
9. Writing Functions

Ken Rice

Thomas Lumley

Universities of Washington and Auckland

NYU Abu Dhabi, January 2017

In this session

One of the most powerful features of R is the user’s ability to

expand existing functions and write custom functions. We will

give an introduction to writing functions in R.

• Structure of a function

• Creating your own function

• Examples and applications of functions

9.1

Introduction

Functions are an important part of R because they allow the user

to customize and extend the language.

• Functions allow for reproducible code without copious/error

prone retyping

• Organizing code into functions for performing specified tasks

makes complex programs tractable

• Often necessary to develop your own algorithms or take

existing functions and modify them to meet your needs

9.2

Structure of a function

Functions are created using the function() directive and are

stored as R objects.

Functions are defined by;

1. A function name with assignment to the function() directive.

(Function names can be almost anything. However, the

usage of names of existing functions should be avoided.)

2. The declaration of arguments/variables ‘passed’ to the

function

3. Finally, giving the operations (the function body) that

perform computations on the provided arguments

9.3

Structure of a function

The basic structure of a function is:

my.func <- function(arg1, arg2, arg3, ...) {

<commands>

return(output.object)

}

• Function arguments (arg1, arg2, ...) are the objects ‘passed’

to the function and used by the function’s code to perform

calculations.

• The <commands> part describes what the function will do to

arg1, arg2

• After doing these tasks, return() the output of interest. (If

this is omitted, output from the last expression evaluated is

returned)

9.4

Calling a function

Functions are called by their name followed by parentheses
containing possible argument names.

A call to the function generally takes the form;

my.func(arg1=expr1, arg2=expr2, arg3=exp3, ...)

or

my.func(expr1, expr2, expr3, ...)

• Arguments can be ‘matched’ by name or by position (recall
Session 2, and use of defaults when calling functions)
• A function can also take no arguments; entering my.func()

will just execute its commands. This can be useful, if you
do exactly the same thing repeatedly
• Typing just the function name without parentheses prints the

definition of a function

9.5

Function body – more details

• The function body appears within {curly brackets}. For

functions with just one expression the curly brackets {} are

not required – but they may help you read your code

• Individual commands/operations are separated by new lines

• An object is returned by a function with the return()

command, where the object to be returned appears inside

the parentheses. Experts: you can return() from any place

in the function, not just in the final line

• Variables that are created inside the function body exist only

for the lifetime of the function. This means they are not

accessible outside of the function, in an R session

9.6

Example: returning a single value

Here’s a function for calculating the coefficient of variation (the
ratio of the standard deviation to the mean) for a vector;

coef.of.var <- function(x){

meanval <- mean(x,na.rm=TRUE) # recall this means "ignore NAs"

sdval <- sd(x,na.rm=TRUE)

return(sdval/meanval)

}

Translated, this function says “if you give me an object, that I
will call x, I will store its mean() as meanval, then its sd() as sdval,
and then return their ratio sdval/meanval.”

Doing this to the airquality’s 1973 New York ozone data;

> data(airquality) # make the data available in this R session

> coef.of.var(airquality$Ozone)

[1] 0.7830151

9.7

Example: returning multiple values

A function can return multiple objects/values by using list() –

which collects objects of (potentially) different types.

The function below calculates estimates of the mean and

standard deviation of a population, based on a vector (x) of

observations;

popn.mean.sd <- function(x){
n <- length(x)
mean.est <- mean(x,na.rm=TRUE)
var.est <- var(x,na.rm=TRUE)*(n-1)/n
est <- list(mean=mean.est, sd=sqrt(var.est))
return(est)

}

• The in-built var() applies a bias correction term of n/(n−1),

which we don’t want here

• Easier to write a new function than correct this every time

9.8

Example: returning multiple values

Applying our popn.mean.sd() function to the daily ozone concen-

trations in New York data;

> results <- popn.mean.sd(airquality$Ozone)

> attributes(results) #list the attributes of the object returned

$names

[1] "mean" "sd"

> results$mean

[1] 42.12931

> results$sd

[1] 32.8799

• Elements of lists can also be obtained using double square

brackets, e.g. results[[1]] or results[[2]].

• Can also use str() to see what’s in a list

9.9

Declaring functions within functions

Usually, functions that take arguments, execute R commands,
and return output will be enough. But functions can be declared
and used inside a function;

square.plus.cube <- function(y) {

square <- function(x) { return(x*x) }

cube <- function(x) { return(x^3) }

return(square(y) + cube(y))

}

Translated; “if you given me a number, that I will call y, I will
define a function I call square that takes a number that it calls x

and returns x-squared, then similarly one I call cube that cubes,
then I will return the sum of applying square to y and cube to y”.

> square.plus.cube(4)

[1] 80

9.10

Example: function returning a function

And functions can also return other functions, as output;

make.power <- function(n){

pow <- function(x){x^n}

pow

}

Translated; “if you given me a number, that I will call n, I will
define a function that takes a number that it calls x and raises
x to the nth power, and I will return this function”.

cube <- make.power(3)

square <- make.power(2)

> cube(3)

[1] 27

> square(3)

[1] 9

9.11

Example: functions as arguments

Functions can take other functions as arguments. This is helpful
with finding roots of a function; values of x such that f(x) = 0.

The Newton-Raphson method finds roots of f(x) = 0 by the
following iteration procedure:

xn+1 = xn −
f(xn)

f ′(xn)

9.12

Example: functions as arguments

A function to implement the Newton-Raphson method, given
input of arguments, a place to start, and convergence tolerance:

newton.raphson <- function(f,fprime,x0,thresh){

myabsdiff <- Inf

xold <- x0

while(myabsdiff>thresh){ # have we converged yet? If no, move;

xnew <- xold-f(xold)/(fprime(xold))

myabsdiff <- abs(xnew-xold)

xold <- xnew

}

return(xnew)

}

• Inf is (positive) infinity – here, it ensures we go round the
loop at least once
• Recall we saw while() loops in Session 6
• We could also use repeat() here

9.13

Example: functions as arguments

We’ll find the roots of f(x) = x2+3x−5, using Newton-Raphson.
We need the derivative of f(x): f ′(x) = 2x + 3

myf <- function(x){ x^2 + 3*x - 5 }

myfprime <- function(x){ 2*x + 3 }

We use the newton.raphson() function with initial value of 10 and
a convergence threshold of 0.0001 to obtain a root:

> newton.raphson(f=myf,fprime=myfprime,x0=10,thresh=0.0001)

[1] 1.192582

−10 −5 0 5 10

0
20

40
60

80
10

0

x

m
yf

(x
)

How did we do?

−b±
√

b2 − 4ac

2a
=
−3±

√
32 + 4× 5

2
≈ −4.19,1.19

(Try other values of x0 to

find the other root)

9.14

Tips for writing functions

• Avoid rewriting the same code... use functions!

• Modularize as much as possible: write function that call other

functions. (Start with the low-level ones)

• Test your functions: use data/arguments for which you know

the results to verify that your functions are working properly

• Later on: provide documentation, including detailed com-

ments describing the procedures being conducted by the

functions, especially for large, complex programs

• Use meaningful variable and function names

9.15

Summary (so far)

• User-defined functions are easy to create in R, with my.fun <-

function(argument list)

• Arguments of a function are allowed to be practically any
R object including lists, numeric vectors, data frames, and
functions

• In functions calls, arguments are matched by name or by
position

• An object can be returned by a function with return(). If
return() is not invoked, the last evaluated expression in the
body of a function will be returned.

• list() can be used for returning multiple values

9.16

Shiny: a quick look

It’s also possible to display data analyses on websites – and have

them be interactive. The shiny package, by RStudio, builds

‘apps’ that do this - using function definitions, in scripts.

The syntax is (roughly) a hybrid of R and HTML, so we give

just a short example, showing off the salary data again∗.

To make an app, in a directory named for your app, you need

two files;

• ui.R This R script controls the layout and appearance of your

app

• server.R This script contains the instructions that your

computer needs to build your app

For more, see Shiny’s excellent online tutorial.

9.17

http://shiny.rstudio.com/tutorial/

Shiny: ui.R

library("shiny") # after installing it
shinyUI(fluidPage(

Application title
titlePanel("Salary boxplots"),

Sidebar controlling which variable to plot against salary
sidebarLayout(

sidebarPanel(
selectInput(inputId = "variable", label="Variable:",

choices = c("Rank" = "rank", "Year" = "year",
"Sex" = "gender", "Field"="field",
"Administrator"="admin")

),
checkboxInput(inputId = "horizontal", label="Horizontal?", value=FALSE)
),

Show the caption and plot - defined in server.R
mainPanel(

h3(textOutput("caption")),
plotOutput("salaryPlot")

) # close main Panel
) # close sidebarLayout

))

9.18

Shiny: server.R

library("shiny")
first, a local copy of salary data sits in same directory
salary <- read.table("salaryShinyCopy.txt", header=T)

make some variable factors - for prettiness
salary$year <- factor(salary$year)
salary$admin <- factor(salary$admin)

Define server "logic" required to plot salary vs various variables
shinyServer(function(input, output) {

Compute the formula text in a "reactive expression"
it is shared by output$caption and output$mpgPlot, below
formulaText <- reactive({ paste("salary ~", input$variable) })

Return the formula text for printing as a caption
output$caption <- renderText({ formulaText() })

Do the boxplot, using the formula syntax, and setting horizontal=T/F
output$salaryPlot <- renderPlot({

boxplot(as.formula(formulaText()),
data = salary, horizontal = input$horizontal) })

}) # close function

9.19

Shiny: making it work in Rstudio

This is remarkably straightforward;

• Hit ‘Run App’ – and it (should) run

• Note that ui.R, server.R and the salaryShinyCopy.txt data

file are all in the SalaryExample directory

9.20

Shiny: making it work in Rstudio

The (interactive) output should look something like this;

• Expect mild differences, across systems
• To share your app online, go to https://www.shinyapps.io/

– registration is needed. [Online example]
• Be careful with personal data!

9.21

https://www.shinyapps.io/
https://kenriceuw.shinyapps.io/SalaryExample

Shiny: making it work in Rstudio

A final example; first making the familiar mammals plot;

mammals <- read.table(
"http://faculty.washington.edu/kenrice/rintro/mammals.txt", header=TRUE)

plot(log(brain)~log(body), data=mammals) # usual plot

Writing a function that locates the nearest point to where you

click, adds its name, and then looks up that animal’s name on

Google images

showme <- function(){
mychoice <- identify(y=log(mammals$brain), x=log(mammals$body),

labels=row.names(mammals), n=1)
myURL <- paste("http://images.google.com/images?q=",

row.names(mammals)[mychoice], sep="")
shell.exec(myURL)
}

And putting this in a one-line loop;

for(i in 1:10){ showme() }

9.22

What next?

This concludes our course. To learn more;

• Take another one! Elements of R follows on, with genet-

ics/bioinformatics examples (and lots of programming)

• See the recommended books, on the course site – the course

site remains ‘up’

• To find simple examples, Google is a good place to start

• There are several R mailing lists; R-help is the main one. But

contributors expect you to have read the documentation –

all of it! CrossValidated is friendlier to beginners

• Emailing package authors may also work

• For questions about any software, say;

– What you did (ideally, with an example)

– What you expected it to do

– What it did instead

9.23

http://faculty.washington.edu/kenrice/sisg/
http://www.r-project.org/mail.html
http://stats.stackexchange.com/

	In this session
	Introduction
	Structure of a function
	Calling a function
	Function body – more details
	Example: returning a single value
	Example: returning multiple values
	Declaring functions within functions
	Example: function returning a function
	 Example: functions as arguments
	Tips for writing functions
	Summary (so far)
	Shiny: a quick look
	Shiny: ui.R
	Shiny: server.R
	Shiny: making it work in Rstudio
	What next?

