
Optional Exercise

Ken Rice

Tim Thornton

University of Washington

July 2017

In this session

• Notes on the Special Exercise

• Some code to get you started

Before going further, please take a few minutes to read the

exercise.

0.1

In this session

Why are we doing this?

• Practice writing loops – over rows & columns
• Practice breaking a multi-step job into component parts, and

doing each of them in turn

This is a simple evolutionary model – the

simplest Conway could devise that does

anything useful, or interesting. Much of what

he learned/proved about it was based on

computer simulations, like ours.

It was devised in 1970, and early, error-

prone experimentation was done on a Go

board.

0.2

http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

Conway’s Game of Life: The Rules

Cells live on a grid, they can be alive (1) or dead (0). At each

generation they have a number of live neighbors – defined at the

8 surrounding cells.

Cells live, die, and become alive according to these rules;

If alive==1 and #neighbors <2, alive <− 0
If alive==1 and #neighbors ==2 or 3, alive <− 1
If alive==1 and #neighbors >3, alive <− 0
If alive==0 and #neighbors ==3, alive <− 1

– other dead cells stay dead.

(NB nothing is random here – deliberately! – but it’s also

straightforward to allow life/death to be somewhat stochastic)

0.3

Conway’s Game of Life: The Rules

An example update;

0.4

Conway’s Game of Life: The Rules

An example update;

0.5

Conway’s Game of Life: The Rules

An example update;

0.6

Game of Life: What do we need?

Objects;

• A matrix of cells, each 1 or 0

• A matrix containing # neighbours each cell has

• Another matrix of cells, each 1 or 0 – containing the updated

values

Code to do the following jobs;

• Count number of neighbors for cells

• Updating the alive/dead status

• Plot the current status, for all cells

0.7

Game of Life: Counting neighbors

Most cells have 8 neighbors...

0.8

Game of Life: Counting neighbors

...but some ‘edge cases’ don’t (yuk!)

0.9

Game of Life: Counting neighbors

...but some ‘edge cases’ don’t (yuk!)

0.10

Game of Life: Counting neighbors

Easier: count on a grid with zeroed-out edges, don’t plot them;

1 2 3 4 5 6 7

1
2

3
4

5
6

7

0.11

Game of Life: Counting neighbors

Some code to do the counting;

nrows <- 7
ncols <- 7
alive <- matrix(0, nrows+2, ncols+2) # "+2" is adding the gray border

add some "alive" cells
alive[4,4:6] <- 1
alive[7:8,7] <- 1

do the neighbour counting - only for the non-gray cells
neebs <- matrix(0, nrows+2, ncols+2)
for(i in 2:(nrows+1)){

for(j in 2:(ncols+1)){
neebs[i,j] <- alive[i-1,j-1] +

alive[i-1,j] +
alive[i-1,j+1] +
alive[i ,j-1] +
alive[i ,j+1] +
alive[i+1,j-1] +
alive[i+1,j] +
alive[i+1,j+1] # adding over the 8 neighbors

} # close j loop
} # close i loop

0.12

Game of Life: Plotting status

There are many ways to plot the cells – rect() offers one simple
way; if i indexes rows and j columns, we need e.g.

xleft j − 1/2
ybottom i− 1/2
xright j + 1/2
ytop i− 1/2

... and also specify color – e.g. 1 for black/dead, 2 for red/alive.

Recall Sessions 3/4; first set up an empty plot (type="n") ...

plot(0,0, type="n", xlab="", ylab="", axes=F,
xlim=c(0.5,nrows+0.5), ylim=c(0.5,ncols+0.5), asp=1)

... then add the cell entries – with another double loop.

for(i in 1:nrows){
for(j in 1:ncols){

rect(j-0.5,i-0.5,j+0.5,i+0.5,
col=alive[i+1,j+1] + 1, border="cyan")

}
}

0.13

Game of Life: Updating status

How to update? (recall the grey border trick, againt)

alive.new <- matrix(0, nrows+2, ncols+2) # note full of zeros

for(i in 2:(nrows+1)){

for(j in 2:(ncols+1)){

if(alive[i,j]==1 & neebs[i,j]<2){ alive.new[i,j] <- 0 }

if(alive[i,j]==1 & neebs[i,j]%in%2:3){ alive.new[i,j] <- 1 }

if(alive[i,j]==1 & neebs[i,j]>3){ alive.new[i,j] <- 0 }

if(alive[i,j]==0 & neebs[i,j]==3){ alive.new[i,j] <- 1 }

}

}

alive <- alive.new

Note: the other alive==0 cells stay dead, so there’s no need for

another if() statement here

0.14

Game of Life: Bonus Tracks

Some code to check your counting;

for(i in 1:nrows){

for(j in 1:ncols){

text(j,i, neebs[i+1,j+1], col="white") }}

Why text(j,i, ...)? Note that text() takes x and y co-

ordinates, which correspond to index j and i respectively – as

with plotting status.

0.15

And finally...

Some pseudo-code; fill in the rest yourself – cut-and-pasting the
parts from earlier slides.

nrows <- 7

ncols <- 7

alive <- # ...some initial state

plot(0,0 # ...set up the plot

...plot the initial state

for k in (1:100){

count neighbors (a double loop)

update status - who lives/dies? (a double loop)

alive <- alive.new

plot again (a double loop)

}

• Then... sit back and be mesmerized!
• Start with random entries, and try a (much) bigger grid

0.16

The End (for now)

Notes;

• The coding here is designed to be easy to read, not to be

optimally fast – slow code that works is better than fast code

that doesn’t!

• In Session 10 we’ll review some ways to speed up the code

(and still have it work)

• ... and ways to have the grid ‘wrap around’

• ... also ways to make animations

0.17

	In this session
	Conway's Game of Life: The Rules
	Game of Life: What do we need?
	Game of Life: Counting neighbors
	Game of Life: Plotting status
	Game of Life: Updating status
	Game of Life: Bonus Tracks
	And finally...
	The End (for now)

