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Disclaimer/Warning

In statistics, as in fashion, a model is an idealization of reality.

Peter McCullagh

JRSSD (1999) 48:1

Models basically play the same role in economics as in fashion:
they provide an articulated frame on which to show off your
material to advantage ...; a useful role, but fraught with the
dangers that the designer may get carried away by his personal
inclination for the model, while the customers may forget that
the model is more streamlined than reality.

Jacques Drèze

Economic Journal (1985) 95:380
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In this session

... we will not attempt to teach all of statistical modeling.

Instead, we’ll cover;

• More about the formula syntax (Y ∼ X), and some functions

that use it to fit models

• Some explanation of what these functions are doing, and

why it might be useful

• Some ‘helper’ functions, used when fitting models
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Example: the t-test

Recall the sleep example from Session 5. We want to compare

mean levels of extra sleep, in Group 1 and 2. The full version of

the code and output;

> t.test(extra~group, data=sleep)
Welch Two Sample t-test

data: extra by group
t = -1.8608, df = 17.776, p-value = 0.07939
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.3654832 0.2054832

sample estimates:
mean in group 1 mean in group 2

0.75 2.33

• extra is the outcome, it depends on group – for an analogous

graphical comparison use plot(extra∼group, data=sleep)

• Confidence interval is for difference in means

• p-value: null hypothesis is of equal means (2-sided test)
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Example: linear regression

Another favorite example;
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Straight line suggests log(brain) higher by ≈0.75 units, per 1-

unit difference in log(body) – i.e. a power law, brain ∝ body0.75.
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Example: linear regression

Where does the straight line come from? One way∗ to justify it
is as the least squares fit;
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Any other choice of line would use more purple ink. (NB see asp

in ?par for aspect ratios)

* there are several – too many to discuss here!

7.5



Example: linear regression

Finding the least-squares fit is known as ‘simple’ linear regression,

or fitting a linear model. In R;

> mammals.reg <- lm(log(brain)~log(body), data=mammals)
> summary(mammals.reg)

Call:
lm(formula = log(brain) ~ log(body), data = mammals)

Residuals:
Min 1Q Median 3Q Max

-1.71550 -0.49228 -0.06162 0.43597 1.94829

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.13479 0.09604 22.23 <2e-16 ***
log(body) 0.75169 0.02846 26.41 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.6943 on 60 degrees of freedom
Multiple R-squared: 0.9208,Adjusted R-squared: 0.9195
F-statistic: 697.4 on 1 and 60 DF, p-value: < 2.2e-16
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Example: linear regression

The summary() is fairly verbose; (SAS is a lot worse!)

• Function lm() make an lm.object, containing the output of

the regression; try str(mammals.reg) to see that summary()

picks out the most important bits

• Call restates the formula, Residuals summarizes how small

our ‘least’ square edges are

• Coefficient; the fitted line is

log(brain) = 2.13 + 0.75× log(body)

The intercept (2.13) is (sensibly) added by default.

• Std. Error describes the noise in each estimate – smaller

when you have more data

• Pr(> |t|) is a two sided p-value, for the null hypothesis that

the relevant coefficient is zero

• Other terms describe remaining ‘noise’
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Example: linear regression

The next-most useful summary;

> confint(mammals.reg, parm="log(body)", level=0.95)
2.5 % 97.5 %

log(body) 0.6947503 0.8086215
> confint(mammals.reg, parm=1:2, level=0.975)

1.25 % 98.75 %
(Intercept) 1.9139805 2.355597
log(body) 0.6862469 0.817125

• For lm.objects, confint() gives intervals based on point

estimate ± Std. Error × the appropriate quantile of the

appropriate t distribution

• confint.default() uses Normal quantiles instead

• level is the confidence level, default is 95%

• parm can be a vector of coefficient names, or a vector of

numbers; the default gives intervals for all terms

• Like most software, R gives an insane number of decimal

places – but don’t round() until final write-up
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Example: linear regression

To ‘extract’ other parts of an lm.object, you can use the
$ (apostrophe-S) symbol, e.g. mammals.reg$coef is the point
estimates. But R’s regression functions also have generic
extractor functions, helpful for common jobs;

• coef(mammals.reg) – gives the fitted coefficients
• fitted(mammals.reg) returns the fitted log(brain) values (i.e.

Y ), for each data point (i.e. each X)
• residuals(mammals.reg) returns log(body) minus the fitted

value – that we minimized the sum of, when squared
• predict(mammals.reg, new.data.frame) predicts the mean log(brain)

(i.e. Y ) for which you supply log(body)

Experts: vcov() gives the variance-covariance matrix, describing
the statistical noise in the coefficients; sqrt(diag(vcov(mammals.reg)))
is the same as Std. Error column in summary() output.

For more of these (some fairly esoteric) use methods(class="lm").
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Example: linear regression

Experts again: plot() has a method for lm.objects;

par(mfrow=c(2,3))
plot(mammals.lm, which=1:6)
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Example: salaries again

Another familiar example; how does salary depend on rank?

plot(salary~rank, data=finalsalary)
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As a regression, we could ask whether the mean salary is different
at different ranks. NB With one final salary per person, it’s
reasonable to assumed independent observations.
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Example: salaries again

Comparison of means is exactly what analysis of variance does

...despite the name!

> salary.aov <- aov(salary~rank, data=finalsalary)
> summary( salary.aov )

Df Sum Sq Mean Sq F value Pr(>F)
rank 2 2.642e+09 1.321e+09 529.6 <2e-16 ***
Residuals 1593 3.974e+09 2.495e+06
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
1 observation deleted due to missingness
> model.tables(salary.aov, type="means")
Tables of means
Grand mean

6391.161
rank

Assist Assoc Full
4650 5335 7584

rep 314 437 845
> table(finalsalary$rank)
Assist Assoc Full

315 437 845 # spot the difference
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Example: salaries again

‘Under the hood’, aov() runs group-specific linear regressions
with just an intercept (salary∼1, in the formula syntax) and
recombines them. Here, least-squares ≡ take each group’s mean.

A simpler approach∗ uses regression directly; (edited output)

> salary.lm <- lm(salary~rank, data=finalsalary)
> summary(salary.lm)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4650.43 89.13 52.173 < 2e-16 ***
rankAssoc 684.31 116.85 5.856 5.74e-09 ***
rankFull 2933.93 104.39 28.106 < 2e-16 ***

(1 observation deleted due to missingness)
F-statistic: 529.6 on 2 and 1593 DF, p-value: < 2.2e-16

• Same F statistic, and p-value, equivalent point estimates
• Intercept describes mean salary in Assist Profs (again)
• Other coefficients describe differences – so e.g. p = 5.74 ×

10−9 is for testing Assist=Assoc. Assist is ‘reference’ level

* preferred by most statisticians, though not all
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Multiple regression

Say you wanted to know how salary depended on start year at

UW, and on year of final degree (≈ age, here)

> mreg <- lm(salary~ yrdeg + startyr, data=finalsalary)
> summary(mreg)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 13583.596 375.936 36.133 < 2e-16 ***
yrdeg -118.455 7.380 -16.051 < 2e-16 ***
startyr 22.438 7.275 3.084 0.00208 **

• Starting later associated with greater salary (+22.44) in

people with same year of degree

• Getting a degree earlier associated with less salary (-118.46)

in those who started in same year

• In the formula, ‘+’ means ‘and’. To regress on multiple

covariates, use y ∼ x + z + u + v + ...

• To use ‘plus’ in a formula (or minus) I() is for insulate;

y ∼ x + I(z + u) regresses Y on X and the sum of Z & U
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Multiple regression

Regressing Y on X and Z fits a plane;
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Multiple regression

To test hypotheses involving more than one parameter at a time,
use anova() to compare the fitted models with and without those
parameters;

> mreg <- lm(salary~ yrdeg + startyr, data=finalsalary)
> mreg0 <- lm(salary~ yrdeg + startyr + rank, data=finalsalary)
> anova(mreg, mreg0)
Analysis of Variance Table

Model 1: salary ~ yrdeg + startyr
Model 2: salary ~ yrdeg + startyr + rank

Res.Df RSS Df Sum of Sq F Pr(>F)
1 1593 5025366914
2 1591 3834775234 2 1190591680 246.98 < 2.2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

• Here testing any difference between ranks, adjusted for the
other two variables – order doesn’t matter
• Not the same as aov()!
• With only one model, anova() tests each coefficient, in order

of appearance – order does matter
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Logistic regression

When Y is binary (e.g. 1/0, yes/no, dead/alive) the expected
value of Y is the probability that Y = 1.
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Linear regression’s straight line might give a poor summary.
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Logistic regression

Instead of a straight line, logistic regression fits a curve through
the data;
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The fitted odds shrink by ≈10%, for each extra year.
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Logistic regression

The glm() command does this (close relative of lm())

> glm1 <- glm(salary>6000 ~ yrdeg, data=finalsalary, family=binomial)
> summary(glm1)
Call:
glm(formula = salary > 6000 ~ yrdeg, family = binomial, data = finalsalary)
Deviance Residuals:

Min 1Q Median 3Q Max
-2.2923 -0.9342 -0.5215 0.9674 1.9871
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 7.743524 0.490335 15.79 <2e-16 ***
yrdeg -0.101791 0.006403 -15.90 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2212.5 on 1595 degrees of freedom
Residual deviance: 1895.9 on 1594 degrees of freedom

(1 observation deleted due to missingness)
AIC: 1899.9
Number of Fisher Scoring iterations: 4

NB turn those #&*%ing stars off! options(show.signif.stars=FALSE)
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Logistic regression

The coefficients here are log odds (for the Intercept) and log
odds ratios. So, for a confidence interval around the ‘10%
smaller’ result;

> confint(glm1, "yrdeg", level=0.95)
Waiting for profiling to be done...

2.5 % 97.5 %
-0.11454628 -0.08943648
> confint.default(glm1, "yrdeg", level=0.95)

2.5 % 97.5 %
yrdeg -0.1143396 -0.0892416
> round(exp(confint.default(glm1, "yrdeg", level=0.95)), 3)

2.5 % 97.5 %
yrdeg 0.892 0.915

• The default is fairly sophisticated; for typical symmetric
intervals use confint.default()

• ... then exponentiate to get interval for the odds ratio

All the extractor functions we saw before are available – and use
the formula syntax to regress on multiple covariates.

7.20



Other regressions, other tests

In glm(), other family arguments provide other forms of regres-

sions – too many for our course. Some other tests;

> (tab1 <- with(droplevels(subset(finalsalary, yrdeg>87 & rank!="Full")),
+ table( salary>6000, rank) ))

rank
Assist Assoc

FALSE 199 24
TRUE 25 8

> chisq.test( tab1 )
Pearson’s Chi-squared test with Yates’ continuity correction
X-squared = 3.6229, df = 1, p-value = 0.05699
Warning message:
In chisq.test(tab1) : Chi-squared approximation may be incorrect
> fisher.test(tab1)
Fisher’s Exact Test for Count Data
p-value = 0.04413
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.9243447 6.9357450

sample estimates:
odds ratio

2.640338

7.21



Summary

• There are R implementation of almost every regression
method

• Most use the formula syntax, also used for plotting –
naturally, because both describe how outcome Y depends
on some covariates

• The default in lm() and glm() is to drop cases with NAs –
without warning you

• Extractor functions save time, and make code easier to read

There are many more regression methods available, beyond what
‘plain vanilla’ R provides – in the next session we’ll discuss use
of ‘packages’, to extend R.
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