9. Writing Functions

Ken Rice
Tim Thornton

University of Washington

Seattle, July 2018

In this session

One of the most powerful features of R is the user's ability to expand existing functions and write custom functions. We will give an introduction to writing functions in R.

- Structure of a function
- Creating your own function
- Examples and applications of functions

Introduction

Functions are an important part of R because they allow the user to customize and extend the language.

- Functions allow for reproducible code without copious/error prone retyping
- Organizing code into functions for performing specified tasks makes complex programs tractable
- Often necessary to develop your own algorithms or take existing functions and modify them to meet your needs

Structure of a function

Functions are created using the function() directive and are stored as R objects.

Functions are defined by;

1. A function name with assignment to the function() directive. (Function names can be almost anything. However, the usage of names of existing functions should be avoided.)
2. The declaration of arguments/variables 'passed' to the function
3. Finally, giving the operations (the function body) that perform computations on the provided arguments

Structure of a function

```
The basic structure of a function is:
```

```
my.func <- function(arg1, arg2, arg3, ...) {
```

my.func <- function(arg1, arg2, arg3, ...) {
<commands>
<commands>
return(output.object)
return(output.object)
}

```
}
```

- Function arguments (arg1, arg2, ...) are the objects 'passed' to the function and used by the function's code to perform calculations.
- The <commands> part describes what the function will do to arg1, arg2
- After doing these tasks, return() the output of interest. (If this is omitted, output from the last expression evaluated is returned)

Calling a function

Functions are called by their name followed by parentheses containing possible argument names.

A call to the function generally takes the form;

```
my.func(arg1=expr1, arg2=expr2, arg3=exp3, ...)
```

or
my.func(expr1, expr2, expr3, ...)

- Arguments can be 'matched' by name or by position (recall Session 2, and use of defaults when calling functions)
- A function can also take no arguments; entering my.func() will just execute its commands. This can be useful, if you do exactly the same thing repeatedly
- Typing just the function name without parentheses prints the definition of a function

Function body - more details

- The function body appears within \{curly brackets\}. For functions with just one expression the curly brackets \{\} are not required - but they may help you read your code
- Individual commands/operations are separated by new lines
- An object is returned by a function with the return() command, where the object to be returned appears inside the parentheses. Experts: you can return() from any place in the function, not just in the final line
- Variables that are created inside the function body exist only for the lifetime of the function. This means they are not accessible outside of the function, in an R session

Example: returning a single value

Here's a function for calculating the coefficient of variation (the ratio of the standard deviation to the mean) for a vector;

```
coef.of.var <- function(x){
    meanval <- mean(x,na.rm=TRUE) # recall this means "ignore NAs"
    sdval <- sd(x,na.rm=TRUE)
    return(sdval/meanval)
    }
```

Translated, this function says "if you give me an object, that I will call x, I will store its mean() as meanval, then its sd() as sdval, and then return their ratio sdval/meanval."

Doing this to the airquality's 1973 New York ozone data;
> data(airquality) \# make the data available in this R session
> coef.of.var (airquality\$Ozone)
[1] 0.7830151

Example: returning multiple values

A function can return multiple objects/values by using list() which collects objects of (potentially) different types.

The function below calculates estimates of the mean and standard deviation of a population, based on a vector (x) of observations;

```
popn.mean.sd <- function(x){
    n <- length(x)
    mean.est <- mean(x,na.rm=TRUE)
    var.est <- var(x,na.rm=TRUE)*(n-1)/n
    est <- list(mean=mean.est, sd=sqrt(var.est))
    return(est)
}
```

- The in-built var() applies a bias correction term of $n /(n-1)$, which we don't want here
- Easier to write a new function than correct this every time

Example: returning multiple values

Applying our popn.mean.sd() function to the daily ozone concentrations in New York data;
> results <- popn.mean.sd(airquality\$Ozone)
> attributes(results) \#list the attributes of the object returned \$names
[1] "mean" "sd"
> results\$mean
[1] 42.12931
> results\$sd
[1] 32.8799

- Elements of lists can also be obtained using double square brackets, e.g. results[[1]] or results[[2]].
- Can also use str() to see what's in a list

Declaring functions within functions

Usually, functions that take arguments, execute R commands, and return output will be enough. But functions can be declared and used inside a function;

```
square.plus.cube <- function(y) {
    square <- function(x) { return(x*x) }
    cube <- function(x) { return(x^3) }
    return(square(y) + cube(y))
}
```

Translated; "if you given me a number, that I will call y, I will define a function I call square that takes a number that it calls x and returns x-squared, then similarly one I call cube that cubes, then I will return the sum of applying square to y and cube to y ".
> square.plus.cube (4)
[1] 80

Example: function returning a function

And functions can also return other functions, as output;

```
make.power <- function(n){
    pow <- function(x){x^n}
    pow
    }
```

Translated; "if you given me a number, that I will call n, I will define a function that takes a number that it calls x and raises x to the nth power, and I will return this function".
cube <- make.power(3)
square <- make.power (2)
> cube (3)
[1] 27
> square (3)
[1] 9

Example: functions as arguments

Functions can take other functions as arguments. This is helpful with finding roots of a function; values of x such that $f(x)=0$.

The Newton-Raphson method finds roots of $f(x)=0$ by the following iteration procedure:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Example: functions as arguments

A function to implement the Newton-Raphson method, given input of arguments, a place to start, and convergence tolerance:

```
newton.raphson <- function(f,fprime,x0,thresh){
        myabsdiff <- Inf
        xold <- x0
        while(myabsdiff>thresh){ # have we converged yet? If no, move;
        xnew <- xold-f(xold)/(fprime(xold))
        myabsdiff <- abs(xnew-xold)
        xold <- xnew
        }
return(xnew)
}
```

- Inf is (positive) infinity - here, it ensures we go round the loop at least once
- Recall we saw while() loops in Session 6
- We could also use repeat() here

Example: functions as arguments

We'll find the roots of $f(x)=x^{2}+3 x-5$, using Newton-Raphson.
We need the derivative of $f(x): f^{\prime}(x)=2 x+3$
myf $<-$ function($x)\left\{\mathrm{x}^{\wedge} 2+3 * \mathrm{x}-5\right\}$
myfprime <- function(x)\{ $2 * x+3\}$
We use the newton.raphson() function with initial value of 10 and a convergence threshold of 0.0001 to obtain a root:
> newton.raphson(f=myf,fprime=myfprime, $x 0=10$,thresh=0.0001)
[1] 1.192582

How did we do?

$$
\begin{aligned}
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & =\frac{-3 \pm \sqrt{3^{2}+4 \times 5}}{2} \\
& \approx-4.19,1.19
\end{aligned}
$$

(Try other values of $x 0$ to find the other root)

Tips for writing functions

- Avoid rewriting the same code... use functions!
- Modularize as much as possible: write function that call other functions. (Start with the low-level ones)
- Test your functions: use data/arguments for which you know the results to verify that your functions are working properly
- Later on: provide documentation, including detailed comments describing the procedures being conducted by the functions, especially for large, complex programs
- Use meaningful variable and function names

Summary

- User-defined functions are easy to create in R, with my.fun <function(argument list)
- Arguments of a function are allowed to be practically any R object including lists, numeric vectors, data frames, and functions
- In functions calls, arguments are matched by name or by position
- An object can be returned by a function with return(). If return() is not invoked, the last evaluated expression in the body of a function will be returned.
- list() can be used for returning multiple values

