
5. Over and over

Ken Rice

Tim Thornton

University of Washington

Seattle, July 2017

In this session

In Sessions 1–4, we completed tasks by breaking them down,

into one line of an R script at a time. In principle, we could do

everything this way. But;

• Repeating the same job many times (i.e. once for each

person/guinea pig in the dataset) the typing gets slow &

tedious, and is error prone

• For iterative methods, we don’t know how much code will

be needed before starting the task

This session, and the next, introduce writing loops, so we can

re-use the same code in a script, without re-typing it.

NB This module does not cover every R tool for looping.

5.1

A very first for() loop

Many people’s first computer program looks like this;

> for(i in 1:5){
+ print("hello world!")
+ print(i^2)
+ }
[1] "hello world!"
[1] 1
[1] "hello world!"
[1] 4
[1] "hello world!"
[1] 9
[1] "hello world!"
[1] 16
[1] "hello world!"
[1] 25

Two fundamental ideas;

• Go round the loop 5 times
• Each time, do something that may (or may not) depend on

which ‘go round’ it is

Of course, for() loops also have more practical uses...

5.2

Example: hard math made easy

A question from analysis of survival traits – and its answer!

What is the expected value of the median of a sample,

size n = 51, of independent data from Exp(1)?

What is its variance?

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Observation

D
en

si
ty

Exp(1)
Median of Exp(1), n=51

5.3

Example: hard math made easy

If the picture didn’t make it obvious enough (!) here are the

exact answers;

E[Median51] =
2178178936539108674153

3099044504245996706400

E[Median2
51] =

2467282316063667967459233232139257976801959

4802038419648657749001278815379823900480000

These are 0.70286 and 0.51380 to 5 d.p. – so the variance is

0.51380 − 0.702862 = 0.01978.

• Yes, there are ‘pretty’ answers here

• In general there aren’t – but the ‘expectation’ (E[...]) terms

just mean averaging over lots of datasets – which is easy,

with a computer

• We can get a good-enough answer very quickly

5.4

Example: hard math made easy

We’ll write code that;

1. Generates a single sample of size n = 51 from Exp(1)

2. Calculates its median and stores this number

3. Repeats steps 1 and 2 many times, then works out the mean
and variance of the stored numbers

Here are steps 1 and 2 – run them and see what’s created;

many.medians <- vector(10000, mode="numeric") # or just rep(NA, 10000)
set.seed(4)
for(i in 1:10000){

mysample <- rexp(n=51, rate=1) # take a single sample, size 51
many.medians[i] <- median(mysample) # calcuate & store its median
}

The function set.seed() tells R where to start its random-
number generator – this is important, as it means we can repeat
the code and get the same answers. Choose any ‘seed’ you like.

5.5

Example: hard math made easy

How to think of the seed;

• The seed indicates starting place in the list
• The list closely resembles truly random numbers – certainly

closely enough for our purposes – but is actually fixed

5.6

Example: hard math made easy

And the answers, from 10,000 simulations, with that seed?

> mean(many.medians)
[1] 0.702171 # exact answer is 0.70286
> var(many.medians)
[1] 0.01955728 # exact answer is 0.01978

NB: for large-enough values of 10,000, we could work basically
anything about the sample median, with little extra work;

Histogram of many.medians

Observed Median

D
en

si
ty

0.4 0.6 0.8 1.0 1.2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

5.7

Example: hard math made easy

Notes on the coding; (NB see ?Control for the help page on

for(), ?for won’t work as for is ‘restricted’)

• for([iteration] in [vector of iteration values]) – the vec-

tor of iteration values can be of anything, not just 1:n

• The expression between the curly brackets { } is evaluated

each ‘go round’ the loop, substituting i for 1,2, ... 10,000

in turn

• Very important – create an object to store the output first

(but no need to create i first). To do this, you’ll need to

know how big the output is going to be.

• Last-used version of objects used (i, mysample) are available

when the loop terminates – which is very helpful, if (when!)

an error occurs

• We used rexp(), but there are many built-in distributions;

rnorm(), rgamma(), rbinom(), rpois() etc

5.8

Example: data manipulation

Recall the salary example – on faculty measured over several
years. Suppose we were interested in the final observation for
each person – how to construct that dataset?

• Different numbers of observations per person – so can’t just
look at e.g. rows 1,5,11,15, ... (but see seq() if you do want
to do this)

• Different entry and exit years
• subset() won’t work, neither will use of square brackets

Instead, we can go through every id number, pull out the rows
with that id and record the one for which year is highest. Or, if
the data is sorted first (by id and time) pull out the last row for
each id number.

As before, it’s very important that we prepare an object for the
results (‘pulled out’ data, here) before running any loops.

5.9

Example: data manipulation

First sort the data, and make the empty object ready to take
output;

salary <- salary[order(salary$id, salary$year),]

View(salary) # check we know what we should get from subsetting

n <- length(unique(salary$id)) # how many individual people?

finalsalary <- salary[0,] # take just column names from salary

finalsalary[1:n,] <- NA # fill in with missing values

str(finalsalary) # check the structure we made

• order() returns the vector that puts objects in order. There
is a sort() function, but it accepts only vectors and not data
frames

• A less-sneaky way to make a new empty data frame uses e.g.
data.frame(id=NULL, age=NULL, sex=NULL)

• In RStudio, View() operates in the Source window; in vanilla
R it opens up a new window. Neither refreshes automatically

5.10

Example: data manipulation

Now for the loop;
for(i in 1:n){

id.i <- unique(salary$id)[i]
salary.i <- subset(salary, id==id.i)
n.i <- dim(salary.i)[1] # dim() for dimension
finalsalary[i,] <- salary.i[n.i,] # i.e. just the last row
} # View(finalsalary) a good idea, to check it worked

Compare the full dataset (white) and final-only version (red);

●

●●
●

●●

●●●

●

●●●

●

●●●
●●
●
●
●
●●●●
●●●●

●●●
●●
●

●●●●
●
●●●●
●
●●
●

●●
●●

●
●●
●

●●
●

●

●

●●●
●●
●●
●●
●

●
●

●●
●
●
●
●●

●

●
●●
●
●
●●●●
●
●●
●

●●●

●

●●
●

●
●
●●
●

●●
●●

●

●●
●

●●
●

●●
●
●●
●●
●●
●

●●
●●
●
●●●
●

●

●●
●

●

●

●
●
●
●●
●

●
●
●●●
●

●
●
●●
●

●●●●●
●●●
●
●●
●

●
●●●
●●
●

●
●
●●
●

●

●
●
●●
●

●
●
●
●●
●

●●●●
●

●

●●
●●
●

●

●

●

●●●●●
●
●●
●●
●●

●●
●●●
●
●●●●
●●
●
●●
●

●●

●

●●

●

●
●

●
●●●

●
●●
●
●
●
●●●
●
●●
●●
●

●
●●
●

●●●
●●
●●

●

●●
●●
●
●
●
●●
●●●

●
●
●●
●●

●
●●

●

●

●●●

●

●
●

●

●

●

●●●
●
●●
●

full full full

20
00

60
00

10
00

0
14

00
0

sa
la

ry

●

●

●

●●

●

●●

●

●

●●

●●●
●

●

●

●●
●
●
●●

●

●

●

●
●●●
●
●

●

●●
●

●

●●●
●
●●

●

●
●

final final final

20
00

60
00

10
00

0
14

00
0

Assist Assoc Full

5.11

Example: permutation test

A classical statistical question: are the data we’ve observed

unexpected, if there’s nothing going on?

An example where we can answer this is R’s sleep data;

●● ●● ● ● ●●● ●

●● ●●● ● ●● ●●

extra hours sleep

tr
ea

tm
en

t

−1 0 1 2 3 4 5

1
2

• 10 subjects per group

• Groups receive different treatments, we record how many

hours sleep they get, compared to baseline

• Mean extra hours sleep is higher in group 2 (2.33 hrs vs 0.75

hrs, so difference is 1.58 hrs)

5.12

Example: permutation test

What if there were nothing going on∗, i.e. what if any differences
in mean were just chance? If so, the data we saw would be just
as likely as that obtained assigning the group labels at random;

●

● ●●

●

●

●

●● ●

●

●

●●

●

● ●

●

●●

●●

●

●

● ● ●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●●

●

●●

●

● ●

●

●● ● ● ●

●

●

●●● ●●● ●

●● ●

●

●●

●● ● ●

●●●

●

●● ●

●● ●

●

● ●

● ●● ●● ●

● ●●

● ●

●●

●

●● ● ●●

●●

●

● ●●

● ● ●

●●

●

●

●

●

●

●

●

●

●

●

● ●● ●

● ● ● ●●● ●●

● ●●●

●

●

●

●●

●

● ●

● ●

●

●

●

● ●●

● ●

●

● ● ●

● ●

●

●●

●●

●

●

●●● ●

●●

●●●

● ●● ●●

* Formally, what if the null hypothesis of equal means held, in the population

from which this data has been sampled?

5.13

Example: permutation test

To measure how unexpected our data is, we compute the
red/green difference in means for many of these permutations,
and see how the observed data compares.
orig.mean.diff <- with(sleep,

mean(extra[group==2]) - mean(extra[group==1])
)

orig.mean.diff

many.mean.diff <- vector(10000, mode="numeric") # set up place to put output
set.seed(4) # set the random seed

for(i in 1:10000){ # do this bit 10,000 times
group.shuffle <- sample(sleep$group)
many.mean.diff[i] <- with(sleep,

mean(extra[group.shuffle==2]) - mean(extra[group.shuffle==1])
)

}

• sample() returns a random shuffle of a vector
• The same calculation is made, for the original data and the

shuffled version; the difference in means is called the test
statistic

5.14

Example: permutation test

How does original data (w/ mean diff=1.58) compare to these?

Histogram of many.mean.diff

many.mean.diff

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
10

0
20

0
30

0
40

0
50

0

> table(many.mean.diff>orig.mean.diff)
FALSE TRUE
9601 399

> mean(many.mean.diff>orig.mean.diff)
[1] 0.0399
> mean(abs(many.mean.diff)>abs(orig.mean.diff))
[1] 0.0789

5.15

Example: permutation test

• The proportion of sample in the RH tail is a (valid) p-value

for a one-tailed test, where the alternative is that green >

red. p = 0.04, here

• The proportion in both tails is the p-value for a two-tail test;

p = 0.079

• There is some ‘Monte Carlo’ error in these p-values; roughly

±0.004 here, i.e. 2 decimal places in p. If that’s not good

enough, use more permutations. (Here, could use all 184,756

– but in larger samples it’s not possible)

To get a quicker (but approximate) version of the same thing;

> t.test(extra~group, data=sleep) # recall extra ‘depends on’ group
Welch Two Sample t-test
data: extra by group
t = -1.8608, df = 17.776, p-value = 0.07939
alternative hypothesis: true difference in means is not equal to 0

The t test makes fewer assumptions than most people think!

5.16

Notes on timing, and speed

Doing a lot of calculations can take a long time – it’s useful
to know how long. Try out the system.time() command on a
smaller version of the problem, i.e.
system.time({

for(i in 1:1000){ # just 1000, not 10000
group.shuffle <- sample(sleep$group)
many.mean.diff[i] <- with(sleep,

mean(extra[group.shuffle==2]) - mean(extra[group.shuffle==1])
)

}
})

This returns the time taken to run the outer curly brackets;
user system elapsed
0.57 0.00 0.60

... so running 100,000 permutations would take 100*0.6/60 =
1 minute, roughly. (NB this is much less time than it took to
write the code!)

If RStudio hangs, there is a ‘STOP’ button on the Console
window; in vanilla R hit Escape, or Ctrl-D.

5.17

Notes on timing, and speed

Throughout, we have stressed the importance of setting up
empty objects for the loop’s output. Why? Let’s code the
permutation test without doing this;

many.mean.diff <- NULL # this will ‘grow’, in the loop
system.time({

for(i in 1:100000){
group.shuffle <- sample(sleep$group)
mean.diff <- with(sleep,

mean(extra[group.shuffle==2]) - mean(extra[group.shuffle==1]))
many.mean.diff <- c(many.mean.diff, mean.diff) # ‘grow’ the dataset

}})

user system elapsed # CPU/child process/total
115.53 4.93 122.07

• This works, but at half the speed of the other version
• The extra time is all spend copying vector many.mean.diff –

R copies objects slowly
• The slowdown is worse for larger objects, i.e. gets worse

with more permutations, i.e. when speed really matters

5.18

Notes on timing, and speed

Compared to using a single R command (when available) to do

the job, for() loops can be inefficient.

• Add two vectors (x <- y + z) don’t add them element by

element (for(i in 1:n){ x[i] <- y[i] + z[i]})

• Recall ifelse() earlier, rather than looping over a vector.

many.samples <- matrix(data=NA, nrow=100000,ncol=20)

for(i in 1:100000){
many.samples[i,] <- sample(sleep$extra)

}
many.mean.diff <- rowMeans(many.samples[,1:10]) - rowMeans(many.samples[,11:20])

• Shuffling the outcomes is equivalent to shuffling the groups

• A matrix has all entries of the same type – less flexible than

a data.frame, but faster to work with

• This version takes 4.3s, i.e. it’s ×14 faster than the loop.

• Not available for every task – also uses more memory

5.19

Summary

• Writing loops saves a lot of typing – essential for serious

computing jobs, but helpful for data management too

• for() loops offer enough flexibility for several jobs – more to

come in the next session!

• As with all programming; break the job into lots of small

pieces, and do each one in turn

• Never never never grow the output except when doing tiny jobs where

speed is irrelevant, and then only if you promise not to fall into bad habits!

• Other looping methods exist in R – but aren’t in this module

5.20

	In this session
	A very first for() loop
	Example: hard math made easy
	Example: data manipulation
	Example: permutation test
	Notes on timing, and speed
	Summary

