# Optional Exercise 

Ken Rice<br>Tim Thornton

University of Washington

July 2018

## In this session

- Notes on the Special Exercise
- Some code to get you started

Before going further, please take a few minutes to read the exercise.

## In this session

Why are we doing this?

- Practice writing loops - over rows \& columns
- Practice breaking a multi-step job into component parts, and doing each of them in turn

This is a simple evolutionary model - the simplest Conway could devise that does anything useful, or interesting. Much of what he learned/proved about it was based on computer simulations, like ours.

It was devised in 1970, and early, errorprone experimentation was done on a Go board.


## Conway's Game of Life: The Rules

Cells live on a grid, they can be alive (1) or dead (0). At each generation they have a number of live neighbors - defined at the 8 surrounding cells.

Cells live, die, and become alive according to these rules;

$$
\begin{array}{ll}
\text { If alive }==1 \text { and \#neighbors }<2, & \text { alive }<-0 \\
\text { If alive }==1 \text { and \#neighbors ==2 or } 3, & \text { alive }<-1 \\
\text { If alive }==1 \text { and \#neighbors }>3, & \text { alive }<-0 \\
\text { If alive }==0 \text { and \#neighbors ==3, } & \text { alive }<-1
\end{array}
$$

- other dead cells stay dead.
(NB nothing is random here - deliberately! - but it's also straightforward to allow life/death to be somewhat stochastic)


## Conway's Game of Life: The Rules

An example update;


## Conway's Game of Life: The Rules

An example update;

| 1 | 1 | 2 | 2 | 3 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 3 | 2 | 3 | 1 | 1 |
| 2 | 2 | 4 | 3 | 6 | 4 | 2 |
| 2 | 1 | 3 | 3 | 3 | 2 | 1 |
| 3 | 3 | 4 | 3 | 3 | 4 | 2 |
| 2 | 2 | 2 | 2 | 2 | 1 | 1 |
| 1 | 2 | 2 | 1 | 1 | 1 | 1 |

## Conway's Game of Life: The Rules

An example update;


## Game of Life: What do we need?

Objects;

- A matrix of cells, each 1 or 0
- A matrix containing \# neighbours each cell has
- Another matrix of cells, each 1 or 0 - containing the updated values

Code to do the following jobs;

- Count number of neighbors for cells
- Updating the alive/dead status
- Plot the current status, for all cells


## Game of Life: Counting neighbors

Most cells have 8 neighbors...


## Game of Life: Counting neighbors

...but some 'edge cases' don't (yuk!)


## Game of Life: Counting neighbors

...but some 'edge cases' don't (yuk!)


## Game of Life: Counting neighbors

Easier: count on a grid with zeroed-out edges, don't plot them;


## Game of Life: Counting neighbors

Some code to do the counting;

```
nrows <- 7
ncols <- 7
alive <- matrix(0, nrows+2, ncols+2) # "+2" is adding the gray border
# add some "alive" cells
alive[4,4:6] <- 1
alive[7:8,7] <- 1
# do the neighbour counting - only for the non-gray cells
neebs <- matrix(0, nrows+2, ncols+2)
for(i in 2:(nrows+1)){
    for(j in 2:(ncols+1)){
        neebs[i,j] <- alive[i-1,j-1] +
        alive[i-1,j ] +
        alive[i-1,j+1] +
        alive[i ,j-1] +
        alive[i ,j+1] +
        alive[i+1,j-1] +
        alive[i+1,j ] +
        alive[i+1,j+1] # adding over the 8 neighbors
        } # close j loop
    } # close i loop
```


## Game of Life: Plotting status

There are many ways to plot the cells - rect() offers one simple way; if $i$ indexes rows and $j$ columns, we need e.g.

$$
\begin{array}{ll}
\text { xleft } & j-1 / 2 \\
\text { ybottom } & i-1 / 2 \\
\text { xright } & j+1 / 2 \\
\text { ytop } & i-1 / 2
\end{array}
$$

... and also specify color - e.g. 1 for black/dead, 2 for red/alive.
Recall Sessions 3/4; first set up an empty plot (type="n") ...

```
plot(0,0, type="n", xlab="", ylab="", axes=F,
    xlim=c(0.5,nrows+0.5), ylim=c(0.5,ncols+0.5), asp=1)
```

... then add the cell entries - with another double loop.

```
for(i in 1:nrows){
    for(j in 1:ncols){
        rect(j-0.5,i-0.5,j+0.5,i+0.5,
            col=alive[i+1,j+1] + 1, border="cyan")
    }
}
```


## Game of Life: Updating status

How to update? (recall the grey border trick, againt)

```
alive.new <- matrix(0, nrows+2, ncols+2) \# note full of zeros
for (i in 2: (nrows+1)) \{
    for \((j\) in 2: (ncols+1)) \{
        if (alive \([i, j]==1\) \& neebs \([i, j]<2 \quad\) a alive.new \([i, j]<-0\) \}
        if (alive \([i, j]==1\) \& neebs \([i, j] \% i n \% 2: 3\) ) \{ alive.new[i,j] <- 1 \}
        if (alive[i,j]==1 \& neebs[i,j]>3 ) \{ alive.new[i,j] <- 0 \}
        if (alive \([i, j]==0\) \& neebs \([i, j]==3 \quad\) ) \{ alive.new[i,j] <- 1 \}
        \}
\}
alive <- alive.new
```

Note: the other alive==0 cells stay dead, so there's no need for another if() statement here

## Game of Life: Bonus Tracks

Some code to check your counting;

```
for(i in 1:nrows){
    for(j in 1:ncols){
        text(j,i, neebs[i+1,j+1], col="white") }}
```

Why text(j,i, ...)? Note that text() takes $x$ and $y$ coordinates, which correspond to index $j$ and $i$ respectively - as with plotting status.

## And finally...

Some pseudo-code; fill in the rest yourself - cut-and-pasting the parts from earlier slides.

```
nrows <- 7
ncols <- 7
alive <- # ...some initial state
plot(0,0 # ...set up the plot
    # ...plot the initial state
for k in (1:100){
    # count neighbors (a double loop)
    # update status - who lives/dies? (a double loop)
    alive <- alive.new
    # plot again (a double loop)
}
```

- Then... sit back and be mesmerized!
- Start with random entries, and try a (much) bigger grid


## The End (for now)

## Notes;

- The coding here is designed to be easy to read, not to be optimally fast - slow code that works is better than fast code that doesn't!
- In Session 10 we'll review some ways to speed up the code (and still have it work)
- ... and ways to have the grid 'wrap around'
- ... also ways to make animations

