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Overview

e Allele sharing methods

— Affected sib pairs

— Affected relative pairs/sets

— Sib pairs (quantitative phenotypes)
e Allele transmission methods

— Transmission disequilibrium test (TDT)

— Case/pseudo-control approach

Allele sharing methods

e Alleles in two or more individuals in a family are identical by

descent (IBD) if inherited from the same common ancestor.

e Assuming no inbreeding, the prior probabilities of the IBD

states for different relationships are:

No. genes shared IBD

2 1 0
Relationship fo fi fo
Parent Offspring 0 1 0
Half siblings 0 1/2 1/2
Full siblings 1/4  1/2 1/4
First cousins 0 1/4 3/4
Double 1st cousins 1/16 6/16  9/16
Second cousins 0 1/16 15/16
Uncle-nephew 0 1/2 1/2

e However, relatives who are phenotypically alike (e.g. both
affeted with disease) will have inherited the same disease

alleles from a common ancester.

e Hence they will share more alleles IBD at the disease locus

(and at markers in the vicinity) than expected by chance.



Affected sib pair (ASP) studies

e Collect sample of sib pairs both affected with disease (plus

parents if possible)

e Compare IBD sharing at specific locations in genome (e.g.
candidate loci or at increments across genome) with null

(0.25, 0.5, 0.25) values.
e Advantages:

— Easy to collect
— For early onset disease parents usually available
— Specification of disease model not required

(i.e. ‘non-parametric’/model free)

e Disadvantages

— Ignores other affected relatives if available

— May be less powerful than parametric methods if true

disease model is known.

Test statistics

e x? goodness-of-fit test

— Calculate the usual statistic

(0; — E)?

2
X =

where O; = observed number of pairs (ng, n1,ng) and
E; = expected number of pairs (N/4, N/2, N/4) sharing
i alleles IBD.

— Only useful if IBD sharing known for each pair.



e Mean IBD test

— Compares observed proportion of alleles shared by ASPs
in sample, to that expected (0.5) under no linkage.

— Test statistic is [p — E(p)]//Var(p).

— Most powerful under wide range of genetic models.

— Generalizable to situation when IBD sharing is uncer-
tain via posterior probabilities ( fo, f1. f2)

— Hidden Markov models allow calculation of ( fo, fi, fg)

at uninformative loci and at increments between loci

(multipoint analysis).

e Likelihood ratio (LR) method:

— Define unknown parameters z = (2q, 21, 22) as
z; =P(affected pair share ¢ alleles ibd)

i.e. IBD probabilities conditional on affection status
— Calculate likelihood L(z)
(depends on family structure and genotypes).
— Test null hypothesis Hg : (20, 21, 22) = (0.25, 0.50, 0.25)

using likelihood ratio test

L(2)
(0.25,0.50,0.25)

where 2 = (2o, 21, 22), the values of (zg, 21, z2) that max-
imize the likelihood of the data.
— Likelihood expressible as

Zofoj Zlflj Z2f2j
L(z) =
=) 1} foj * i faj

where f;; is the prior probability and ﬁ-j the posterior

probability (given the observed marker data) that pair j
share 4 alleles IBD. (fy;, f1;, f2;) = (0.25,0.5,0.25) Vj



Distribution of test statistics

e Note test statistic defined in terms of log;, rather than 2 log,

(need to rescale: multiply by 4.6)

e Distribution also depends on whether maximization carried

out subject to constraints on (zg, 21, 22)

e Test statistics often called ‘lod’ regardless of number of free
parameters, distribution, lack of correspondence with para-

metric lod score:

L0

where likelihood of data is expressed as function of recom-
bination fraction 8 between disease and marker loci, under

assumed genetic model.

Problems

e For complex traits (small effects), ASP methods give noto-
riously poor localisation of disease loci unless sample sizes

large (500 or more pairs)
e True disease location may lie 15-20cM from linkage peak.

e Calculating accurate confidence intervals for location is still
a (somewhat) unsolved problem: depends on which statistic

is being used, marker informativity etc.

e Large consortia being established to generate sufficient data

(but note problems of heterogeneity between study centres)



Extensions to ASP approaches
e Aim to improve informativity or power...
e Multilocus models: model joint IBD sharing at several loci.

e Incorporate IBD information, linkage information or alleleic

association at one locus into test statistic for another locus.

e More generally, incorporate covariates into test statistic at

a locus.

Multilocus models
e For two loci, define sharing probabilities z;; (¢,7 = 0, 1, 2)

Locus 2
Locus 1 0 1 2
200 201 <02

210 R11  *12

290 R21 <22

B _L(data|Z)
MLS = logio L(data|Z,u)

e Likelihood formulation:
2 9 L f
I H Z Z ZZszjk
k\i=05=0 fijk
where z;;, fi]-k and f;; refer to the probabilities that pair
k shares ¢ alleles at locus 1 and j alleles at locus 2 simulta-

neously.
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e m locus model:

2 L A. o
L o H Z Z - Z 21112---1mf1112_.,zmk

k\i1=005=0  im=0  fijiy.imk
where 2ijiy. ipy firig.imk a0 fijiy._ ik refer to the same

sharing probabilities but at the m loci simultaneously.

Null Hypotheses

e No linkage at either locus

Locus 2
Locus 1 0 1 2

0.0625 0.125 0.0625
Z = 0.125 0.25 0.125
0.0625 0.125 0.0625

(Can adjust to allow for linkage between loci)
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e Only strongest locus linked

Locus 2
Locus 1 0 1 2

0.25z 0.5z 0.25z
Z = 0.25z; 0.52y 0.25z
0.25z9 0.5z 0.2529

— Tests effect at locus 2 ‘taking into account’ effect at locus

1 (and any interaction between the loci)
e Specific ‘biological” models for z;;
— heterogeneity (independent pathways)
— multiplicative (epistatic)
e Express z;; in terms of relative risk parameters Ay, Aj;.

e Express A's in terms of covariance between sibs, hence in
terms of underlying genetic additive and dominance vari-
ance parameters. Biological models imply certain restric-

tions on variance parameters.
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Analysis of type 1 diabetes data set

e 356 ASPs (with parents) typed across genome

Table 1: Maximum MLS values and conditional MLS values (with p values) for selected

chromosomes. Results are given for a stepwise procedure consisting of a single locus analysis

followed by a two locus analysis conditional on IDDM1, and finally a three-locus analysis

conditional on IDDM1 and IDDM10.

Chromosome | Closest marker Location Single locus Two-locus Three-locus
(or IDDM locus) on Figs conditional conditional
5and 6 | MLS p value | MLS pvalue |MLS p value
3 D351576 180 cM 1.01 0.03 1.28 0.04 2.88 0.004
6 D6S291 (IDDM1) |29 cM 34.7 HS - - - -
6 D65294-D65286 56 cM 194 HS 2.42* 0.001 2.60 0.008
8 D8S88 111cM |0.70 NS 1.62 0.03 2.25 0.01
10 D10S220 (IDDM10) | 51 cM 4.67 0.000004 | 5.02 0.000008 | - -
11 TH/INS (IDDM2) |3 cM 2.77 0.0003 4.14 0.00006 |5.17 0.0002
11 FGF3 (IDDMjy) 81 cM 0.54 NS 2.04* 0.002 1.97* 0.003
14 D14575-D145276 43 cM 1.95 0.002 2.42  0.003 2.83 0.004
15 CYP19-D155125 39-57cM | 0.74 0.05 1.12¢ 0.02 1.72* 0.005
16 D1653098 87 cM 3.24 0.0001 4.92 0.00001 |5.02 0.0002
18 D185487 72 cM 1.10 0.02 1.95% 0.002 1.98% 0.003
19 D195226 24 cM 1.80 0.004 1.96 0.02 2.18 0.02
21 D215120 5 cM 0.06 NS 0.95 0.07 1.59 0.04
Pseudo- DXYS154 33 cM 1.23 0.02 1.65% 0.005 1.12% 0.02
autosomal

¢ Multilocus results are given for the general model except those for those marked ¢

which are for the additive model.

NS=not significant (p value > 0.05). HS=highly significant (p value < 0.000001)
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Alternative methods

e Cox et al. (1999) Nat Genet 21: 213-215: weight families in
a single-locus analyses of locus 2 according to their evidence

of linkage at locus 1.
— Optimal weighting depends on underlying genetic model

e Include IBD sharing or test statistic at first locus as

covariate

— Extends to including other covariates e.g. genotype
(combination) at first locus, gender (combination),

parent-of-origin, environmental effects.

— Issues with choice of covariates, choice of coding scheme.
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Covariate methods
e Rice (1997):
— Model IBD sharing as
n=p", a=2p(1-p), z=(-p)’

— Model

loglp —a+ plz

where z is a vector of covariates. Null is « = 0, 5 = 0.

— Use usual Risch likelihood

L(z) -1 (Z(]f(]j I Zlflj 1 ZQfQj)

i\ Jo o fy fy
e Olson (1999)

— Reparameterize Risch likelihood as

(ij +elfi; + eﬂQij)

II
foj +€Prfi;+ ePrfy

J

— Incorporate covariates via 2 parameters d1, o9

Joj + BT fii oy ePrtha f
foj + 0 fi + ePrtoar fy

I

J
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Additional comments

e See also methods proposed by Greenwood and Bull (1999),

Gauderman and Siegmund (2000), Goddard et al (2001).
e Properties of different methods have not been compared.

e Holmans (2002): compared utility of conditioning on link-
age peak (e.g. via covariates based on IBD sharing) vs

conditioning on disease-associated genotypes.

— Disease-associated genotypes generally more useful.
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Affected relative pairs (ARPs) or sets

e Affected sib pairs convenient sampling unit.
e If other types of relative available, makes sense to use them.

e Large pedigrees often collected for traditional

linkage studies.

e Like ASP methods, idea is to compare observed IBD sharing

with that expected under no linkage.
e Several of ASP methods extend quite naturally to ARPs.

— Mean IBD test
— MLS method

— Olson/Rice covariates method
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Extension of MLS method to ARPs

e Recall for ASPs we define z = (2g, 21, 22) as

z; =P(affected pair share i alleles ibd)

e Test null hypothesis Hg : (20, 21, 22) = (0.25,0.50, 0.25)
using likelihood ratio test:

L)
MLS =1 — log,o LR
%810 7,(0.25,0.50,0.25) W0

e Formula for likelihood:

I = H ZOij Zlflj ZQfQj
i\ Jfoj J1j foj

fij = prior probability and ﬁ-j = posterior probability (given
the marker data) that pair j share i alleles IBD.

e Note that for sibs  (fo;, fi1j, fo;) = (0.25,0.5,0.25) Vj

e For ARP of arbitrary relationship, we use same formula,
but z;, foj, fi;, f2; vary depending on relationship.
(z; function of relationship and underlying additive and

dominance variances of disease model, o2, 773).

18



e Multipoint f;;, ﬁj output from standard programs

e.g. Genehunter, Allegro, Genibd, Simwalk2

e Similar extension can be used for Olson (and Rice?)

covariate approaches.
e Pairs from same family not independent.

— Evaluate LR test statistic using simulation.

— Or use score test with robust variance estimation?
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Non-parametric linkage (NPL) methods
e Generalization of mean IBD test.

e Based on variety of proposed scoring statistics

(Whittemore and Halpern 1994)

e [dea is to produce score based on IBD sharing amongst
affected individuals in a pedigree
— Pairwise IBD sharing (NPL p5ir)
— IBD sharing amongst whole set (NPL 1)

e Generate normalised score for each pedigree: combine to

produce overall test statistic.

e Calculation of mean and variance of pedigree-specific scores
under null hypothesis not trivial: requires ennumeration of

all possible inheritance vectors.

e Initial packages (e.g. Genehunter) used ‘perfect data’
approximation: assumed IBD sharing unambiguous at

every location.
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Allele-sharing models (Kong and Cox 1997)

e Linear model: Construct likelihood assuming
P(v; =v|d) = P(v; = v)(1 4 dw; Z;)

v; denotes underlying inheritance vector for pedigree i
w; a pedigree-specific weight

Zi(v;) is the normalised score for pedigree ¢

0 is parameter to be estimated representing magnitude

of deviation from null sharing.
e Exponential model:
P(v; = v|d) = P(v; = v)ri(d)exp(dw; Z;)
where r;(d) is normalization constant.

e Score test from these models = NPL statistic

(when data fully informative).

e Kong and Cox propose using LR test of null

hypothesis 6 = 0.
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o ASM statistics less conservative than NPLs from

Genehunter
e Implemented in Genehunter-Plus, Allegro, Merlin.

e Pedigree specific weights allow ASM (and NPL) methods
to weight tests at one locus according to IBD sharing,

genotypes at other locus (or according to other covariates).
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Sib pair methods for quantitative traits

e Affected sib pairs: dichotomous trait (affected /unaffected)

e Suppose instead we are interested in genes influencing a
continuous (quantitative) trait
— Blood pressure
— Height
— Obesity/BMI
— Immune response
— Age of onset of disease (survival methods?)

e Idea is that genotype at one or more loci influences mean

(and possibly variance) of trait distribution.

23
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Haseman-Elston (H-E) Method e Small values of difference squared suggest

e Haseman and Elston (1972) Behav Genet 2:3-19 — Sibs have similar trait values

— Inherit same alleles from parents at trait locus
e Idea is to look at trait difference squared for pairs of sibs. P

— Share more alleles IBD than expected at trait locus and
e E.g. Sib 1 has trait value 14.5, sib 2 has trait value 10.2.

at linked markers in surrounding region.

e Difference = 4.3, difference squared = 4.3% = 18.49.
e Large values of difference squared suggest

e Difference squared is a measure of how phenotypically
— Sibs have differing trait values
dissimilar the two sibs are.

— Inherit different alleles from parents at trait locus
e [f a genetic locus is responsible for trait
— Share less alleles IBD than expected at trait locus and

— Sibs with similar trait values likely to have inherited . . : .
at linked markers in surrounding region.

same allele(s) at this locus from parents.
e Look at relationship between sib-pair difference squared,

— Sibs with differing trait values likely to have inherited ) )
and number or proportion of alleles shared IBD, in large

different allele(s) at this locus from parents. , .
sample of sib pairs.
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* ¥ X

0.0 0.5 1.0

e y = sib pair difference squared
e x = 7 = proportion of alleles shared IBD

m™ =0 0 alleles IBD
m = 0.5 1 allele IBD
m = 1.0 2 alleles IBD
e To test for linkage, fit regression line y = mx + ¢

— Under null, slope m = 0.

— Under alternative, slope m < 0.
e Test using standard stats/genetics package.
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Mathematical details

e Let z1; and 29, be the trait values for sib pair j. We assume

Tig = ptgiytey
Taj = [+ Goj+ €

where g is the overall mean, g;; and e;; are genetic and

environmental effects.

e Suppose single diallelic locus involved, ¢;; = a,d, —a for

BB, Bb, bb individuals.

2

e Genetic variance o,

= 02+ 03 where under random mating
o, =2pgla—d(p—q)I’, 0F=4’¢d’
and p, q are allele frequencies of B and b.

o Let €; = €15 — €3y, E(ej) = O, E(e?) = 03.
e Let y; = (21, — 29;)?, the sib-pair difference squared.

e Let m; =0,0.5,1 be the proportion of alleles shared IBD

at the trait locus.
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e Haseman and Elston (1972) show that Some extensions

E(y;|m;) = (07 + 202) - 2037%' = a+ [ e Qualitative traits = code 0/1 for unaffected/affected

e Approximation exact if no dominance. e [istimation of genetic parameters assumes underlying nor-

o ) ) mality, random ascertainment. Test of null of no linkage
e Note similarity to regression equation y = mx + ¢ where

valid without these assumptions.

_ 2
y = (71— 1)
e H-E revisited (Elston et al. 2000, Genet Epid 19:1-17): use

m = f3

combination of mean-corrected trait sum-squared and trait
T =

difference-squared y = §(Ys — Yp)
¢ = a= (0] +20))

— improvement in power in certain circumstances.

e Null hypothesis of no linkage can be tested by performing e Weighted /unified fcombined H-E (Xu ot al. 2000, AJHG

linear regression, testing whether § = —207 = 0.
67:1025-1028; Forrest 2001, Hum Hered 52:47-54; Sham and
e Test statistic: use ¢ statistic C%) ~ N(B,1). Purcell 2001, AJHG 68: 1527-1532)
¢a 3 estimated by —f/2. — Use weighted combinations of trait sum-squared and
e Test can be generalized to use 7, the estimated proportion trait difference-squared measures.

of alleles shared IBD, instead of ;.
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e Sham et al. (2002) AJHG 71:238-253. Allele transmission methods

— Extension that applies to general pedigrees e Transmission disequilibrium test (TDT)

— Regression is ‘other way round’: appropriate for : . . .
& Y PPTOP e [dea is to examine transmission of specific alleles from

selected samples parent(s) to affected child.

— Appears to combine robustness of H-E with power of
— Sample families on the basis of single affected offspring.

variance components
— Affected offspring and both parents genotyped.

— But requires estimate of population mean, variance,

e Under null hypothesis of no linkage or no association
heritability (or correlation between different relationship P &

(0 = 0.5 or 6 = 0) parents should transmit either of their
types)

two alleles to child with equal probability.
e If not — linkage AND association (f < 0.5 and § # 0)

e Originally conceived as test of linkage in presence of

association.

e Often used as test of association in presence of linkage

(needs care).
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e TDT counts transmissions of allele 1, say, from heterozy-

gous parents to an affected child

e Only heterzygous parents used.

R

1 transmission

1)2 1)2

1 transmission, 1 non-transmission

o If altogether T' transmissions and N non-transmissions;

(T-N)?

DT = ———~
r+N TN

e Parents considered independent: true under null of no
association and under some alternatives (e.g. if the genetic

association follows a multiplicative model for the effects of

the alleles on penetrance)
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e The data can be arranged as a 2 x 2 table:

Allele Transmitted

Untransmitted 1 2

1 a b

2 c d

e The test of association is McNemar’s test:

(b - 0)2 Asymgm\zj.icauy 2
b+c !

e Transmitted ‘case’ allele is matched to untransmitted

‘control’ allele

36



Extensions

e Multiallelic TDTs (many df) (Sham and Curtis 1995; Bicke-

boller and Clerget Darpoux 1995; Cleves et al 1997)

e Missing parents (Curtis and Sham 1995; Knapp 1999):
RC-TDT, S-TDT, Sib-TDT

e Haplotypes

— TDTPHASE (Dudbridge)

— TRANSMIT (Clayton 1999)
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Case/Pseudo-control methods

e Genotypes constructed for 3 ‘pseudo-controls’, consisting of

other possible genotypes that offspring could have received.

alb c|ld

@ ald ble bld

e Data analysed as if real matched case/control sample.

e Why does this work? (Self et al. 1991; Schaid 1996): Con-
sideration of conditionallikelihood, conditional on parental

genotypes and fact that off spring is affected.
e Condition on affected offspring through ascertainment scheme.
e Conditioning on parental genotypes:

— removes spurious effects e.g. due to population
stratification
— avoids estimating nuisance parameters such as parental

mating type frequencies.
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e Let ge, gm, g5 be the genotypes of the child, mother and

father, and let D denote the event that the child is affected.

e Then

R(a/c)
R(a/c) + R(a/d)+ R(b/c) + R(b/d)

P(QC|gma gfs D) =

where R denotes the disease risk for a genotype relative to

some arbitrary baseline genotype e.g. relative to a/a.

e This is identical to the likelihood used in matched case/control

studies for a case with genotype a/c matched to three con-

trols with genotypes a/d, b/c, b/d.

e Analysed via conditional logistic regression with genotype

indicator variables as the predictors of outcome (disease).
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Genotype relative risks

e Can test and estimate risks conferred by the various geno-

types using this procedure.
e Null hypothesis is usually R(i/j) =1 for all genotypes i/j

e One may reduce number of parameters under alternative
by making assumptions e.g. multiplicative effects of alleles

i,j R(i/j) = RiR; (true under null)

e Then
R(a/c)
R(a/c) + R(a/d) + R(b/c) + R(b/d)

- R.R.
N R,R.+ R,Ry+ RyR. + RyRy
R, R,

X
e Multiplicative effect of alleles = independent contributions
from each parent.

e Score test of R, =1 Vi =TDT.
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Several linked loci

e We recently extended this method to evaluating the effects
of several closely-linked loci in a region (Cordell and Clay-

ton 2002)

— May be more than one causal locus in region
— Causal locus may lie on ancestral haplotype marked by

several loci.

e Enter variables coding effects at each locus in stepwise

manner in conditional logistic regression equation.

e Mimics standard epidemiological procedures for real case/control

studies via logistic regression.

e Can test effect of second locus once first locus has been

accounted for (i.e. already entered into equation).
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Further extensions

e Multiple linked loci in multiple unlinked regions
e Parent-of-origin (imprinting) effects

e With more than one locus in a region we have the problem

of phase uncertainty.

e E.g. individual with genotypes a/A, b/B

A a
B B

A
b

a

b

e Also issues of uncertainty in parent-of-origin

12 1)2
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General approach Example: INS region in Type 1 diabetes

e Use modified conditioning argument to construct set of pseudo-

controls for every case (affected child) in sample. o

~log p
4
1

e Exact conditioning argument depends on what genotype

relative risk models are to be fitted (e.g. whether risks

o 200 400 600 800

depend on phase, parent-of-origin etc.) positon in kb

e Analyse as matched case/control sample using conditional

logistic regression software.

~log p of marker when added to INS/-23Hphl

T T T T T
o 200 400 600 800

Position in kb

~log p of INS/-23Hphl when added to marker
4
1

(o] 200 400 600 800

Position in kb
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