
8. Introduction to R Packages

Ken Rice

Timothy Thornotn

University of Washington

Seattle, July 2014

In this session

‘Base’ R includes pre-installed packages that allow for a fully

functioning statistical environment in which a variety of analyses

can be conducted.

Thousands of user-contributed extension ‘packages’ are available

that provide enhanced functionality with R. We’ll discuss;

• Loading packages, and seeing what’s in them

• Finding and installing packages

• Some examples, using available packages on CRAN

8.1

http://cran.r-project.org/

CRAN Packages

One factor in R’s success is the way it allows authors to rapidly

develop and disseminate packages, containing resources (with

documentations) that will be useful to others.

R packages are collections of functions, data, and compiled code,

in a well-defined format. These are made available – either direct

from R or via a web browser – through the Comprehensive R

Archive Network (CRAN)

At the time of writing there are 5,658 packages available on

CRAN!

8.2

http://cran.r-project.org
http://cran.r-project.org

CRAN Packages

Base R’s recommended packages (below) are available on CRAN:

... though most downloads provide them automatically.

8.3

Example: the foreign package

The foreign package is one of those recommended with base R,

and also lives on CRAN. It contains several useful functions that

import and export data, to/from a variety of formats.

To use these functions, first load it into your current session;

library("foreign")

• Its function read.spss() reads SPSS data files;

dat.spss <- read.spss("http://faculty.washington.edu/tathornt/sisg/hsb2.sav",
to.data.frame=TRUE)

• Its function read.dta() reads in Stata files;

dat.dta <- read.dta("http://faculty.washington.edu/tathornt/sisg/hsb2.dta")

• After loading a package, look up the help files for commands

with e.g. ?read.spss and ?read.dta

• If you don’t know its commands, try library(help="foreign")

or help(package="foreign"), or look online e.g. via Google

8.4

Installing packages

Sometimes, we need more than the recommended packages.
When you find an R package (e.g. via Google) of use to you,
first install it – here, by following the drop-down menus;

RStudio Base R’s GUI

...after going online! The coded way is, for the hexbin package;

install.packages("hexbin")

• In base R, expect to specify a CRAN mirror site
• Write-privileges can be an issue; the defaults are sensible

8.5

Installing packages

The wider world of R packages and tools;

8.6

Vignettes

In addition to the ‘plain vanilla’ help files, many (but not all)

packages include ‘vignettes’. These documents give an overview

of the package, usually including some worked examples.

To find vignettes, use browseVignettes() – noting the capitaliza-

tion. For example, once you found out that the hexbin package

does things you are interested in;

install.packages("hexbin") # download it (once, for each version of R)
library("hexbin") # make it available in the current R session
browseVignettes("hexbin") # see some tutorials
help(package="hexbin") # get to the help files

The vignette() function also finds vignettes – but it’s clunkier;

vignette(package="hexbin")
vignette(topic="hexagon_binning")

8.7

Masking: overlapping object names

With so many packages by different authors, it’s inevitable that,
sometimes, multiple packages use the same name for distinct
objects. For example, if you were using both the plyr and reshape

packages in the same session;

> library("plyr")
> library("reshape")
Attaching package: reshape

The following objects are masked from package:plyr:
rename, round_any

• Masking means two objects have the same name. R uses the
one loaded most recently, i.e. the reshape version, here

• If you are going to use these functions, pay attention!
• You may not know you will use these functions – perhaps
round any() is called from within other functions

• If you really need to, use the masked version directly with
e.g. plyr::rename() – or use the get() function. But these
are best avoided, unless you are an expert – perhaps writing
a complicated package of your own

8.8

But what’s already been loaded?

The sessionInfo() command will tell you this – and what version
of R you are using;

> sessionInfo()
R version 2.13.0 (2011-04-13)
Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)

locale:
[1] en_US.UTF-8/en_US.UTF-8/C/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] grid stats graphics grDevices utils
datasets methods base
other attached packages:
[1] hexbin_1.26.0 lattice_0.19-23 foreign_0.8-43

loaded via a namespace (and not attached):
[1] tools_2.13.0

NB if you get warnings about R versions, try update.packages()

to update packages you have, new.packages() to see what’s
available, or (more rarely) old.packages() to revert.

8.9

But what’s already been loaded?

To see the order in which packages in the current R session were

attached, use search();

> search()
[1] ".GlobalEnv" "package:hexbin" "package:lattice"
[4] "package:grid" "package:foreign" "tools:RGUI"
[7] "package:stats" "package:graphics" "package:grDevices"
[10] "package:utils" "package:datasets" "package:methods"
[13] "Autoloads" "package:base"

• .GlobalEnv is the familiar command line environment – easy

to inspect, with RStudio

• It’s also possible to attach() datasets, which also appear in

the search() list. This may save you some typing, but beware

masking problems if you use object X and also mydata$X – so

this approach is not recommended

8.10

Example: the survey package

The survey package includes a data set named api containing
California Academic Performance Index for 6194 schools;

library("survey")
help(package="survey") # look for the "api" entry
data(api, package="survey") # make the apipop dataset available

Plotting the data, perhaps colored by school type, we see how
crowded scatterplots can be with large data sets;

> summary(apipop[,c("api99","api00","stype")])
api99 api00 stype

Min. :302.0 Min. :346.0 E:4421
1st Qu.:527.0 1st Qu.:565.0 H: 755
Median :631.0 Median :667.0 M:1018
Mean :631.9 Mean :664.7
3rd Qu.:734.0 3rd Qu.:761.0
Max. :966.0 Max. :969.0

> plot(api00~api99, data=apipop)
> colors <- c("tomato","forestgreen","purple")[apipop$stype]
> plot(api00~api99, data=apipop, col=colors)

(Keen people: note we recode E/H/M to 1/2/3 to tomato/forestgreen/purple.)

8.11

Example: the survey package

8.12

Example: the survey package

8.13

Example: the hexbin package

When there are many data points and significant overlap,

scatterplots become less useful.

The hexbin() function in the hexbin package provides a way to

aggregate the points in a scatterplot. It computes the number

of points in each hexagonal bin.

library("hexbin")

with(apipop, plot(hexbin(api99,api00), style="centroids"))

The style="centroids" option plots filled hexagons, at the

centroid of each bin. The sizes of the plotted hexagons are

proportional to the number of points in each bin.

8.14

Example: the hexbin package

300 400 500 600 700 800 900

400

500

600

700

800

900

1
7
12
18
23
29
34
40
46
51
57
62
68
73
79
84
90

Counts

8.15

Summary

• Many functions in R live in optional packages, and thousands

of packages are available on CRAN for downloading

• The install.packages() function is used for installing an

extension package

• The library() function lists packages, shows help, or loads

packages from the package library

• If/when masking occurs, packagename::function() can be

used to access a function in a package that has been masked

due to another loaded package having a function with the

same

8.16

	In this session
	CRAN Packages
	Example: the foreign package
	Installing packages
	Vignettes
	Masking: overlapping object names
	But what's already been loaded?
	Example: the survey package
	Example: the hexbin package
	Summary

