
6. More Loops, Control Structures, and

Bootstrapping

Ken Rice

Timothy Thornton

University of Washington

Seattle, July 2014

In this session

We will introduce additional looping procedures as well as control

structures that are useful in R. We also provide applications to

bootstrapping.

• Repeat and While loops,

• If-Then and If-Then-Else structures

• Introduction to the bootstrap, with examples

6.1

Repeat loops

The repeat loop is an infinite loop that is often used in

conjunction with a break statement that terminates the loop

when a specified condition is satisfied. The basic structure of

the repeat loop is:

repeat {

expression

expression

expression

if(condition)

break

}

6.2

Repeat loops

Below is a repeat loop for printing the square of integers from 1

to 10.

i <- 1

repeat {

print(i^2)

i <- i+1

if(i > 10)

break

}

6.3

While loops

The while loop is often used for executing a set of commands
or statements repeatedly until a specific condition is satisfied.

The structure of a while loop consists of a boolean condition
and statements that are written inside while loop brackets, for
which repetitive execution is to be carried out until the condition
of interest is satisfied:

while (condition) {

expression

expression

expression

}

It is important to note that the while loop will first check that
the condition is satisfied prior to executing a first iteration of the
commands.

6.4

While loops

Below is a while loop for printing out the first few Fibonacci

numbers: 0, 1, 1, 2, 3, 5, 8, 13,. . ., where each number is the

sum of the previous two numbers in the sequence.

a = 0

b = 1

print(a)

while (b < 50) {

print(b)

temp = a + b

a = b

b = temp

}

6.5

While loops

Below is a while loop that creates a vector containing the first

20 numbers in the Fibonacci sequence

x = c(0,1)

n=20

while (length(x) < n) {

position = length(x)

new = x[position] + x[position-1]

x = c(x,new)

}

6.6

If-Then and If-Then-Else structures

Sometimes a block of code in a program should only be executed
if a certain condition is satisfied. For these situations, if-then and
if-then-else structures can be used:

The if-then structure has the following general form:

if (condition)

{expression

expression}

The if-then-else structure has the following general form:

if (condition)

{expression

expression} else

{expression

expression}

6.7

If-Then and If-Then-Else structures

Below is an if-then-else statement that takes the square root of
the product of two numbers x and y if the product is positive:

x=3

y=7

if((x<0 & y<0)| (x>0 & y>0))

{myval=sqrt(x*y)} else

{myval=NA}

And the value of myval when x=3 and y=7 is:

> myval

[1] 4.582576

What is myval if x=2 and y=-10?

> myval

[1] NA

6.8

Introduction to bootstrapping

Bootstrapping is a very useful tool when the distribution of a

statistic is unknown or very complex.

Bootstrapping is a non-parametric resampling method that

allows for the computation of standard errors and confidence

intervals, as well as hypothesis testing.

The method is often used when sample sizes are small and

asymptotic distribution assumptions, such as normality, may not

be appropriate.

“The bootstrap is a computer-based method for assigning

measures of accuracy to sample estimates.” [B. Efron and R.

J. Tibshirani, An Introduction to the Bootstrap, Boca Raton,

FL: CRC Press, 1994.]

6.9

Introduction to bootstrapping

Bootstrapping generally has the following three steps:

• Resample a given data set with replacement a specified

number of time, where each ”bootstrap sample” is the same

size as the original sample

• Calculate a statistic of interest for each of the bootstrap

samples.

• The distribution of the statistic from the bootstrap samples

can then be used to obtain estimated standard errors, create

confidence intervals, and to perform hypothesis testing with

the statistic.

6.10

Example: bootstrapping the median

Bootstrapping can be easily implemented in R using loops.

The sample(x, size, replace, prob) function is very useful for

resampling a given data set in R:

• The first argument of sample is a vector containing the

data set to be resampled or the indices of the data to

be resampled.

• The size option specifies the sample size, with the default

being the same size as the data set being resampled.

• The replace option determines if the sample will be drawn

with or without replacement where the default value is

FALSE, i.e., sampling is performed without replacement.

6.11

Example: bootstrapping the median

• The prob option takes a vector of length equal to the data

set given in the first argument containing the probability of

selection for each element of x. The default setting has each

element with equal probability of being sampled.

In a typical bootstrapping situation the bootstrapping

samples will be the same size as the data set being sampled

and sampling will be done with replacement.

6.12

Example: bootstrapping the median

Let’s consider the airquality dataset again. Below is a histogram
of the daily ozone concentrations in New York, summer 1973.

hist(airquality$Ozone,col="lightblue",xlab="Ozone Concentrations",

main="Ozone Concentrations in NY (Summer 1973)")
Ozone Concentrations in NY (Summer 1973)

Ozone Concentrations

F
re

qu
en

cy

0 50 100 150

0
10

20
30

What is the median ozone concentration level?

6.13

Example: bootstrapping the median

> median(airquality$Ozone)

[1] NA # There are missing daily ozone concentration values

> median(airquality$Ozone,na.rm=TRUE)

[1] 31.5

So the median is estimated to be 31.5.

Can we obtain a 95% confidence interval for the median? What

is the distribution of the median ozone concentration?

Bootstrapping can be implemented for this!

6.14

Example: bootstrapping the median

We first obtain a vector of the ozone concentrations with missing

values excluded:

ozone=airquality$Ozone[!is.na(airquality$Ozone)]

Using a for() loop, we can create 10,000 bootstrap samples and

calculate the median for each sample:

nboot <-10000 #number of bootstrap samples

bootstrap.medians <-rep(NA, nboot)

set.seed(10)

for(i in 1:nboot){

bootstrap.medians[i]<-median(sample(ozone,replace=TRUE))

}

6.15

Example: bootstrapping the median

From the bootstrap medians we can obtain the .025 and .975

quantiles:

alpha=.05

sort(bootstrap.medians)[nboot*alpha/2]

sort(bootstrap.medians)[nboot*(1-alpha/2)]

> sort(bootstrap.medians)[nboot*alpha/2]

[1] 23.5

> sort(bootstrap.medians)[nboot*(1-alpha/2)]

[1] 39

So our bootstrap 95% confidence interval for the median ozone

concentration levels is (23.5,39.0).

NB could also use quantile(bootstrap.medians, c(0.025, 0.975))

6.16

Example: bootstrapping the median

Below is a histogram of the medians from the 10,000 bootstrap
samples;

hist(bootstrap.medians,col="lightblue",xlab="Bootstrap Medians",

main="Bootstrap Medians for Ozone Concentrations in NY",cex.main=.8)

Medians of Bootstrapping Samples for Ozone Concentration in NY

Bootstrap Medians

F
re

qu
en

cy

20 25 30 35 40 45 50

0
50

0
15

00
25

00

6.17

Example: bootstrap for lowess curve

Recall the cars data, and the line we put through it;

data(cars)

plot(dist~speed,data=cars)

with(cars, lines(lowess(speed, dist), col="tomato", lwd=2))

●

●
●

●
●

●

●

●

●

●

●

●
●
●
● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ●

●

●

●●

●

●

5 10 15 20 25

0
20

40
60

80
12

0

speed

di
st

6.18

Example: bootstrap for lowess curve

To bootstrap the curve, a first step is to resample entire
observations;

m=dim(cars)[1] # obtain the sample size
nboot=20
for(i in 1:nboot){

mysample <- sample(1:m,replace=T)
with(cars, lines(lowess(speed[mysample], dist[mysample]),

col=(i+1), lwd=2)
)}

●

●
●

●
●

●

●

●

●

●

●

●
●
●
● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ●

●

●

●●

●

●

5 10 15 20 25

0
20

40
60

80
12

0

speed

di
st

6.19

Example: bootstrap for lowess curve

lowess() only produces output at the sampled points – so we

extrapolate to the others using approx();

nboot <- 1000
boot.speed <- matrix(NA, 1000,m)
set.seed(1314)
for(i in 1:nboot){
mysample <- sample(1:m,replace=T)
low1 <- with(cars, lowess(speed[mysample], dist[mysample]))
low.all <- approx(low1$x, low1$y, xout=cars$speed, rule=2)
boot.speed[i,] <- low.all$y
}

Now work out the lower and upper ranges of the lines, at each
values of speed;

upper <- rep(NA, m)
lower <- rep(NA, m)
for(j in 1:m){
upper[j] <- quantile(boot.speed[,j], 0.975)
lower[j] <- quantile(boot.speed[,j], 0.025)}

6.20

Example: bootstrap for lowess curve

And make a nice picture;

plot(dist~speed,data=cars)
for(i in 1:nboot){

lines(x=cars$speed, y=boot.speed[i,], col="#0000FF05")}
with(cars, lines(lowess(speed, dist), col="tomato", lwd=2))
polygon(x=c(cars$speed, rev(cars$speed)), y=c(upper, rev(lower)),

density=0, col="red", lty=2)

6.21

Summary

• while{} and repeat{} are useful tools for looping until a

condition is satisfied

• if-then and if-then-else structures allow blocks of code to be

executed under different specified conditions

• bootstrapping is a powerful statistical technique when the

distribution of a statistic is uknown

• bootstrapping can be very easily implemented in R using

loops and the sample() function

6.22

	In this session
	Repeat loops
	While loops
	If-Then and If-Then-Else structures
	Introduction to bootstrapping
	Example: bootstrapping the median
	Example: bootstrap for lowess curve
	Summary

