions calling other

functions

• Provide documentation, including detailed comments de-

scribing the procedures being conducted by the functions,

especially for large, complex programs

• Test your functions: use data/arguments for which you know

the results to verify that your functions are working properly

• Use meaningful variable and function names

9.15

Summary

• User-defined functions can easily be created in R with
function(argument list)

• Arguments of a function are allowed to be practically any
R object including lists, numeric vectors, data frames, and
functions

• In functions calls, arguments are matched by name or by
position

• An object can be returned by a function with return(). If
return() is not invoked, the last evaluated expression in the
body of a function will be returned.

• list() can be used for returning multiple values

9.16

	In this session
	Introduction
	Structure of a function
	Calling a function
	Function body
	Example: returning a single value
	Example: returning multiple values
	Declaring functions within functions
	 Example: function returning a function
	 Example: functions as arguments
	Tips for writing functions
	Summary

