Introduction to R
Special Exercise

This exercise is for you to try in the evening. We will review various solutions to it in the final session – so even if you don’t get a complete solution, tackling some of it will be useful preparation for the final session.

The goal is to implement Conway’s Game of Life in R. This ‘game’ is a simple evolutionary model, where cells on a grid either ‘live’ or ‘die’ according to the following rules;

1. Any live cell with fewer than two live neighbors dies, as if caused by under-population.
2. Any live cell with two or three live neighbors lives on to the next generation.
3. Any live cell with more than three live neighbors dies, as if by overcrowding.
4. Any dead cell with exactly three live neighbors becomes a live cell, as if by reproduction.

At each generation, we count the neighbors, then do all the updates to status (i.e. live/dead). For example;

	First Generation	Count of Neighbors	Second Generation
			

Your code should plot the grid of alive/dead cells in the R graphics window, for several generations. Some animations showing examples are on the course site.

Some tips: (note we’ll give more tips in the evening session)
· Start with a small grid, i.e. 10x10, but write your code so that it can be ‘scaled up’ later
· Use the rect() function to draw the grid
· At each generation, use a double for() loop, i.e.
for(i in 1:nrows){
 for(j in 1:ncols){
 <do some operations on cell[i,j]>
 }}
· There are two options for what to do with the edges and corners;
· You may count the neighbors based on the visible grid, so e.g. cells on the edges can have 5 neighbors, while those in the corners have up to 3. With this approach, your code for counting neighbors will be different for edge cells, corner cells, and regular internal cells.
· You may ‘wrap around’ the definition of neighbors, so e.g. the left edge cells neighbor those on the right edge. With this approach, ‘modular arithmetic’ will be useful; to do this in R try e.g. 1:20 %% 7, to generate the ‘remainders’ when you divide 1:20 by 7.
· Once your code works on small examples, try it on larger grids, initiated at random. For example, matrix(rbinom(40*40, 1, 0.3),40,40) generates a 40x40 matrix with entries that have 30% chance of being 0, and 70% chance of being 1.
· [bookmark: _GoBack][For keen people] Keep track of how long a cell has been alive, and color-code according to age.
image1.emf

image2.emf
1 2 2 1 1 1 1

2 2 2 2 2 1 1

3 3 4 3 3 4 2

2 1 3 3 3 2 1

2 2 4 3 6 4 2

1 0 3 2 3 1 1

1 1 2 2 3 2 1

image3.emf

Introduction to R

Special Exercise

This exercise

is for you to try in the evening

. We will review various solutions to it in the final session

–

so even

if you don’t get a complete solution, tackling some of it will be useful preparation for the f

inal session.

The goal is to implement

Conway’s Game of Life

in R. This ‘game’ is a simple evolutionary model, where cells

on a grid either ‘live’ or ‘die’ according to the following ru

les;

1.

Any live cell w

ith fewer than two live neighbo

rs dies, as if caused by under

-

population.

2.

Any live cell

with two or three live neighbor

s lives on to the next generation.

3.

Any live cell wi

th more than three live neighbo

rs dies, as if by overcrowding.

4.

An

y dead cell

with exactly three live neighbo

rs becomes a live cell, as if by reproduction.

At each generation, we count the neighbors, then do all the updates to status (i.e. live/dead).

For

example;

First Generation

Count of Neighbors

Second Generation

1

2

2

1

1

1

1

2

2

2

2

2

1

1

3

3

4

3

3

4

2

2

1

3

3

3

2

1

2

2

4

3

6

4

2

1

0

3

2

3

1

1

1

1

2

2

3

2

1

Your code should plot the grid of alive/dead cells in the R graphics window, for several generations. Some

animations showing examples are on the course site.

Some

tips:

(note we’ll give more tips in the evening session)

·

Start with a small grid, i

.e. 10x10, but write your code so that it can be ‘scaled up’ later

·

Use the

rect()

function

to

draw the grid

·

At each generation, u

se a double

for

()

loop, i.e.

for(

i

in 1:nrows){

for(j in 1:ncols){

<do some operations on cell[

i

,j]>

}}

·

There are

two options for what to do with the edges

and corners

;

o

You may count the neighbors

based on the

visible grid

, so e.g. cells on the edges can have 5

neighbors, while those in the corners have up to 3. With this approach, you

r code for counting

neighbors wil

l be different for edge cells, corner cells, and regular internal cells.

o

You may ‘wrap around’ the definition of neighbors, so e.g. the left edge cells neighbor those on

the right edge. With this approach, ‘modular arithmetic’ will be useful; to do this in

R try e.g.

1:20 %% 7

, to generate the ‘remainders’ when you divide 1:20 by 7.

·

Once your code works on small examples, try it on larger grids, initiated at random. For example,

matrix(rbinom(40*40, 1, 0.3),40,40)

generates a

40x40

matrix with entries that

have

30% chance of being 0, and 70% chance of being 1.

·

[For keen people] Keep track of how long a cell has been alive, and color

-

code according to age.

Introduction to R Special Exercise This exercise is for you to try in the evening . We will review various solutions to it in the final session – so even if you don’t get a complete solution, tackling some of it will be useful preparation for the f inal session. The goal is to implement Conway’s Game of Life in R. This ‘game’ is a simple evolutionary model, where cells on a grid either ‘live’ or ‘die’ according to the following ru les; 1. Any live cell w ith fewer than two live neighbo rs dies, as if caused by under - population. 2. Any live cell with two or three live neighbor s lives on to the next generation. 3. Any live cell wi th more than three live neighbo rs dies, as if by overcrowding. 4. An y dead cell with exactly three live neighbo rs becomes a live cell, as if by reproduction. At each generation, we count the neighbors, then do all the updates to status (i.e. live/dead). For example; First Generation Count of Neighbors Second Generation

1 2 2 1 1 1 1

2 2 2 2 2 1 1

3 3 4 3 3 4 2

2 1 3 3 3 2 1

2 2 4 3 6 4 2

1 0 3 2 3 1 1

1 1 2 2 3 2 1

 Your code should plot the grid of alive/dead cells in the R graphics window, for several generations. Some animations showing examples are on the course site. Some tips: (note we’ll give more tips in the evening session)  Start with a small grid, i .e. 10x10, but write your code so that it can be ‘scaled up’ later  Use the rect() function to draw the grid  At each generation, u se a double for () loop, i.e. for(i in 1:nrows){ for(j in 1:ncols){ <do some operations on cell[i ,j]> }}  There are two options for what to do with the edges and corners ; o You may count the neighbors based on the visible grid , so e.g. cells on the edges can have 5 neighbors, while those in the corners have up to 3. With this approach, you r code for counting neighbors wil l be different for edge cells, corner cells, and regular internal cells. o You may ‘wrap around’ the definition of neighbors, so e.g. the left edge cells neighbor those on the right edge. With this approach, ‘modular arithmetic’ will be useful; to do this in R try e.g. 1:20 %% 7 , to generate the ‘remainders’ when you divide 1:20 by 7.  Once your code works on small examples, try it on larger grids, initiated at random. For example, matrix(rbinom(40*40, 1, 0.3),40,40) generates a 40x40 matrix with entries that have 30% chance of being 0, and 70% chance of being 1.  [For keen people] Keep track of how long a cell has been alive, and color - code according to age.

