Statistical Issues and Analysis
Methods
in Genetic Epidemiology

Three main areas of genetic epidemiology:

1. Segregation analysis:
Does the trait have a genetic component 7
If so, what (dominant, recessive, polygenic ...)

2. Linkage analysis:
Where are the disease genes 7 (approximate
location)

3. Association analysis:
Where are the disease genes 7
(more precise location)



Segregation Analysis (very brief)

Aim: To decompose covariance of trait among pairs of rel-
atives into components corresponding to major genes, poly-
genic, common environment, random effects.

To estimate the heritability of the trait (proportion of co-
variance due to genetic effects)

e Twin studies Compare correlation of trait among MZ
(identical) twins to that among DZ (non-identical ) twins.

e Adoption studies Compare correlation of trait be-
tween adopted proband and blood relatives (usually sib-
lings) raised apart to that between proband and adop-
tive siblings.

Usetul for comparison of genetic and common-environment
effects.

e Pedigree studies Pedigrees ascertained through trait
values of proband(s).

— Express likelihood of observed pedigree data in terms
of genetic model parameters (gene frequencies, pen-
etrances, polygenic heritability etc.). Compare like-
lihoods to obtain most likely model (+ parameter
estimates).

— Model correlations via path analysis.

— Important to allow for effects of ascertainment.



Linkage Analysis

Interested in testing whether marker locus is linked
to disease locus (i.e. if recombination fraction 6 <

0.5).
e Test A directly (parametric methods)

e Use marker allele sharing among individuals
with similar trait values as a surrogate for 6
(non-parametric or model-free analyses).

e Different methods exist for binary traits (e.g.
affected /unaffected) and quantitative traits.



Parametric methods for Binary traits

Express joint likelihood of observed marker and disease data
in terms of

p, the frequency of the disease allele

fad, fpa, fpp, the penetrances of the disease genotypes

0, the recombination fraction between disease and marker
loci

Denote the marker data by M, the (unobserved) disease

genotypes by G and the disease status of the individuals by
D.

L(F) = %Pr(M|Q, ) Pr(G|p, f) Pr(D|G)

LOD score = logy (L<9L=(9i/2))

If there is only one marker locus, maximise with respect to 6.

Question: What values of p and f 77

L(6
MOD score = max logy, (L( (6, p, f) )

0.0,/ 6=1/2,p, f)

-Computationally intensive !

More usual to analyse under a number of fixed values of p

and f.



Extensions of parametric analysis

Heterogeneity

e Not all pedigrees necessarily segregate the disease gene
under study.

e In these pedigrees, 6 will effectively be 1/2.

e Including these pedigrees in the analysis will reduce power
(and bias the estimate of § upwards).

e Unfortunately, can’t usually distinguish these pedigrees
a priori.

e Let a = prior probability that a pedigree is “linked”.
L#,a) =aL(®)+ (1 —a)L(0 =1/2)

e Heterogeneity LOD score (HLOD) =

log ( L(gLiei;XQ), Oz))

Maximise with respect to 6, «.




Extensions of parametric analysis

Multipoint Analysis (i.e. multiple marker loci)

Assume that disease locus is at fixed point & on chromosome.

L<x) - PI<M|Q7 012,02, 923) Pr<Q‘Q) Pr(g|p, i)

Move x along chromosome, pick the highest lod score.

Note that distribution of resulting maximum lod score must
be estimated by simulation.



Strengths and Weaknesses of Para-
metric Analysis

Strengths

e Most powerful form of analysis if the disease
model is specified correctly (or almost correctly).

e Deals well with between-pedigree heterogene-
ity because it can be modelled directly (unlike
model-free methods).

e Provides a direct estimate of 8 (but see below).
Weaknesses

e If model specified incorrectly, power loss can
be great (although Type I error probability not
increased), and estimate of 6 biased (upwards).

e For complex traits, model rarely known.

e Therefore, necessary to use a number of models
- multiple testing.
Estimates of 6 will be unreliable.



Parametric Analysis for Model-free
People
(MMLS-C method of Greenberg & Hodge)

e 2 disease models, one dominant, one recessive.

Dominant: p(D)=0.005, f4=0, fps=0.5, fpp=0.5
Recessive: p(D)=0.1 f44=0, fps=0, fpp=0.5

e For a complex (low-penetrance) trait, use affecteds-only
analysis (i.e. code unaffecteds as unknown).

e Test statistic = highest LOD score over the two models.
Points to note

e Large single-locus effects unlikely to fit the observed in-
heritance patterns of the marker data, even in affecteds.

e For one marker locus, the effect can be weakened if nec-
essary by increasing 6.

e For a multipoint analysis, this won’t work (will bump
into the next marker), so use the HLOD.

e This method is useful only for testing linkage - estimates
of 8 and/or o will be highly unreliable.

e Important to use disease models with large effects. If
the effect is too large, it can be weakened by varying 6
or . If the effect is too small, the linkage information
is lost forever...

e Performance of MMLS-C relative to model-free methods
still being evaluated. MMLS-C will probably be good
for large pedigrees.



Model-free (non-parametric) meth-
ods

e Based on the observed sharing of marker alle-
les among affected individuals in pedigrees.

e Increased sharing (compared to expected val-
ues) indicates linkage of marker locus to disease
locus.

e No need to specify disease models (so no mul-
tiple testing)

e Less powertul than model-based methods when
the model is known

e No estimates of model parameters (e.g. 6) al-
though multipoint analysis will give an esti-
mate of disease-locus location.

e Note: Many “model-free” methods have been
shown to be asymptotically (or exactly) equiv-
alent to analysing under certain parametric mod-
els
- so some “model-free” methods aren’t that
model-free !!



Affected sib-pair methods

Sib pairs most common pairs of affected relatives.
especially for complex traits (recurrence rates drop
quickly as relationships get more distant) - large
sample sizes.

Two main kinds of analysis:

1. “Allele-counting” methods

2. Likelihood-ratio methods

Assume (for now) IBD known with certainty.



“ALLELE - COUNTING” methods
1. Mean Test.
e Denote no. of alleles shared IBD by ¢’th pair by Z;.

e In absence of linkage,
Pr(Z;=0)=Pr(Z;=2)=1/4,Pr(Z; =1)=1/2

e F(Z;)=025x24+05x14+025x0=1
E(Z}) =025 x4+05x%x1=3/2. SoVar(Z;) =
1/4.

(]

T N(0,1)

2. 2-allele test

e Denote Z; = 1 if ¢'th pair shares 2 IBD, Z; = 0
otherwise.

®

J/3N/16

3. Chi-squared Test
Count up number of pairs sharing 0,1,2 ibd and compare
to expected values (N/4, N/2, N/4) vi usual Pearson

chi-square statistic:

~ N(0,1)




Likelihood-ratio tests (Risch 1990)

e Suppose ng pairs share 0 IBD, nq share 1, noy share 2.

e Express likelihood in terms of (unknown) IBD probabil-
ities zg, 21, 29:
L(z) o 2p°21 " 2

e Maximise with respect to z and form log-likelihood ratio

LR=2In (Lf””))

e Unconstrained maximisation (2o + 21 + 22 = 1):
LR ~ x5.

o 2y =1/2,2y < 1/4. (Score test = mean test)
LR ~ x3 with probability 0.5,
LR = 0 with probability 0.5

statistic

® 22y = 21,2y < 1/4. (Score test = 2-allele test)
LR ~ x4 with probability 0.5,
LR = 0 with probability 0.5

o 22y < 21,29 < 1/4. (“Possible triangle” test )
LR ~ x3 with probability 0.1,
LR ~ x?% with probability 0.5,
LR = 0 with probability 0.4

o 2= (1—p)? 21 =2p(1 — p), 20 = p*.

Maximise w.r.t. p(> 1/2).
LR ~ % with probability 0.5,
LR = 0 with probability 0.5



Uncertain IBD

1. Mean Test

e Calculate posterior IBD sharing probabilities of the
affected pair given marker data in whole family and
marker allele frequencies. Use to get estimate of the
number of alleles shared IBD.

e Sib pair with genotypes X = (aa, aa).

Frequency of allele a = p,.
Pr(X | 01IBD) = p! Pr(X | 1 IBD) = p3, etc.

0.25p;
Pr(0 IBD | X) = Pa , etc.
0.25p% + 0.5p3 + 0.25p2
e In absence of linkage, expected number of alleles
shared IBD = 1.

e Also need to calculate variance of affected pair’s IBD

sharing, conditional on observed data in rest of fam-
ily. This will generally be less than 1/2

e For more details, see Whittemore & Halpern (1994,
Biometrics 50:118-127).



2. Likelihood-ratio test

e Denote genotypes of affected sib pair j by X, geno-
types of rest of family by Y. Then the likelihood of
the data is a linear function of the IBD probabilities
z for the affected sib pair:

2 2
i=0 i=0
e Maximise the likelihood over all pairs

n
Hj:1<’w0jZ() + w121 + ijZQ)

with respect to z, perform likelihood-ratio test.

e £.G. X; = (aa, aa), no other relatives.
Then wg; = p}, wi; = P, wej = p2.

e If both parents genotyped (= Yj), then, for all 7,
wi; = Pr(Y;) Pr(X; | i IBD,Y;)

This depends on allele frequencies only through the
Pr(Y}) term, which cancels when the likelihood-ratio

is formed.

e Analysis is therefore robust to mis-specification of
allele frequencies and population stratification when
parents are genotyped.

e Same applies for counting methods (e.g. mean test)



Multiplex sibships

If 3 or more affected sibs in a sibship, IBD status of the pairs not

independent of each other.
E.G. if sib pairs (A, B) and (A, C) share 2 IBD, so must (B, C).

1. Counting methods
Make all possible sib pairs and treat as independent. Distri-
bution of test statistics OK (due to pairwise independence of
IBD status among sib pairs from the same sibship).

2. Likelihood-ratio methods Various options:

e Use only one sib pair per sibship.
— Sib pairs independent so distribution of test statistic
OK.

— Serious loss of information.
e Pick an “index” sib and form all pairs involving this sib.

— Same drawbacks as before.

— May be useful if index sib is more likely to be “genetic”
(e.g. early onset, more severe...)

e Analyse all possible pairs (without downweighting)
— If IBD is certain, distribution of test statistics OK.

— If parents typed, distribution of test statistics reason-
ably OK.

— If parents not typed, distribution depends on whether
the affected sibs not involved in the pair being tested
were included in the analysis (as unaffected sibs) to
give information on the missing parental genotypes.

If this is done (as is usual), simulations suggest test
statistics are conservative, even in the absence of down-
weighting.



Multipoint affected sib pair anal-
ysis
e Fix a point & on chromosome ( “disease locus”)

e Joint likelihood of the marker data at all the loci M =
(M17M27 <o 7Mm>:

2 2
L(M | 71BD at z) = Z Z Pr(M | iy, ... 1) Pr(iy, ... iy |  IBD at z)

11=0 1 =0

where 1, ...,1,, refer to the IBD status of the sib pair
at marker loci 1,...,m.

o Assuming linkage equilibrium between the marker loci,
first term factorises into

[T, Pr(My, | ix)

This assumption is made by all the commonly-used anal-
ysis packages. May be invalid if the marker loci are close
together.

e Use these formulae as weights w; in likelihood-ratio anal-
ysis or to produce posterior IBD estimates for counting
analyses.

e Move x along chromosome. The location giving the
highest test statistic is an estimate of the location of
the disease locus (Warning: Not usually very precise !!!)



Other relative pairs
e Often available when sampling sib pairs

e May give more linkage information than sib pairs for
some disease models.

e More likely to be adversely affected by incompletely in-
formative markers - additional uncertainty about IBD
vs. IBS unless intervening relatives genotyped.

e Also, power drops more quickly as recombination frac-
tion between marker and disease locus increases (more
meioses involved). Thus, a tighter marker grid would be
needed than for sib pairs.

e However, if sample includes other relative pairs, these
are worth including in analyses.



Non-parametric scoring statistics
(Whittemore & Halpern, 1994, Biometrics 50:109-117)

e Assume the inheritance vectorv; for pedigree 7 is known
(i.e. the grandpaternal origin of each allele in the non-
founders).

® S; = Spauirs(vi) o< number of pairs of alleles, one taken
from each member of a pair of affected pedigree members
which are shared IBD (summed over all possible pairs
of affected pedigree members)

e Normalised score Z;(v;) = (S; — ;) /0
(s, o; calculated by enumeration of all possible v;)

e If IBD status incomplete, replace S; by S;, expected
value of S; evaluated over all v; compatible with ob-
served data.

o Var(S;) < war(S; so test is conservative when IBD
information incomplete.

e Test statistic for linkage = ¥; w;Z; for some weights w;
(often chosen to be equal for all pedigrees)

e Implemented in GENEHUNTER (NPL-pairs)
e Equivalent to mean test for sibship data.

e Conservatism of NPL tests overcome by using ASM (Al-
lele Sharing Models, Kong & Cox 1997) tests - based on
likelihood models for the inheritance vectors.



Quantitative traits
e Denote trait value of ¢2’th individual in j’th pedigree by
Xij = p+ gij + €3

where g;; depends on individual’s disease genotype and
e;; are 1.i.d N(0,02).

e Suppose that g;; = a,d, —a for genotypes DD, Dd, dd
respectively.

e Then the additive and dominance variances of the trait
at this locusare given by

or=2pqla—d(p—q))°  o5=4¢d

where p and ¢(= 1 — p) are the frequencies of D and d
respectively.

e Could use this formulation to model quantitative traits
directly and perform a model-based parametric analysis.

e More usual to perform a model-free analysis. Two of
the most common will be discussed here.

1. Haseman-Elston

2. Variance components



Haseman-Elston method
(Haseman & Elston 1972, Behav Genet 2:3-19)

o Let Y; = (X1; — X»;)% the squared sib-pair trait differ-
ence.

e Let m; = 0,0.5,1 be the proportion of alleles shared IBD
at the trait locus.

e Haseman & Elston showed that
E(Y; | 7)) ~ (207 + 203) — 2037{7- =« + B

where 03

e Under no linkage, # = 0. Under linkage, 8 < 0. So,
regress Y on [ and perform a one-sided test.

= 02 + JCQZ, and approximation exact if 0621:0.

e If IBD is uncertain, can replace m; with its MLE, ;.
E(Y; | 7)) = a+ B, with § = —2(1 — 26)°07.

e Can also use cross-product (Xi; — p)(Xo; — 1) instead
of Y; (Haseman-Elston revisited, Elston et al. 2000) or
weighted combination of squared difference and squared
mean-corrected sum (Xu et al. 2000, Forrest 2001, Sham
& Purcell 2001)

e Weighted procedures generally more powerful than old
or “revisited” H-E.

e Only defined for sibship data



Variance-Component methods
(Amos 1994, Blangero & Almasy 1997)

e Express the trait value of the j’th individual in a pedigree as
n
Xj=p+d at+gite
i=1

where ¢; is the (additive) effect of the ¢’th QTL and g, is the
residual polygenic effect (assumed to be due to an unspecified
number of genes acting additively.

e The covariance matrix ) for the pedigree can be represented
n A
Q=> Hz’U;' + 2@02 + Io?
i=1

where II; is the matrix whose elements Ttiji are the proportion
of alleles shared IBD by individuals 57 and k at QTL ¢, ® is the
matrix of kinship coefficients, I is the identity matrix, agl- is
the additive variance due to QTL ¢, and 02 is the total residual
polygenic inheritance.

e Assuming multivariate normality, a likelihood can be formed
(here for one QTL):

InL(p, 02,0202 | X) =const —1/2In | Q| —1/2ATQ'A

q7 g7 €

where A = X — pu, and maximum likelihood estimation and
likelihood-ratio tests carried out.

e Implemented in the package SOLAR (Blangero & Almasy 1996)

e Powerful and flexible (arbitrary pedigree structures, multiple
QTLs)

e Assumes trait normality (violation can increase Type I error)



Parametric or Model-free
analysis?

Depends on
1. Underlying disease model
2. Type of pedigrees available

e Single Major Locus:
Use parametric analysis (Likely to have large pedigrees)

e Complex trait - large pedigrees
Model free analyses: ASM or NPL (ASM better unless
estimating significance by simulation)
However, MMLS-C is an interesting alternative.

e Complex trait - small pedigrees (sibships)
Sib-pair test (Mean or likelihood-ratio)

e If trait is common (> 10%, say) power of all these meth-
ods is reduced. May be better to find a correlated quan-
titative trait and analyse that via Haseman-Elston or
variance components.



Which pedigrees to sample ?

... depends on disease model !

e Single major locus Large multiply-affected pedigrees
likely to be available - use them.

e Complex trait Choice between

1. Small sample of large multiply-affected pedigrees
2. Large sample of small pedigrees (sib pairs)

e If disease alleles are relatively common, with few pheno-
copies, but have relatively low penetrance, small pedi-
grees may be more informative than large ones. (Large
pedigrees likely to be segregating more than one copy of
the disease allele).

e If disecase alleles are rare, but with high penetrance,
much heterogeneity and a large proportion of pheno-
copies, a small sample of large pedigrees may be better
than a large sample of small ones.

e Unfortunately, difficult to distinguish the two situations...

e ... that’s one of the reasons why complex traits are
complex !l



Testing for Association

e Linkage:
Pairs of affected relatives from the same family shar-
ing alleles IBD. The shared allele(s) may differ between
families.

e Association
Individuals from different families sharing the same
allele (not necessarily IBD).

e Linkage may be present without association.
e Association may be due to

1. Linkage (linkage disequilibrium)
2. Artefacts (e.g. population stratification)

e Only interested in the first kind of association.



Case-Control Study

e Collect N unrelated cases, M unrelated controls from the same
population.

e Perform standard Pearson chi-square test on the table of geno-

type counts

aa Aa AA

Cases  MNgg MAg NAA
Controls mgy, ma, Maa

e Genotypic relative risks estimated by the usual odds ratios

(rare-disease assumption). e.g. RR(A&) = Dlullon
NaaM Aq

e Assuming that population genotype frequencies same for cases
and controls, but no structure on these frequencies (e.g. Hardy-
Weinberg equilibrium)

e If marker has many alleles, the number of genotypes may be
large. The test statistic will then have many degrees of free-
dom, reducing power.

e Common to assume Hardy-Weinberg equilibrium in the general
population, and a multiplicative model for genotypic relative

risks (RR(ab) = 5.05).

e Test for association then equivalent to Pearson chi-square on a
2 X k table of allele counts.

e Advantages of case-control studies:

1. Easy to collect (even for complex traits with late onset)

2. Relatively powerful

e Disadvantage of case-control studies:
Not robust to population stratification.



Case-parent Trio designs: TDT
(Spielman et al. 1993, AJHG)

e Spielman et al. noted that the probability that a heterozygous
parent transmits a particular allele to an affected offspring is
equal to 1/2 unless both of the following are satisfied:

1. There is association between marker and disease alleles.
2. There is linkage between marker and disease loci.
e Therefore, test based on allele transmissions from heterozygous

parents is a test of both association and linkage i.e. linkage
disequiltbrium.

e It will thus be robust to population stratification.

e The Transmission-Disequilibrium Test (TDT) counts the trans-

mitted and non-transmitted alleles from each parent as a matched
pair. E.G.

e These are summed over all parents to give a 2 x 2 table:

Trans
L 2 (b—c)?
Not 1lal b TDT = o (McNemar test)

Trans 2|c| d




Likelihood-Ratio method
(Self et al. 1991, Biometrics)

e Denote the event that the child is affected by A.

e Denote the genotypes of the child, mother, father by
GC7GM7GF-
Pr(Ge, A | Gu, Gr)
Pr(Ge | Gy, Gr, A) =
"(Gel G GrA) =5 AT G, G

Pl"(A | Gc) PI"(GC | GM,GF) o R(Gc) PI“(GC ’ GM, GF)

" v Pr(A | GY)Pr(G* | Gy, Gr) s R(G*) Pr(G* | Gyr, Gp)
where R(G) is disease risk associated with genotype G.

e I'ix one genotype (aa) as the reference, express dis-

ease risks of other genotypes relative to this genotype.
R(G) = R(aa)e’¢. Maximise resulting likelihood with
respect to (log-) relative risk parameters 5. E.G.

Likelihood contribution =
0.25eP44
0.25e844 + (0.5eP4a + (.25

e Advantageous because gives estimates of genotypic rela-

tive risks. Also, extendable to model interactions, parent-
of-origin effects etc.

e Multiplicative model for relative risk gives a test equiv-
alent to the TDT.



Missing parental genotypes

1. Discard families where transmission is uncer-
tain
e Lose information
e Can introduce bias when allele frequencies unequal

(Sham & Curtis 1995 AJHG).

2. Joint likelihood of child’s, parents’ genotypes
Suppose mother’s genotype is missing,.

Pr(GC, GF ‘ A) = Z PI“(GC ‘ GF, G?V_[,A) PI"(GF,GR/[
Cu

No longer robust to stratification.
3. Sib-TDT (Spielman & Ewens AJHG 1998)
e Needs genotyped unaffected sibs.

e Tests whether a particular allele is more common
among affected sibs than would be expected, given
observed numbers of affected and unaffected sibs,
together with the total number of copies that allele
in the sibship.

4. Matched case-control analysis

e Treat genotyped unaffected sibs as matched controls
e Loses information on any genotyped parents (as does
Sib-TDT)

e FExtendable to include covariates



Multiple affected sibs

If linkage is present, transmissions of parental genotypes to
affected sibs not independent. So, tests of association invalid.

e TDT: Can use bootstrapping - generate replicate sam-
ples by sampling (with replacement) entire sibships, and
recording the proportion of replicates for which a par-
ticular allele shows excess transmission.

e Likelihood-based tests (TRANSMIT, Clayton 1999)

1. Empirical variance-covariance matrix for score vec-
tors

2. Bootstrapping: Sample (with replacement) score vec-
tors for whole sibships (adjusted to have zero mean).
Calculate test statistic. Compare to observed value.

e SDT (Horvath & Laird 1998)
— Denote mean number of copies of allele 1 among
affected (unaffected) sibs by mY (m};).

— Let b = no. of sibships where m}, > m},
Let ¢ = no. of sibships where ml < m{,

b—c)?
—SDT = (<~

— Requires typed unaffected sibs

— Loses parental genotype information.



e PDT (Martin et al. 2000)

— For each parent-offspring trio, denote X7 = (no. of
allele 1 tranmitted) - (no. of allele 1 not transmit-
ted).

For each discordant sib pair, denote Xg = (no. of
allele 1 in affected sib) - (no. of allele 1 in unaffected

sib).
— For pedigree 1,

1 nr ng
D= —— X7 + Xo.
nr + N S ( ]gl 1 ]gl S])
— Test statistic
i D;
PDT = =2L L N(0,1)

2 Dz'2



Association vs. Linkage

e Association
Relatively high power to detect small effects, but only
over short distances (Depends on population history and
also varies over genome)

e Linkage
Lower power to detect same effects, but effects extend
over larger distances.

e Genome Scan
Linkage: Marker every 10cM, ~ 350 markers
Association: Marker every 1cM, ~ 3500 markers (or
more).

e A genome scan using association requires much more
genotyping (Pooling ?)

e Power
Risch & Merikangas (Science 1996) calculated that an
association scan would be more powerful than a linkage
scan, even allowing for multiple testing via Bonferroni.

— However, they assumed that one of the typed SNPs
actually was the disease locus.

— In fact, power of association methods depends on
marker and disease allele frequencies, together with
penetrances of disease genotypes and degree of link-
age disequilibrium - hard to predict.

— ... jury still out.



