
SISG/SISMID Module 3

Introduction to R

Ken Rice

Ting Ye

University of Washington

Seattle, July 2022

Introduction: Course Aims

This is a first course in R. We aim to cover;

• Reading in, summarizing & managing data

• Use of functions in R – doing jobs by programming, not by
using drop-down menus (much)

• Some standard functions for statistical analysis – but minimal
statistics in this module

• How to use other people’s code, how to get help, what to
learn next

We assume no previous use of R, also non-extensive program-
ming skills in other languages. If this is not your level, please
consider switching to a later module.

0.1

Introduction: Resources

Most importantly, the class site is

http://faculty.washington.edu/kenrice/rintro

Contains (or will contain);

• Links to all Zoom sessions, and their recordings
• PDF copies of slides (in color, and contains a few hyperlinks)
• All datasets needed for exercises
• Exercises for you to try
• Our solutions to exercises (later!)
• Links to other software, other courses, book, and places to

get R help
• Links to a few helpful websites/email list archives

Of course, search engines will find much more than this, and can
be a useful start, when tackling analyses with R.

0.2

http://faculty.washington.edu/kenrice/rintro/

Introduction: About Ting

• Assistant Professor, UW

Biostat

• A useR and an instructoR

• Causal inference (clinical trials

and observational studies)

0.3

Introduction: About Ken

• Professor, UW Biostat

• AuthoR of a few R packages,

useR, teacheR

• Genetic/Genomic research in

Cardiovascular Epidemiology

0.4

Introduction: Teaching Assistants

Our department’s finest – here to help you:

Yiqun Chen Yilin Song

Expect to ‘see’ them on Zoom chat, and our Slack channel.

0.5

https://uwbiostatisticssisg.slack.com/archives/C03KL7THRN3

Introduction: Course structure

10 sessions over 2.5 days

• Day 1; (Mostly RStudio) Data management

• Day 2; (Standard R) Using functions, more about program-

ming

• Day 3; More advanced ideas, how to go further

Web page: http://faculty.washington.edu/kenrice/rintro/

0.6

http://faculty.washington.edu/kenrice/rintro/

Introduction: Session structure

What to expect in a typical 80 minute session;

• 45 mins teaching (please ask questions, on Zoom and/or

Slack)

• 25 mins hands-on; in Zoom breakout rooms, please discuss

as you go

• 10 mins summary, discussion/extensions (questions again!)

Please note: the 2.5 day course moves quickly, and later material

builds on earlier material. So, please ask questions! – as ‘chat’

in Zoom calls, or on our Slack channel.

0.7

https://uwbiostatisticssisg.slack.com/archives/C022R07FKAP
https://uwbiostatisticssisg.slack.com/archives/C03KL7THRN3

1. Reading in data

Ken Rice

Ting Ye

University of Washington

Seattle, July 2022

1.0

What is R?

R is a ‘programming environment for statistics and graphics’

• Does basically everything, can also be extended
• It’s the default when statisticians implement new methods
• Free, open-source

But;

• Steeper learning curve than e.g. Excel, Stata
• Command-line driven (programming, not drop-down menus)
• Gives only what you ask for!

To help with these difficulties, we will begin with RStudio, a
graphical user interface (front-end) for R that is slightly more
user-friendly than ‘Classic’ R’s GUI.

So after you have installed the latest version of R...

1.1

https://cloud.r-project.org/

RStudio

In your favorite web browser, download RStudio for Desktop;

• Select& download the FREE installer for your system

• Default installation is fine

1.2

http://www.rstudio.com/products/rstudio/download/

RStudio

RStudio is a ‘front end’ to R itself, so needs you to install R. On

first startup, RStudio should look like this; (up to version and

Mac/PC differences)

If you’ve used it before, RStudio defaults to remembering what

you were doing.

1.3

https://www.r-project.org/

RStudio

We’ll use the ‘Console’ window first – as a (fancy!) calculator

> 2+2
[1] 4
> 2^5+7
[1] 39
> 2^(5+7)
[1] 4096
> exp(pi)-pi
[1] 19.9991
> log(20+pi)
[1] 3.141632
> 0.05/1E6 # a comment; note 1E6 = 1,000,000
[1] 5e-08

• All common math functions are available; parentheses (round

brackets) work as per high school math

• Try to get used to bracket matching. A ‘+’ prompt means

the line isn’t finished – hit Escape to get out, then try again.

1.4

RStudio

R stores data (and everything else) as objects. New objects are
created when we assign them values;

> x <- 3

> y <- 2 # now check the Environment window

> x+y

[1] 5

Assigning new values to existing objects over-writes the old
version – and be aware there is no Ctrl-Z ‘undo’;

> y <- 17.4 # check the Environment window again

> x+y

[1] 20.4

• Anything after a hash (#) is ignored – e.g. comments
• Spaces don’t matter
• Capital letters do matter

1.5

RStudio: Reading in data

To import a dataset, follow pop-ups from the File tab;

1.6

RStudio: Reading in data

More on those options;

• Name: Name of the object that will store the whole dataset,

when it’s read in

• Heading: Does the first row contain column names?

• Row names: are there names for each row?

• Separator: what’s between items on a single line?

• na.strings: How are missing values denoted?

The defaults are sensible, but R assumes you know what your

data should look like – and whether it has named columns,

numeric/character data, etc. No software is smart enough

to cope with every format that might be used by you/your

colleagues to store data.

1.7

RStudio: Reading in data

After successfully reading in the data;

• The environment now includes a mammals object – or whatever
you called the data read from file

• A copy of the data can be examined in the Excel-like data
viewer (below) – if it looks weird, find out why & fix it!

... we’ll return later, to read.csv() in the Console window

1.8

RStudio: Reading in data

What’s a good name for my new object?

• Something memorable (!) and not easily-confused with other

objects, e.g. X isn’t a good choice if you already have x

• Names must start with a letter or period (”.”), after that

any letter, number or period is okay

• Avoid other characters; they get interpreted as math

(”-”,”*”) or are hard to read (” ”) so should not be used in

names

• Avoid names of existing functions – e.g. summary. Some one-

letter choices (c, C, F, t, T and S) are already used by R as

names of functions, it’s best to avoid these too

1.9

Operating on data

To operate on data, type commands in the Console window, just
like our earlier calculator-style approach;

> str(mammals)
’data.frame’: 62 obs. of 3 variables:
$ species: chr "Arctic fox" "Owl monkey" "Mountain beaver" "Cow" ...
$ body : num 3.38 0.48 1.35 465 36.33 ...
$ brain : num 44.5 15.5 8.1 423 119.5 ...

> summary(mammals)
species body brain

Length:62 Min. : 0.005 Min. : 0.14
Class :character 1st Qu.: 0.600 1st Qu.: 4.25
Mode :character Median : 3.342 Median : 17.25

Mean : 198.790 Mean : 283.13
3rd Qu.: 48.202 3rd Qu.: 166.00
Max. :6654.000 Max. :5712.00

• str() tells us the structure of an object
• summary() summarizes the object

Can also use these commands on any object – e.g. the single
numbers we created earlier (try it!)

1.10

Operating on data: columns

Individual columns in data frames are identified using the $
symbol – just seen in the str() output.

> mammals$brain
[1] 44.50 15.50 8.10 423.00 119.50 115.00 98.20 5.50 58.00

[10] 6.40 4.00 5.70 6.60 0.14 1.00 10.80 12.30 6.30
[19] 4603.00 0.30 419.00 655.00 3.50 115.00 25.60 5.00 17.50
[28] 680.00 406.00 325.00 12.30 1320.00 5712.00 3.90 179.00 56.00
[37] 17.00 1.00 0.40 0.25 12.50 490.00 12.10 175.00 157.00
[46] 440.00 179.50 2.40 81.00 21.00 39.20 1.90 1.20 3.00
[55] 0.33 180.00 25.00 169.00 2.60 11.40 2.50 50.40
> summary(mammals$brain)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.14 4.25 17.25 283.10 166.00 5712.00

Think of $ as ‘apostrophe-S’, i.e. mammals’S brain.

Unlike many other statistical packages, R can handle multiple

datasets at the same time – helpful if your data are e.g.

phenotypes & genotypes, or county & disease outbreak data.

This isn’t possible without $, or some equivalent syntax.

1.11

Operating on data: columns

New columns are created when you assign their values – here

containing the brain weights in kilograms;

> mammals$brainkg <- mammals$brain/1000
> str(mammals)
’data.frame’: 62 obs. of 4 variables:
$ species: chr "Arctic fox" "Owl monkey" "Mountain beaver" "Cow" ...
$ body : num 3.38 0.48 1.35 465 36.33 ...
$ brain : num 44.5 15.5 8.1 423 119.5 ...
$ brainkg: num 0.0445 0.0155 0.0081 0.423 0.1195 ...

> str(mammals$brainkg)
num [1:62] 0.0445 0.0155 0.0081 0.423 0.1195 ...

> mammals$brainkg <- NULL

• Assigning values to existing columns over-writes existing

values – again, with no warning

• With e.g. mammals$newcolumn <- 0, the new column has every

entry zero; R recycles this single value, for every entry

• It’s unusual to delete columns... but if you must;

mammals$brainkg <- NULL

1.12

Operating on data: columns

Some other functions useful for summarizing data frames, and

their columns;

> names(mammals)
[1] "species" "body" "brain"
> dim(mammals) # dim is short for dimension
[1] 62 3
> length(mammals$body) # how many rows in our dataset?
[1] 62
> min(mammals$body)
[1] 0.005
> max(mammals$body)
[1] 6654
> range(mammals$body)
[1] 0.005 6654.000
> mean(mammals$brain)
[1] 283.1342
> sd(mammals$brain) # sd is short for standard deviation
[1] 930.2789
> median(mammals$brain)
[1] 17.25

1.13

RStudio: the Script window

While fine for occasional use, entering every command ‘by hand’

is error-prone, and quickly gets tedious. A much better approach

is to use a Script window – open one with Ctrl-Shift-N, or the

drop-down menus;

• Opens a nice editor, enables saving code (.R extension)

• Run current line (or selected lines) with Ctrl-Enter, or Ctrl-R

1.14

RStudio: the Script window

An important notice: from now on, we assume you are using

a script editor.

• First-time users tend to be reluctant to switch! – but it’s

worth it, ask any experienced user

• Some code in slides may be formatted for cut-and-paste into

scripts – it may not look exactly like what appears in the

Console window

• Exercise ‘solutions’ given as .R files

• Scripts make it easy to run slightly modified code, without

re-typing everything – remember to save them as you work

• Also remember the Escape key, if e.g. your bracket-matching

goes wrong

For a very few jobs, e.g. changing directories, we’ll still use

drop-down menus. But commands are available, for all tasks.

1.15

Operating on data: subsets

To identify general subsets – not just the columns selected by $
– R uses square brackets. Selecting individuals elements;

> mammals$brain[32] # 32nd element of mammals$brain
[1] 1320
> mammals$species[32]
[1] "Human"
> mammals$body[32]
[1] 62

Can also select entire columns or entire rows this way – and

‘blank’ entries indicate you want everything.

> mammals[32,2] # subtable with just 32nd row, 2nd column
[1] 62
> mammals[32,] # everything in the 32nd row

species body brain
32 Human 62 1320
> sum(mammals[,3]) # sum of all the brains masses...
[1] 17554.32

1.16

Operating on data: subsets

Suppose we were interested in the body weight (i.e. 2nd column)

for mammals (i.e. rows) 14, 55, & 61. How to select these

multiple elements?

> mammals[c(14,55,61),2]
[1] 0.005 0.048 0.104

But what is c(14,55,61)? It’s a vector of numbers – c() is for

combine;

> length(c(14,55,61))
[1] 3
> str(c(14,55,61))
num [1:3] 14 55 61

We can select these rows and all the columns;

> mammals[c(14,55,61),]
species body brain

14 Lesser short-tailed shrew 0.005 0.14
55 Musk shrew 0.048 0.33
61 Tree shrew 0.104 2.50

1.17

Operating on data: subsets

A very useful special form of vector;
> 1:10
[1] 1 2 3 4 5 6 7 8 9 10

> 6:2
[1] 6 5 4 3 2
> -1:-3
[1] -1 -2 -3

R expects you know this shorthand – see e.g. its use of 1:3 in
the output from str(), on the previous slide. For a ‘rectangular’
selection of rows and columns;
> mammals[20:22, 1:3]

species body brain
20 Big brown bat 0.023 0.3
21 Donkey 187.100 419.0
22 Horse 521.000 655.0

Negative values correspond to dropping those rows/columns;
> mammals[-3:-62, c(1,3)] # everything but the first two rows, & columns c(1,3)

species brain
1 Arctic fox 44.5
2 Owl monkey 15.5

1.18

Operating on data: subsets

As well as storing numbers and character strings (like "Donkey",
"Big brown bat") R can also store logicals – TRUE and FALSE.

To make a new vector, with elements that are TRUE if body
mass is above 500kg and FALSE otherwise;

> is.heavy <- mammals$body > 500
> table(is.heavy) # another useful data summary command
is.heavy
FALSE TRUE

58 4

Which mammals were these? (And what were their masses?)

> mammals[is.heavy,] # just the rows for which is.heavy is TRUE
species body brain

19 Asian elephant 2547 4603
22 Horse 521 655
28 Giraffe 529 680
33 African elephant 6654 5712

Use e.g. mammals[is.heavy,2] to combine TRUE/FALSE (rows)
and numbers (columns)

1.19

Operating on data: subsets

One final method... for now! Instead of specifying columns of

interest by number, or through vectors of TRUEs/FALSEs, we

can also just give the names – as character strings, or vectors of

character strings.

> mammals[1:3, "body"]
[1] 3.385 0.480 1.350
> mammals[is.heavy,"body"]
[1] 2547 521 529 6654

– this is more typing than the other methods, but is much easier

to debug/reuse. Neither is ‘right’ or ‘wrong’ – R is just flexible.

1.20

Quitting time (almost)

When you’re finished with RStudio;

• Ctrl-Q, or the drop-down menus, or entering q() at the
command line all start the exit process

• You will be asked “Save workspace image to ∼/.RData?”
– No/Don’t Save: nothing is saved, and is not available

when you re-start. This is recommended, because you
will do different things in each session

– Yes: Everything in memory is stored in R’s internal format
(.Rdata) and will be available when you re-start RStudio

– Cancel: don’t quit, go back
• Writing about what you did (output from a script) often

takes much longer than re-running that script’s analyses –
so often, a ‘commented’ script is all the R you need to store

To get rid of objects in your current session, use rm(), e.g.
rm(is.heavy, mammals, x, y) ... or RStudio’s ‘broom’ button.

1.21

Summary

• In RStudio, read in data from the pop-up menu in the

Environment window (or Tools menu)

• Data frames store data; can have many of these objects –

and multiple other objects, too

• Identify vectors with $, subsets with square brackets

• Many useful summary functions are available, with sensible

names

• Scripts are an important drudgery-avoidance tool!

1.22

	Introduction: Course Aims
	Introduction: Resources
	Introduction: About Ting
	Introduction: About Ken
	Introduction: Teaching Assistants
	Introduction: Course structure
	Introduction: Session structure
	
	What is R?
	RStudio
	RStudio: Reading in data
	Operating on data
	Operating on data: columns
	RStudio: the Script window
	Operating on data: subsets
	Operating on data: subsets
	Quitting time (almost)
	Summary

