9. Writing Functions

Ken Rice
Tim Thornton

University of Washington

Seattle, July 2019

INn this session

One of the most powerful features of R is the user’'s ability to
expand existing functions and write custom functions. We will
give an introduction to writing functions in R.

e Structure of a function

e Creating your own function

e Examples and applications of functions

9.1

Introduction

Functions are an important part of R because they allow the user
to customize and extend the language.

e Functions allow for reproducible code without copious/error
prone retyping

e Organizing code into functions for performing specified tasks
makes complex programs tractable

e Often necessary to develop your own algorithms or take
existing functions and modify them to meet your needs

9.2

Structure of a function

Functions are created using the function() directive and are
stored as R objects.

Functions are defined by;

1. A function name with assignment to the function() directive.
(Function names can be almost anything. However, the
usage of names of existing functions should be avoided.)

2. The declaration of arguments/variables ‘passed’ to the
function

3. Finally, giving the operations (the function body) that
perform computations on the provided arguments

9.3

Structure of a function

T he basic structure of a function is:

my.func <- function(argl, arg2, arg3, ...) {
<commands>

return(output.object)

}

e Function arguments (argl, arg2, ...) are the objects ‘passed’
to the function and used by the function’s code to perform

calculations.

e T he <commands> part describes what the function will do to
argl, arg2

e After doing these tasks, return() the output of interest. (If
this is omitted, output from the last expression evaluated is

returned)

9.4

Calling a function

Functions are called by their name followed by parentheses
containing possible argument names.

A call to the function generally takes the form;

my.func(argl=exprl, arg2=expr2, arg3=exp3, ...)
or
my.func(exprl, expr2, expr3, ...)

e Arguments can be ‘matched’ by name or by position (recall
Session 2, and use of defaults when calling functions)

e A function can also take no arguments; entering my.func()
will just execute its commands. This can be useful, if you
do exactly the same thing repeatedly

e Typing just the function name without parentheses prints the
definition of a function

9.5

Function body — more details

e The function body appears within {curly brackets}. For
functions with just one expression the curly brackets {} are
not required — but they may help you read your code

e Individual commands/operations are separated by new lines

e An object is returned by a function with the return()
command, where the object to be returned appears inside
the parentheses. Experts: you can return() from any place
in the function, not just in the final line

e Variables that are created inside the function body exist only
for the lifetime of the function. This means they are not
accessible outside of the function, in an R session

9.6

Example: returning a single value

Here's a function for calculating the coefficient of variation (the
ratio of the standard deviation to the mean) for a vector;

coef.of .var <- function(x){
meanval <- mean(x,na.rm=TRUE) # recall this means "ignore NAs"

sdval <- sd(x,na.rm=TRUE)
return(sdval/meanval)

}

Translated, this function says “if you give me an object, that I
will call x, I will store its mean() as meanval, then its sd() as sdval,
and then return their ratio sdval/meanval.”

Doing this to the airquality’'s 1973 New York ozone data;

> data(airquality) # make the data available in this R session
> coef.of.var(airquality$0zone)
[1] 0.7830151

9.7

Example: returning multiple values

A function can return multiple objects/values by using list() —
which collects objects of (potentially) different types.

The function below calculates estimates of the mean and
standard deviation of a population, based on a vector (x) of
observations;

popn.mean.sd <- function(x){
n <- length(x)
mean.est <- mean(x,na.rm=TRUE)
var.est <- var(x,na.rm=TRUE)*(n-1)/n
est <- list(mean=mean.est, sd=sqrt(var.est))
return(est)

e The in-built var() applies a bias correction term of n/(n—1),
which we don’'t want here
e Easier to write a new function than correct this every time

9.8

Example: returning multiple values

Applying our popn.mean.sd() function to the daily ozone concen-
trations in New York data;

> results <- popn.mean.sd(airquality$0zone)

> attributes(results) #list the attributes of the object returned
$names

[1] "mean" "sd"

> results$mean

[1] 42.12931

> results$sd

[1] 32.8799

e Elements of lists can also be obtained using double square
brackets, e.g. results[[1]] or results[[2]].
e Can also use str() to see what's in a list

9.9

Declaring functions within functions

Usually, functions that take arguments, execute R commands,
and return output will be enough. But functions can be declared
and used inside a function;

square.plus.cube <- function(y) {
square <- function(x) { return(x*x) }
cube <- function(x) { return(x~3) }
return(square(y) + cube(y))

}

Translated; “if you given me a number, that I will call y, I will
define a function I call square that takes a number that it calls x
and returns x-squared, then similarly one I call cube that cubes,
then I will return the sum of applying square to y and cube to y".

> square.plus.cube(4)
[1] 80
9.10

Example: function returning a function

And functions can also return other functions, as output;

make.power <- function(n){
pow <- function(x){x"n}
pow

}

Translated; “if you given me a number, that I will call n, T will
define a function that takes a number that it calls x and raises
x to the nth power, and I will return this function’ .

cube <- make.power(3)
square <- make.power(2)
> cube(3)
[1] 27
> square(3)
[1] 9
9.11

Example: functions as arguments

Functions can take other functions as arguments. This is helpful
with finding roots of a function; values of x such that f(z) = 0.

The Newton-Raphson method finds roots of f(x) = 0 by the
following iteration procedure:

f(xn)

ZCn_I_]_ = In — f/(a;n)

9.12

Example: functions as arguments

A function to implement the Newton-Raphson method, given
input of arguments, a place to start, and convergence tolerance:

newton.raphson <- function(f,fprime,x0,thresh){
myabsdiff <- Inf

xold <- x0
while(myabsdiff>thresh){ # have we converged yet? If no, move;
Xnew <- xo0ld-f(xo0ld)/(fprime(xo0ld))
myabsdiff <- abs(xnew-xold)
xold <- xXnew
}
return(xnew)

}

e Inf is (positive) infinity — here, it ensures we go round the

loop at least once
e Recall we saw while() loops in Session 6
e We could also use repeat() here

9.13

myf(x)

Example: functions as arguments

We'll find the roots of f(z) = 22+3xz—5, using Newton-Raphson.
We need the derivative of f(z): f'(z) =2z + 3

myf <- function(x){ x"2 + 3*x - 5 }

myfprime <- function(x){ 2*x + 3 }

We use the newton.raphson() function with initial value of 10 and
a convergence threshold of 0.0001 to obtain a root:

> newton.raphson(f=myf,fprime=myfprime,x0=10,thresh=0.0001)

[1] 1.192582

0 20 40 60 80 100

I I I I I
-10 -5 0 5 10

How did we do?

—b+ /b2 —dac _ —3+4/32+4x5

2a 2
~ —4.19,1.19

(Try other values of x0 to
find the other root)

9.14

Tips for writing functions

e Avoid rewriting the same code... use functions!

e Modularize as much as possible: write function that call other
functions. (Start with the low-level ones)

e Test your functions: use data/arguments for which you know
the results to verify that your functions are working properly

e Later on: provide documentation, including detailed com-
ments describing the procedures being conducted by the
functions, especially for large, complex programs

e Use meaningful variable and function names

9.15

Summary

e User-defined functions are easy to create in R, with my.fun <-
function(argument list)

e Arguments of a function are allowed to be practically any
R object including lists, numeric vectors, data frames, and
functions

e In functions calls, arguments are matched by name or by
position

e An object can be returned by a function with return(). If
return() is not invoked, the last evaluated expression in the
body of a function will be returned.

e 1list() can be used for returning multiple values

9.16

	In this session
	Introduction
	Structure of a function
	Calling a function
	Function body – more details
	Example: returning a single value
	Example: returning multiple values
	Declaring functions within functions
	Example: function returning a function
	 Example: functions as arguments
	Tips for writing functions
	Summary

