
10. The End

Ken Rice

Tim Thornton

University of Washington

Seattle, July 2019

In this session

• Notes on the Special Exercise

• Cool interactivity (by example)

• What next?

10.1

Game of Life: the rules

As you will recall...

Cells live on a grid, they can be alive (1) or dead (0). At each

generation they have a number of live neighbors – defined at the

8 surrounding cells.

Cells live, die, and become alive according to these rules;

If alive==1 and #neighbors <2, alive <− 0
If alive==1 and #neighbors ==2 or 3, alive <− 1
If alive==1 and #neighbors >3, alive <− 0
If alive==0 and #neighbors ==3, alive <− 1

– other dead cells stay dead.

10.2

Game of Life: the rules

An example update;

10.3

Game of Life: the rules

An example update;

10.4

Game of Life: the rules

An example update;

10.5

Game of Life: the rules

And a trick to make ‘edge-cases’ easier;

1 2 3 4 5 6 7

1
2

3
4

5
6

7

10.6

Game of Life: with functions

We first need to set up a matrix of 1s/0s, to indicate alive/dead

in a specified number of rows and columns.

Then, within the loop (over many generations) there are 3 major

jobs to do;

• Plot the current ‘alive’ status

• Count the neighbours

• Update the ‘alive’ status

... we will write functions to do each one – as per Session 9!

10.7

Game of Life: plot current status

first, just set up some empty axes;

do.basic.plot <- function(nrows, ncols){

plot(0,0, type="n", xlab="", ylab="", axes=F,

xlim=c(0.5,nrows+0.5), ylim=c(0.5,ncols+0.5), asp=1)

invisible() # no output goes to command line

}

update.plot <- function(alive, nrows=dim(alive)[1]-2,

ncols=dim(alive)[2]-2){

for(i in 1:nrows){

for(j in 1:ncols){

rect(j-0.5,i-0.5,j+0.5,i+0.5,

col=alive[i+1,j+1]*6 + 1, border="blue")

} # NB cols here are 0/1*6 = 1 or 7 - black or yellow

}

invisible()

}

10.8

Game of Life: count neighbours

get.neebs <- function(alive, nrows=dim(alive)[1]-2,

ncols=dim(alive)[2]-2){

neebs <- matrix(0, nrows+2, ncols+2)

for(i in 2:(nrows+1)){

for(j in 2:(ncols+1)){

neebs[i,j] <- alive[i-1,j-1] +

alive[i-1,j] +

alive[i-1,j+1] +

alive[i ,j-1] +

alive[i ,j+1] +

alive[i+1,j-1] +

alive[i+1,j] +

alive[i+1,j+1] # adding over the 8 neighbors

} # close j loop

} # close i loop

neebs # return the matrix of counts

}

10.9

Game of Life: update status

update.alive <- function(alive, neebs, nrows=dim(alive)[1]-2,

ncols=dim(alive)[2]-2){

alive.new <- matrix(0, nrows+2, ncols+2) # note full of zeros

for(i in 2:(nrows+1)){

for(j in 2:(ncols+1)){

if(alive[i,j]==1 & neebs[i,j]<2){ alive.new[i,j] <- 0 }

if(alive[i,j]==1 & neebs[i,j]%in%2:3){ alive.new[i,j] <- 1 }

if(alive[i,j]==1 & neebs[i,j]>3){ alive.new[i,j] <- 0 }

if(alive[i,j]==0 & neebs[i,j]==3){ alive.new[i,j] <- 1 }

}

}

alive.new # return the new status

}

10.10

Game of Life: get on with it!

First some set up: here with a random starting position;

nrows <- 40

ncols <- 40

n.updates <- 100

set.seed(4)

alive <- matrix(rbinom((nrows+2)*(ncols*2),1, 0.3), nrows+2,

ncols+2) # "+2" is adding the gray border

And actually doing the work; (this is ‘high level’ code)

do.basic.plot(nrows, ncols) # sets up axes

update.plot(alive) # plots initial status

for(k in 1:n.updates){

neebs <- get.neebs(alive) # count neighbors

alive <- update.alive(alive, neebs) # update status

update.plot(alive) # plot new status

}

10.11

Game of Life: get on with it!

Some suggested extras:

• Add a counter, showing index k increasing;

legend("bottomright", bg="white", pch=NA, legend=k, cex=0.7)

• Wait before continuing to next iteration;

cat("Press [enter] to continue")

line <- readline()

• Store the ‘lifespan’ of each cell, e.g. 0/1/2/3/4/5+, and

show this with color coding – this is more work

Speed-ups are possible, but they require avoiding use of for()

loops. (Details available on request... or come back and take a

later module!)

10.12

Game of Life: not yet rated?

To show off your new-found prowess in R, you’ll want a file for

your website. The saveGIF() function in the animation package

makes GIFs where each ‘still’ is an R plot;

install.packages("animation")
NB this requires ImageMagick, http://www.imagemagick.org
... and won’t work without it
library("animation")
nrows <- 40 # usual setup
ncols <- 40
n.updates <- 100
set.seed(4)
alive <- matrix(rbinom((nrows+2)*(ncols*2),1, 0.3), nrows+2, ncols+2)
saveGIF(expr={ # ‘expr’ is the earlier high level code

do.basic.plot(nrows, ncols)
update.plot(alive)
for(k in 1:n.updates){

neebs <- get.neebs(alive)
alive <- update.alive(alive, neebs)
do.basic.plot(nrows, ncols)
update.plot(alive)}

}, movie.name = "conway.gif", interval=0.1)

10.13

Shiny

It’s also possible to display data analyses on websites – and have
them be interactive. The shiny package, by RStudio, builds
‘apps’ that do this.

The syntax is (roughly) a hybrid of R and HTML, so we give
just a short example, showing off the salary data again∗.

To make an app, in a directory named for your app, you need
two files;

• ui.R This R script controls the layout and appearance of your
app

• server.R This script contains the instructions that your
computer needs to build your app

NB shiny is temperamental about which version of R you use.

*The online tutorial is excellent

10.14

http://shiny.rstudio.com/tutorial/

Shiny: ui.R

library("shiny") # after installing it
shinyUI(fluidPage(

Application title
titlePanel("Salary boxplots"),

Sidebar controlling which variable to plot against salary
sidebarLayout(

sidebarPanel(
selectInput(inputId = "variable", label="Variable:",

choices = c("Rank" = "rank", "Year" = "year",
"Sex" = "gender", "Field"="field",
"Administrator"="admin")

),
checkboxInput(inputId = "horizontal", label="Horizontal?", value=FALSE)
),

Show the caption and plot - defined in server.R
mainPanel(

h3(textOutput("caption")),
plotOutput("salaryPlot")

) # close main Panel
) # close sidebarLayout

))

10.15

Shiny: server.R

library("shiny")
first, a local copy of salary data sits in same directory
salary <- read.table("salaryShinyCopy.txt", header=TRUE)

make some variable factors - for prettiness
salary$year <- factor(salary$year)
salary$admin <- factor(salary$admin)

Define server "logic" required to plot salary vs various variables
shinyServer(function(input, output) {

Compute the forumla text in a "reactive expression"
it is shared by output$caption and output$mpgPlot, below
formulaText <- reactive({ paste("salary ~", input$variable) })

Return the formula text for printing as a caption
output$caption <- renderText({ formulaText() })

Do the boxplot, using the formula syntax, and setting horizontal=T/F
output$salaryPlot <- renderPlot({

boxplot(as.formula(formulaText()),
data = salary, horizontal = input$horizontal) })

}) # close function

10.16

Shiny: making it work in Rstudio

This is remarkably straightforward;

• Hit ‘Run App’ – and it (should) run

• Note that ui.R, server.R and the salaryShinyCopy.txt data

file are all in the SalaryExample directory

10.17

Shiny: making it work in Rstudio

The (interactive) output should look something like this;

• Expect mild differences, across systems
• To share your app online, go to https://www.shinyapps.io/

– needs registration, and other packages. [Online example]
• Be careful with personal data!

10.18

https://www.shinyapps.io/
https://kenriceuw.shinyapps.io/SalaryExample

Shiny: making it work in Rstudio

R can’t display animated GIFs, or HTML. So, to open files in
the default application on your computer;

shell.exec("conway.gif")

shell.exec("notepad") # opens the most basic text editor

Assuming your machine knows what to do with URLs, also try

shell.exec("http://www.google.com/")

And having done that, try this last mammals example;

mammals <- read.table("mammals.txt", header=TRUE)
plot(log(brain)~log(body), data=mammals) # usual plot
repeat({

mychoice <- identify(y=log(mammals$brain), x=log(mammals$body),
labels=row.names(mammals), n=1)

if(length(mychoice)==0){break}
shell.exec(

paste("http://images.google.com/images?q=",
row.names(mammals)[mychoice], sep=""))

})

10.19

What next?

This concludes our course. To learn more;

• Take another one! Almost all modules use R extensively –

practice your skills with applications you care about

• See the recommended books, on the course site

• To find simple examples/functions, ask Google (in a web

browser

• There are several R mailing lists; R-help is the main one. But

contributors expect you to have read the documentation –

all of it! CrossValidated is friendlier to beginners

• Emailing package authors may also work

• For questions about any software, say;

– What you did (ideally, with an example)

– What you expected it to do

– What it did instead

10.20

http://www.r-project.org/mail.html
http://stats.stackexchange.com/

	In this session
	Game of Life: the rules
	Game of Life: with functions
	Game of Life: plot current status
	Game of Life: count neighbours
	Game of Life: update status
	Game of Life: get on with it!
	Game of Life: not yet rated?
	Shiny
	Shiny: ui.R
	Shiny: server.R
	Shiny: making it work in Rstudio
	What next?

