
SISG & SISMID

Module 3: Introduction to R

Ken Rice

Tim Thornton

University of Washington

Seattle, July 2013

Introduction: Course Aims

This is a first course in R; we aim to cover;

• Reading in, summarizing & managing data

• Use of functions in R – doing jobs by programming, not by
using drop-down menus (much)

• Some standard functions for statistical analysis – but minimal
statistics in this module

• How to use other people’s code, how to get help, what to
learn next

We assume no previous use of R, also non-extensive program-
ming skills in other languages. If this is not your level, please
consider switching to a later module.

0.1

Introduction: Resources

Most importantly, the class site is

http://faculty.washington.edu/kenrice/rintro

Contains (or will contain);

• PDF copies of slides (in color, and contains a few hyperlinks)

• All datasets needed for exercises

• Exercises for you to try

• Our solutions to exercises

• Links to other software, other courses, book, and places to

get R help

• Links to a few helpful websites/email list archives

Of course, any search engine will find much more than this, and

can be useful first step in finding how to tackle a problem in R.

0.2

http://faculty.washington.edu/kenrice/rintro/

Introduction: About Tim

• Assistant Prof, UW Biostat

• A useR and an instructoR

• Research in Genetic

Epidemiology for Complex

Human Traits

• Spare time: teaching my 2 and

4 year old how to swim!

0.3

Introduction: About Ken

• Associate Prof, UW Biostat

• AuthoR of a few R packages,

useR, teacheR

• Genetic/Genomic research in

Cardiovascular Epidemiology

• Sings bass (July 17 & 18!)

... and you?

(who are you, what genetics/infectious disease you work on)

0.4

Introduction: Course structure

10 sessions over 2.5 days

• Day 1; (Mostly RStudio) Data management, using functions

• Day 2; (Standard R) More about programming

• Day 2.5; More advanced ideas

Web page: http://faculty.washington.edu/kenrice/rintro/

0.5

http://faculty.washington.edu/kenrice/rintro/

Introduction: Session structure

What to expect in a typical session;

• 45 mins teaching (please interrupt!)

• 30 mins hands-on; please work in pairs

• 15 mins summary, discussion (interrupt again!)

There will also be one ‘take-home’ exercise, on Day 2; the final

session will include in-depth discussion/evaluation.

0.6

1. Reading in data

Ken Rice

Tim Thornton

University of Washington

Seattle, July 2013

1.0

What is R?

R is a ‘programming environment for statistics and graphics’

• Does basically everything, can also be extended

• Default when statisticians implement new methods

• Free, open-source

But;

• Steeper learning curve than e.g. Excel, Stata

• Command-line driven (programming, not drop-down menus)

• Gives only what you ask for!

To help with these difficulties, we will begin with RStudio,

a front-end for R that is slightly more user-friendly than the

default.

1.1

RStudio

In your favorite web browser, download from rstudio.com;

• Select, download & install version for your (desktop) system
• Default installation is fine
• Working in pairs highly recommended

1.2

http://www.rstudio.com/ide/download/

RStudio

We’ll use the ‘Console’ window first – as a (fancy!) calculator

> 2+2
[1] 4
> 2^5+7
[1] 39
> 2^(5+7)
[1] 4096
> exp(pi)-pi
[1] 19.9991
> log(20+pi)
[1] 3.141632
> 0.05/1E6 # a comment; note 1E6 = 1,000,000
[1] 5e-08

• All common math functions are available; parentheses (round

brackets) work as per high school math

• Try to get used to bracket matching. A ‘+’ prompt means

the line isn’t finished – hit Escape to get out, then try again.

1.3

RStudio

R stores data (and everything else) as objects. New objects are
created when we assign them values;

> x <- 3

> y <- 2 # now check the Workspace window

> x+y

[1] 5

Assigning new values to existing objects over-writes the old
version – and be aware there is no ‘undo’;

> y <- 17.4 # check the Workspace window again

> x+y

[1] 20.4

• Anything after a hash (#) is ignored – e.g. comments
• Spaces don’t matter
• Capital letters do matter

1.4

RStudio: Reading in data

To import a dataset, follow pop-ups from the Workspace tab;

1.5

RStudio: Reading in data

More on those options;

• Name: Name of the data frame object that will store the

whole dataset

• Separator: what’s between items on a single line?

• Decimal: Usually a period (“.”)

• Quote: Usually double – seldom critical

The defaults are sensible, but R assumes you know what your

data should look like – and whether it has named columns, row

names etc.

1.6

RStudio: Reading in data

After successfully reading in the data;

• The workspace now includes a mammals object – or whatever
you called the data read from file

• A copy of the data can be examined in the Excel-like data
viewer (below) – if it looks weird, find out why & fix it!

... we’ll return later, to read.table in the Console window

1.7

RStudio: Reading in data

What’s a good name for my new object?

• Something memorable (!) and not easily-confused with other

objects, e.g. X isn’t a good choice if you already have x

• Names must start with a letter or period (”.”), after that

any letter, number or period is okay

• Avoid other characters; they get interpreted as math

(”-”,”*”) or are hard to read (” ”) so should not be used in

names

• Avoid names of existing functions – e.g. summary. Some one-

letter choices (c, C, F, t, T and S) are already used by R as

names of functions, it’s best to avoid these too

1.8

Operating on data

To operate on data, type commands in the Console window, just
like our earlier calculator-style approach;

> str(mammals)
’data.frame’: 62 obs. of 2 variables:
$ body : num 3.38 0.48 1.35 465 36.33 ...
$ brain: num 44.5 15.5 8.1 423 119.5 ...

> summary(mammals)
body brain

Min. : 0.005 Min. : 0.14
1st Qu.: 0.600 1st Qu.: 4.25
Median : 3.150 Median : 17.25
Mean : 198.738 Mean : 283.13
3rd Qu.: 48.203 3rd Qu.: 166.00
Max. :6654.000 Max. :5712.00

• str() tells us the structure of an object
• summary() summarizes the object

Can also use these commands on the single numbers we created
earlier (try it!)

1.9

Operating on data: columns

Individual columns in data frames are identified using the $
symbol – just seen in the str() output.

> mammals$brain
[1] 44.50 15.50 8.10 423.00 119.50 115.00 98.20 5.50 58.00

[10] 6.40 4.00 5.70 6.60 0.14 1.00 10.80 12.30 6.30
[19] 4603.00 0.30 419.00 655.00 3.50 115.00 25.60 5.00 17.50
[28] 680.00 406.00 325.00 12.30 1320.00 5712.00 3.90 179.00 56.00
[37] 17.00 1.00 0.40 0.25 12.50 490.00 12.10 175.00 157.00
[46] 440.00 179.50 2.40 81.00 21.00 39.20 1.90 1.20 3.00
[55] 0.33 180.00 25.00 169.00 2.60 11.40 2.50 50.40
> summary(mammals$brain)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.14 4.25 17.25 283.10 166.00 5712.00

Think of $ as ‘apostrophe-S’, i.e. mammals’S brain.

Unlike many other statistical packages, R can handle multiple

datasets at the same time – helpful if your data are e.g.

phenotypes & genotypes, or county & disease outbreak data.

This isn’t possible without $, or some similar bits of syntax.

1.10

Operating on data: columns

New columns are created when you assign their values – here

containing the brain weights in kilograms;

> mammals$brainkg <- mammals$brain/1000
> str(mammals)
’data.frame’: 62 obs. of 3 variables:
$ body : num 3.38 0.48 1.35 465 36.33 ...
$ brain : num 44.5 15.5 8.1 423 119.5 ...
$ brainkg: num 0.0445 0.0155 0.0081 0.423 0.1195 ...

> summary(mammals$brainkg)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00014 0.00425 0.01725 0.28310 0.16600 5.71200

• Assigning values to existing columns over-writes existing

values – again, with no warning

• With e.g. mammals$newcolumn <- 0, the new column has every

entry zero; R recycles this single value, for every entry

• It’s unusual to delete columns... but if you must;

mammals$brainkg <- NULL

1.11

Operating on data: columns

Other functions useful for summarizing data frames, and their

columns;

> names(mammals)
[1] "body" "brain"
> dim(mammals) # dim is short for dimension
[1] 62 2
> length(mammals$body)
[1] 62
> min(mammals$body)
[1] 0.005
> max(mammals$body)
[1] 6654
> range(mammals$body)
[1] 0.005 6654.000
> mean(mammals$brain)
[1] 283.1342
> sd(mammals$brain) # sd is short for standard deviation
[1] 930.2789
> median(mammals$brain)
[1] 17.25
> median(mammals$br) # uses pattern-matching (but hard to debug later)
[1] 17.25

1.12

RStudio: the Script window

It’s fine for occasional use, but entering every command ‘by

hand’ is error-prone, and quickly gets tedious. A much better

approach is to use a Script window – open one with Ctrl-Shift-N,

or the drop-down menus;

• Opens a nice editor, enables saving code (.R extension)

• Run current line (or selected lines) with Ctrl-Enter, or Ctrl-R

1.13

RStudio: the Script window

An important notice: from now on, we assume you are using a

script editor.

• First-time users tend to be reluctant to switch! – but it’s

worth it, ask any experienced user

• Some code in slides may be formatted for cut-and-paste into

scripts – it may not look exactly like what appears in the

Console window

• Exercise ‘solutions’ given as .R files

• Scripts make it easy to run slightly modified code, without

re-typing everything – remember to save them as you work

• Also remember the Escape key, if e.g. your bracket-matching

goes wrong

For a very few jobs, we will still use drop-down menus, e.g.

changing directories – though commands are available.

1.14

Operating on data: subsets

To identify general subsets – not just the columns selected by $
– R uses square brackets.

Selecting individuals elements;

> mammals$brain[32] # 32nd element of mammals$brain
[1] 1320
> row.names(mammals)[32]
[1] "Human"
> mammals$body[32]
[1] 62
> mammals[32,2] # 32nd row, 2nd column
[1] 62

Selecting entire columns (again!) or entire rows, blank entries
indicate you want everything.

> mammals[32,] # everything in the 32nd row
body brain

Human 62 1320
> sum(mammals[32,])
[1] 1382

1.15

Operating on data: subsets

Suppose we were interested in the brain weight (i.e 2nd column)
for mammals (i.e. rows) 14, 55, & 61. How to select these
multiple elements?

> mammals[c(14,55,61),1]
[1] 0.005 0.048 0.104 # check these against data view

But what is c(14,55,61)? It’s a vector of numbers – c() is for
combine;

> length(c(14,55,61))
[1] 3
> str(c(14,55,61))
num [1:3] 14 55 61

We can select these rows and all the columns;

> mammals[c(14,55,61),]
body brain

Lesser short-tailed shrew 0.005 0.14
Musk shrew 0.048 0.33
Tree shrew 0.104 2.50

1.16

Operating on data: subsets

A very useful special form of vector;
> 1:10
[1] 1 2 3 4 5 6 7 8 9 10

> 6:2
[1] 6 5 4 3 2
> -1:-3
[1] -1 -2 -3

R expects you to know this shorthand – see e.g. its use of 1:3

in the output on the previous slide. For a ‘rectangular’ selection
of rows and columns;
> mammals[20:22, 1:2]

body brain
Big brown bat 0.023 0.3
Donkey 187.100 419.0
Horse 521.000 655.0

Negative values correspond to dropping those rows/columns;
> mammals[-3:-62, 1:2] # everything but the first two rows, & columns 1:2

body brain
Arctic fox 3.385 44.5
Owl monkey 0.480 15.5

1.17

Operating on data: subsets

As well as storing numbers and character strings (like "Donkey",

"Big brown bat") R can also store logicals – TRUE and FALSE.

To make a new vector, with elements that are TRUE if body

mass is above 500kg and FALSE otherwise;

> is.heavy <- mammals$body > 500
> table(is.heavy) # another useful data summary command
is.heavy
FALSE TRUE

58 4

Which mammals were these? (And what were their masses?)

> mammals[is.heavy,] # just the rows for which is.heavy is TRUE
body brain

Asian elephant 2547 4603
Horse 521 655
Giraffe 529 680
African elephant 6654 5712
> mammals[is.heavy,2] # combining TRUE/FALSE (rows) and numbers (columns)
[1] 4603 655 680 5712

1.18

Operating on data: subsets

One final method... for now!

Instead of specifying rows/columns of interest by number, or

through vectors of TRUEs/FALSEs, we can also just give the

names – as character strings, or vectors of character strings.

> mammals[c("Cow","Goat","Human"),"body"]
[1] 465.00 27.66 62.00
> mammals[c("Cow","Goat","Human"),c("body","brain")]

body brain
Cow 465.00 423
Goat 27.66 115
Human 62.00 1320
> mammals[c("Cow","Goat","Human"),2] # okay to mix & match
[1] 423 115 1320

– this is more typing than the other options, but much easier to

debug/reuse.

1.19

Quitting time (almost)

When you’re finished with RStudio;

• Ctrl-Q, or the drop-down menus, or entering q() at the

command line all start the exit process

• You will be asked “Save workspace image to ∼/.RData?”

– No/Don’t Save: nothing is saved, and is not available

when you re-start. This is recommended, because you

will do different things in each session

– Yes: Everything in memory is stored in R’s internal format

(.Rdata) and will be available when you re-start RStudio

– Cancel: don’t quit, go back

• Writing about what you did (output from a script) often

takes much longer than re-running that script’s analyses

To get rid of objects in your current session, use rm(), e.g.

rm(is.heavy, mammals, x, y) ... or RStudio’s ‘broom’ button.

1.20

Summary

• In RStudio, read in data from pop-up menu in Workspace

window

• Data frames store data; can have many of these objects, and

others

• Identify vectors with $, subsets with square brackets

• Many useful summary functions are available, with sensible

names

• Scripts are an important drudgery-avoidance tool!

1.21

	Introduction: Course Aims
	Introduction: Resources
	Introduction: About Tim
	Introduction: About Ken
	Introduction: Course structure
	Introduction: Session structure
	
	What is R?
	RStudio
	RStudio: Reading in data
	Operating on data
	Operating on data: columns
	RStudio: the Script window
	Operating on data: subsets
	Operating on data: subsets
	Quitting time (almost)
	Summary

