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In meta-analysis, Bayesian methods seem a natural choice for the combination of
sources of evidence. However, their sensitivity in practice to choice of prior distri-
bution is much less attractive, particularly for parameters describing heterogeneity.
A recent non-Bayesian approach to fixed-effects meta-analysis provides novel ways
to think about estimation of both fixed-effect average effects and variability around
this average. In this paper we describe the Bayesian analogs of those results, showing
how Bayesian inference on fixed-effects parameters—properties of the study popu-
lations at hand—is more stable and less sensitive than standard methods. As well
as these practical insights, our development also clarifies different ways in which
prior beliefs like homogeneity and correlation can be reflected in prior distribu-
tions. We also carefully distinguish how random-effects models can be used to reflect
sampling uncertainty versus their use reflecting a priori exchangability of study-
specific effects, and how subsequent inference depends on which motivation is used.
Throughout the paper, examples are drawn from real examples as well as simulation
and theory, and the impact of the analysis choices is seen even when meta-analyzing
small numbers of studies.
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1 INTRODUCTION

In recent years, meta-analysis has proven to be an extremely useful tool for summarizing and synthesizing results from different
studies. Two main approaches have been historically used to address the different questions posed in a meta-analysis: the fixed
and random effects approaches. Extensive literature is available not only describing these approaches, but also attempting to
provide guidelines for choosing one or the other.1,2
An important difference between fixed and random effect approaches is the type of statistical inference that they enable.3,2 In

the random effects approach the inference goal is usually to characterize a distribution of effect sizes —perhaps a hypothetical
distribution—from which the effect sizes observed in the studies at hand are assumed to be sampled. From a Bayesian perspec-
tive, this approach can also be motivated from the belief that the effects (not the studies themselves) are exchangeable or that their
magnitudes cannot be differentiated a priori.4 However, targeting inference to hyper-parameters can be problematic, as we often
have little information on them.5 This is typical when the number of studies included is small: the classical frequentist estimates
can behave poorly,6,7 while Bayesian inference can be correspondingly very sensitive to the choice of prior distribution.8,9
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In contrast, the fixed effects approach, based on the assumption that the effects estimated in the different studies are unknown
but fixed quantities, allows for inference that is conditional on the studies at hand, with no random distribution of effect sizes.10
Although some authors advocate for the use of fixed effects only when the effects are assumed to be the same, other authors
advocate for its use more generally, providing inference that is conditional on the studies at hand.11,2
In recent work,12 the fixed effects approach to meta-analysis was motivated as an optimal estimation problem: specifically,

that the inverse variance weighted average of the study specific effects, in addition to being an interpretable parameter in its
own right,13 is the weighted average that can be most precisely estimated in frequentist analyses. In Bayesian analysis the
interpretability of the fixed effects parameter carries over directly, and the precision property strongly suggests that any problems
of its prior sensitivity should be smaller than for other potential target parameters. In this paper we show how this intuition does
indeed apply, providing stable inference where more standard approaches are driven heavily by the prior. We show this not only
for the fixed effects location parameter, but also for measures of heterogeneity.
This paper is structured as follows: in Section 2 we briefly review a data-adaptive fixed effects approach to meta-analysis. In

Section 3 we propose a Bayesian analogue to this approach and discuss the use of a family of conjugate multivariate priors. We
provide a closed-form expression for the posterior distribution of the parameters of interest, whose properties are also explored.
In Section 4, we reconcile this approach with the multilevel hierarchical model used in classic Bayesian random effects approach,
allowing simultaneous estimation parameters for both conditional and un-conditional inference. Lastly, in Section 5 we use a
previously published meta-analysis as an example to evaluate the posterior distribution of the proposed parameters, comparing
it to the distribution of the parameters typically targeted in a random effects Bayesian approach, illustrating and contrasting their
properties.

2 REVIEW OF FIXED EFFECTS META-ANALYSIS

We denote �̂1, �̂2, ..., �̂k as point estimates of the true effect size parameters �1, �2, ...�k from k studies included in a meta-analysis,
and let �21 , �

2
2 , ..., �

2
k be the variances of these estimates. The aim of a fixed effects analysis is to estimate an average of the true

effects, like the simple mean or the precision weighted average. In the specific case in which all the effect sizes are the same,
any weighted average of the estimates would estimate that true common effect, with the precision weighted average being the
most precise.
From all possible weighted averages to which we could target our inference, the inverse-variance weighted average is statisti-

cally optimal, if the variances are known, as it is the weighted average for which the corresponding estimator has the minimum
variance12. Using the same notation, we denote the inverse-variance weighted average by �F :

�F =

∑k
i=1

1
�2i
�i

∑k
i=1

1
�2i

, (1)

Complementing the summary of the overall location of the effects, as given by �F , a parameter that quantifies the amount of
heterogeneity among the effects sizes is the weighted average of the squared squared deviations of each effect from �F , which
we denote as �2:

�2 =

∑k
i=1

1
�2i
(�i − �F )2

∑k
i=1

1
�2i

=

∑k
i=1

1
�2i
�2i

∑k
i=1

1
�2i

− �2F . (2)

Writing �2i = (ni�i)
−1, where �i is the amount of information about �i that provided by each of the ni observations in study

i, (1) and (2) can be expressed as:

�F =
∑k
i=1 ni�i�i

∑k
i=1 ni�i

=
∑k
i=1 �i�i�i

∑k
i=1 �i�i

�2 =
∑k
i=1 ni�i(�i − �F )

2

∑k
i=1 ni�i

=
∑k
i=1 �i�i(�i − �F )

2

∑k
i=1 �i�i

, (3)

where �i = ni∕
∑

i′ ni′ is the proportion of observations in study i relative to the total number of observations from all studies in
the meta-analysis.
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Several frequentist estimation methods for �F and �2 have been proposed, under the standard large-sample assumption that
the �̂i are jointly Normal, i.e. that k-variate (�̂ ∼ N(�,�)), with a diagonal variance-covariance matrix � =diag{�2i }. Table 1
summarizes estimators for both parameters in which the common assumption of known variances is made. We note that, using
the same notation as above, the variance of �̂F is inversely proportional to Φ =

∑k
i=1 ni�i = N

∑k
i=1 �i�, which we refer to as

the total amount of information.

TABLE 1 Estimators for the fixed effects meta-analysis location and heterogeneity summary parameters

.

Parameter Estimator Confidence interval (1-�)

�F �̂F =
∑k
i=1

1
�2i
�̂i

∑k
i=1

1
�2i

Normal approximation:

�̂F ± z�∕2
√

Φ−1, with Φ =
∑k
i=1

1
�2i

�2 �̂2 = max
{

0, Q−(k−1)
Φ

}

, Inverted non-central �2 probability interval:
with Q =

∑k
i=1

1
�2i
(�̂i − �̂F )2 {�2 ∶ �2k−1,�∕2(Φ�

2) ≤ Q ≤ �2k−1,1−�∕2(Φ�
2)}

Methods that further relax the assumption of known �2i are proposed and discussed elsewhere .12 These methods take into
account the uncertainty in the estimation of the study variances (�2i ), which has a greater impact on the estimators from Table
1 when there is significant heterogeneity in the study effects.

3 BAYESIAN FIXED EFFECTS META-ANALYSIS

With the standard Normality assumptions on the �̂i, the fixed effects setting also permits Bayesian methods when a prior is
specified on the unknown parameters. Here we shall denote these in matrix notation, as parameter vector � = (�1, �2, ..., �k) and
with

�F = 1TkW �,
�2 = �T

(

W −W 1k1TkW
)

�, (4)

where 1Tk denotes the unit vector of length k andW = (1Tk�
−11k)−1�−1, with � =diag{�2i }. Expressing the target parameters

�F and �2 as a linear combination and a quadratic form in the �i, emphasizes that, however it is specified, the joint prior on the
�i induces a prior on the target parameters, automatically.
Specifying a joint prior distribution on � not only allows the analysis to incorporate prior beliefs or information on each

individual effect-size parameter, but also determines how much information each study’s effect-size provides on the others. A
multivariate Normal prior, for example, can be used to reflect beliefs on the particular location of each effect-size (the mean
vector parameter), the uncertainty in these beliefs for each study (the variances) and on how related the effect-sizes from different
studies are though to be (the pairwise correlation coefficients). In the simple case of a these correlations all being equal – a
consequence of assuming exchangeability14 – by varying the value of the correlation from 0 to 1, we can specify a range of
scenarios, from believing that study effects are totally uninformative about each other (fixed effects) to believing that they each
parameter tells us as much about any other parameter as about itself – for example when assuming that all study effect-sizes are
exactly the same (common effect).
In what follows we will use both conjugate priors, that provide closed-form posteriors that can be inspected analytically, and

also non-conjugate choices. Given modern computational methods, specifically Markov Chain Monte Carlo (MCMC) algo-
rithms15 and the availability of off-the-shelf software16,17, the calculations for Bayesian meta-analyses are straightforward in
practice, allowing us to focus directly on impact of different assumptions on subsequent inference.
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3.1 Multivariate Normal conjugate prior
We now present analytical results obtained using a conjugate prior distribution and discuss some properties of the corresponding
posterior distribution.
Under a fixed effects approach with the standard large-sample assumption of Normality of the effects estimates �̂i, the multi-

variate Normal prior is conjugate for the parameter vector �, with the posterior distribution of � conditional on the data �̂ also
being a multivariate Normal15. Letting the prior for � be k-variate normal with mean vector � and variance-covariance matrix
�, then:

�|�̂ ∼ Nk
(

(�−1 + �−1)−1
(

�−1�̂ + �−1�
)

, (�−1 + �−1)−1
)

. (5)

As a linear combination of a k-variate Normal distribution, the posterior distribution of �F is also Normal:

�F |�̂ ∼ N
(

1TkW (�−1 + �−1)−1
(

�−1�̂ + �−1�
)

, 1TkW (�−1 + �−1)−1W 1k
)

. (6)

The posterior distribution of �2 is obtained by noting that �2 is a quadratic form of the k-variate Normal vector �, which has a
Normal posterior. Closed form expressions for the poster mean and variance of �2 can therefore be obtained using known results
for quadratic forms18, Chapter 2, while quantiles of the distribution can be obtained by expressing the posterior of �2 as a weighted
sum of non-central chi-square random variables, as shown in (author?) 19 . The corresponding calculations can be implemented
with the R package CompQuadForm19: details are given in Appendix A.

3.2 Exchangeable multivariate conjugate prior expressed as a hierarchical structured
distribution (incorporating information on �)
For the special case of a priori exchangeability of the �i, the prior is a k-variate Normal with every element of the mean vector
� being equal, prior variance for each �i also equal, and an exchangeable correlation matrix �k(�) = (1 − �)Ik + �1kk, where �
denotes the correlation coefficient between any two �i. This multivariate prior can also be expressed as a hierarchical prior, in
which the study effects �i are i.i.d. Normal with mean � (a hyperparmeter) which is assigned a Normal prior. These two priors
are shown in Table 2 , together with the transformations used to switch between them.

TABLE 2 Exchangeable multivariate Normal prior for � and its equivalent parameterization as a hierarchical structured model.
The relevant transformations to switch between the two parameterizations are also given.

Multivariate Hierarchical

Prior
� ∼ Nk(�1k, �2�k(�)) �i|� iidN(�, �2)

�k(�) = (1 − �)Ik + �1k1Tk � ∼ N(�,  2)
0 ≤ � ≤ 1, �2 ≥ 0 �2 ≥ 0,  2 ≥ 0

Reparametrization �2 = �2 +  2 �2 = (1 − �)�2

� =  2∕(�2 +  2)  2 = ��2

We notice that both priors reflect the same belief of the study effects being exchangeable: explicitly in the multivariate model
and implicitly in the hierarchical model. A careful comparison of both parameterizations allows us to better understand how
prior beliefs can be incorporated. For example, prior beliefs on the average location of the study effects are incorporated through
the hyper-parameter � in both models. Prior beliefs on how similar the study effects are (homogeneity) can be explicitly stated in
the value the correlation parameter �, with 1 corresponding to a prior assumption of perfect homogeneity while values close to
0 correspond to a prior assumption of unrelated effects. The same correlation can be implicitly incorporated in the hierarchical
model as 2∕(�2+ 2), so that high values of 2 relative to �2 induce a high correlation of the study effects. Lastly, the parameter
�2 in the multivariate normal is equivalent to the sum of the parameters �2 and  2 from the hierarchical model, so we can
interpret �2 as a total variance due both to the heterogeneity of the effects and the uncertainty on their overall location.
The posterior distribution of �F can be obtained from (6). But furthermore, by noticing that the total information (Φ =

∑

i ni�i =
∑

i �−2i ) can be expressed as 1T�−11, so that �−1 = ΦW , then the posterior mean and variance of �F |�̂ can be written
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as:

Var[�F |�̂] = 1TkW
(

ΦW + �−2�k(�)−1
)−1W 1k (7)

E[�F |�̂] = 1TkW
(

ΦW + �−2�k(�)−1
)−1 (ΦW �̂ + �−2�k(�)−11k�

)

(8)

From these expressions we can see that the posterior distribution of �F is a Normal distribution with mean and variance that
approach 1TkW �̂ = �̂F and Φ−1, respectively, as the total information (Φ =

∑

ni�i) increases or the total amount of variance
due to heterogeneity and uncertainty (�2 = �2 +  2) decreases. This means that with large sample sizes or in the absence of
strong beliefs on the location of the study effects or their homogeneity, the Bayesian posterior mean of the precision weighted
average reduces to the frequentist estimator, as given in Table 1 .
It is of interest to compare the properties of the Bayesian estimator of �F to those of the estimator of hyperparameter �, as

this is usually the target of Bayesian random effects meta-analyses. Using the equivalences noted in Table 2 , the posteriors for
these two parameters are

�F |�̂ ∼ N

( k
∑

i=1

(

�−2i (1 − �i)
Φ

)

�̂i +

( k
∑

i=1

�−2i �i
Φ

)

�, 1
Φ2

k
∑

i=1
�−2i (1 − �i)

)

with �i =
⎛

⎜

⎜

⎝

1
1 +  2

∑

i
1

�2i +�2

⎞

⎟

⎟

⎠

(

�2i
�2i + �2

)

, (9)

and

�|�̂ ∼ N
⎛

⎜

⎜

⎝

(

1
 2

+
k
∑

i=1

1
�2i + �2

)−1(
�
 2

+
k
∑

i=1

�̂i
�2i + �2

)

,

(

1
 2

+
k
∑

i=1

1
�2i + �2

)−1
⎞

⎟

⎟

⎠

. (10)

See Appendix B for a detailed derivation.
First we notice that the posterior mean of �F can be expressed as a weighted average of the k effect estimates (�̂1, ..., �̂k) and

the mean of the prior (�), meaning that it will never fall outside of the range of these values. The same is true for the posterior
mean of �. Also, we notice that the posterior variance of �F is always less than Φ−1, that is, for any values of  2 and �2 in our
prior, the precision of the Bayesian estimate of �F is at least the same precision we get for the frequentist estimator. This is not
true for �, for which large values of 2 and �2 in the prior will produce a posterior variance that can be arbitrarily larger thanΦ−1.
Table 3 shows the limit values of the posterior mean and variance of �F and � for some extreme values of  2 and �2. The

only case when the limit value of mean and variance is the same for both estimators is when using a prior reflecting almost
perfect homogeneity (�2 → 0). In this case, the posterior distribution of both �F and � is a weighted average of the inverse-
variance weighted average of the estimates (�̂F ) and the prior mean (�), with the weights depending on the information provided
by the data (Φ) and the precision of the prior ( 2). In contrast, when using a prior that reflects large heterogeneity (�2 → ∞),
the posterior distribution of � approaches its prior distribution, with little or no influence from the data, while the posterior
distribution of �F approaches that of the corresponding frequentist estimator.
When using a diffuse prior for the overall location of the effects ( 2 → ∞) the posterior distribution of � approaches that of

the frequentist estimator of � under a random effects model with known between-studies variance. Its variance is always greater
than Φ−1 and increases with �2. For a very small value of �2 the posterior mean and variance of � approximate �̂F and Φ−1,
respectively, while for a value of �2 sufficiently large relative to the study variances (�2i ), the posterior mean and variance of � are
approximately equal to

∑

i �̂i∕k and �2∕k, respectively. That is, a diffuse prior for � along with moderate to large heterogeneity
will produce a Bayesian estimate of � that approaches the unweighted average of the effect estimates with its precision directly
depending on the number of studies and completely independent of the size or precision of such studies. This is not the case for
�F , for which the posterior distribution under a vague prior reduces again to that of the frequentist estimator, with the precision
increasing with the total amount of information (Φ =

∑

i �−2i = N
∑

i �i�i). In other words, in the absence of strong prior
beliefs, more precise estimates of the individual effect-size parameters will produce a more precise Bayesian estimation of �F ,
but not of �.
Finally, when using a very precise or informative prior ( 2 → 0), the posterior distribution of �F approaches that of a precision

weighted average of the effect-size parameters, after each one being ‘corrected’ or ‘shrunk’ towards a Normal prior with mean
� and variance �2. The correction depends on the precision of the corresponding estimate (�2i ) relative to the precision of that
prior (�2). We notice that the gain in precision of this estimate relative to the frequentist estimator depends on �2, the degree of
homogeneity induced by the prior; greater gains will be obtained when �2 is small, that is, when the effect sizes are thought to
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TABLE 3 Limit values of the mean and variance for the posterior normal distributions of � and �F , when using a hierarchical
normal prior distribution as in Table 2 .

Prior distribution Posterior distribution
Belief Value of hyper-parameter Estimator Mean Variance
Homogeneity of the study
effects �2 → 0 �F |�̂

Φ�̂F+ −2�
Φ+ −2

Φ−1
(

Φ
Φ+ −2

)

�|�̂ Φ�̂F+ −2�
Φ+ −2

Φ−1
(

Φ
Φ+ −2

)

Large heterogeneity of the
study effects �2 →∞ �F |�̂ �̂F Φ−1

�|�̂ �  2

Informative prior for the
location of study effects  2 → 0 �F |�̂

1
Φ

∑

i �−2i
(

�2�̂i+�2i �
�2i +�2

)

1
Φ2

∑

�−2i
(

�2

�2i +�2

)

�|�̂ � 0

Vague prior for the location of
study effects  2 →∞ �F |�̂ �̂F Φ−1

�|�̂
∑

(�2i +�
2)−1�̂i

∑

(�2i +�2)−1
1

∑

(�2i +�2)−1

be similar and are then allowed to ‘borrow strength’ from each other. In contrast, the posterior distribution of � will again be
close to the prior distribution when  2 → 0, with little influence of the data.
To better understand the difference between the posterior distributions of �F and �, we look further at their means. From (10)

we can see that the weight for � in E(�|�̂) is −2 and the weight for each �̂i is (�2i +�
2)−1. On the other hand, from (9), the weights

for � and each of the �i in E(�F |�̂) can be expressed as being proportional to −2 and (�2i +�
2)−1{1+�2�−2i [1+ 

−2(
∑

i
1

�2i +�2
)−1]},

respectively. We notice then that more weight is given to the effect size estimates �̂i in the posterior mean of �F than in the
posterior mean of �. In this sense, we can say that the posterior for �F is ‘closer’ to the data than the posterior for �.
In summary, we can say that priors reflecting certainty and homogeneity about the �i do influence the posterior distribution of

�F , giving a gain in precision relative to the estimation obtained without any prior information, i.e. frequentist estimator, while
priors that reflect uncertainty or heterogeneity have little influence, reducing the posterior distribution to that of the frequentist
estimator but with no harm in its precision. On the other hand, priors reflecting certainty and homogeneity will have a much
greater influence in the posterior distribution of �, allowing little contribution from the data, while priors reflecting uncertainty
and heterogeneity can produce estimates with very poor precision.

3.3 Prior beliefs on the between-studies variance
So far, we have considered hierarchical models with the hyper-parameter �2 fixed, which induce a k-variate normal prior dis-
tribution for the parameter vector �. However, as it is the standard practice in Bayesian random effects meta-analysis, a prior
distribution can be used for �2. A fixed effects approach to meta-analysis would not exclude the use of these types of hierarchi-
cal priors, whenever the effect-sizes are considered to be exchangeable. However, if we keep in mind that in the fixed effects
approach the inference is targeted to functions of the vector �, then it is evident that we need to understand and illustrate the
prior (multivariate) distribution of � that is induced by the hierarchical structure that includes priors for both � and �2. To do
this, we consider the following hierarchical model:

�1, ..., �k|�, �
2 iid N(�, �2)

�|�,  2 ∼ N(�,  2)
�2|� ∼ U (0, �) (11)

Figure 1 shows the prior distribution of the parameter vector � = (�1, ..., �k)T that is induced by different combinations
of Normal priors for � and uniform priors for �2 as in (11). We observe that the marginal distribution of the individual �i is
bell-shaped, with variance  2 + E(�2). However, as can be observed in the contour plots of the bivariate joint prior of any
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FIGURE 1 Marginal distributions of the effect size parameters (�1, ..., �k) induced by different combinations of priors in �
(top) and �2 (left) in a hierarchical model of the form �i|�, �2 ∼ N(�, �2) for i = 1, ..., k: the bivariate joint distribution of any
pair (�i, �j) (middle), the marginal distribution of �i (bottom) and the marginal distribution of (�i − �j) (right).

pair (�i, �j), the distribution shows a ‘ridge’ along the �i = �j line. This is also evident in the ‘pointy’ marginal distribution of
the difference (�i − �j). This reveals a prior that more strongly suggests homogeneity of the effect-size parameters than, say,
a multivariate Normal prior with the same variance and correlation. Similar ‘ridge-like’ joint distributions of � are obtained
when using families of distributions other than uniform as priors for �2 (results not shown). And even ‘sharper’ distributions
are obtained when ‘vague’ or ‘diffuse’ priors are used for �, as is commonly done, which induce almost flat priors with very
little information on the location of the parameters, but with a very strong suggestion of homogeneity, which in turn produce
the shrinkage observed in the updated distributions of the effect sizes.
The use of MCMC sampling methods for the estimation of the posterior distributions for all parameters is well known15, and

will not be discussed here. We just note that the posterior distribution of the parameters �F and �2, as functions of the parameter
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FIGURE 2 Meta-analysis on the efficacy of zinc acetate lozenges in reducing the duration of cold symptoms, published in20.

vector �, can be then easily obtained from a random sample of the joint posterior distribution of �. Sample code (using R package
R2WinBUGS) is shown in Appendix C.
A well known characteristic of hierarchical models like the one in (11) is the sensitivity of the resulting inference, both for

the location and heterogeneity parameters � and �2, to the choice of prior for �2 8. Because of this, sensitivity analyses are
recommended as a routine practice9. In the following sections, we use an example meta-analysis to study the sensitivity of the
proposed parameters �F and �2 to the choice of prior.

4 EXAMPLE

In this section we illustrate the Bayesian estimation methods discussed in previous Sections of this Chapter, applied to the
example meta-analysis on the efficacy of zinc lozenges in reducing the duration of common cold symptoms (see Figure 2 ).
In Figure 3 we present results from frequentist and Bayesian estimation of the proposed parameters �F and �2 from a fixed

effects approach, as well as the parameters � and �2 from a random effects approach. Results of Bayesian analyses include
those from selected priors of the family of conjugate Normal distributions in Table 2 , as well hierarchically structured priors
compiled in the paper by Lambert et al.8 For the former, the mean and variance of the posterior Normal distribution of �F and
� were obtained using equations (6) and (10), respectively, while the mean and variance of the posterior distribution of �2 were
obtained from equations in Appendix A, and selected percentiles were obtained using the R package CompQuadForm.
These results illustrate how the point estimate and precision of � are very sensitive to the choice of prior distribution, and

specifically to the level of heterogeneity in the prior. For example, when using a very flat prior for � (N(0, 1000)) with a
homogeneous prior for the study effects (�i ∼ N(�, 0.25)) then [�|�̂] ∼ N(−1.72, 0.312), while the same vague prior for � with
a more heterogeneous prior for the study effects (�i ∼ N(�, 25)) results in a very different posterior: [�|�̂] ∼ N(−0.72, 2.082).
This is not the case for �F , for which the posterior distribution, in both cases, closely approximates that of the standard frequentist
estimator.
Further results of Bayesian analyses using a hierarchical model with Normal prior for � and a fixed value of �2 (equivalent to a

multivariate Normal prior for �) are shown in Figure 4 , while results from hierarchical models with a Uniform prior distribution
for �2 are shown in Figure 5 . In these plots we show the posterior mean and 95% credible interval of the location parameters �
and �F , for a range of values of �2 (or the hyper-parameter � that determines its distribution). These correspond to priors that go
from close to homogeneous (�2 → 0) to more heterogeneous (�2 → ∞). We also use selected values of  2, which correspond
to priors that go from very precise ( 2 = 0.01) to very flat or vague ( 2 = 1000). It is evident again that the estimation of � is
more sensitive to the choice of prior than the estimation �F . The example also illustrates the behavior of the estimates in the limit
cases described in Table 3 . For example, the posterior distribution of � approaches the distribution of �F as the heterogeneity
decreases, while it approaches either the prior distribution (when  2 is small) or the distribution of the un-weighted average
(when  2 is large) as the heterogeneity increases. On the other hand, the posterior distribution of �F is more stable, i.e. more
robust to vagueness and/or heterogeneity in the prior, approaching in such cases the distribution of the frequentist estimator.
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FIGURE 3 Posterior distribution (mean with 95% probability interval) of the location parameters � and �F (top) and posterior
distribution (median with 95% probability interval) of the heterogeneity parameters � =

√

�2 and � =
√

�2 (bottom), along
with frequentist estimates (the fixed effects precision weighted average (PWA, �̂F ), the precision weighted average squared
deviation (PWASD, �̂2), and the random effects DerSimonian-Laird (D-L) estimators). Results from hierarchical Normal prior
distributions (�i|� ∼ N(�, �2), for i = 1, ..., k; � ∼ N(0,  2)), with a fixed value for the between-study heterogeneity or a
diffuse prior distribution taken from Lamber et al8 (L1: �−2 ∼ Gamma(0.001, 0.001); L3: log(�2) ∼ Uniform(−10, 10); L5:
�−2 ∼ Uniform(1∕1000, 1000); L7: �−2 ∼Pareto(1, 0.001); L9: � ∼Uniform(0, 100); L11:� ∼ N(0, 100) for � > 0).

As for the quantification of heterogeneity, we can see that the posterior distribution of �2 is, as expected, influenced by prior
beliefs on the heterogeneity of the study effects. However, this influence is limited to a range of values �2, with the posterior
distribution of �2 ‘stabilizing’, as consequence of the posterior distribution of the individual study effects stabilizing around
their frequentist estimates. Although a similar ‘stabilizing’ behavior is observed in the median of the posterior distribution of
�2, the precision (as reflected by the credible intervals) is importantly sensitive to the choice of prior (see Figure 5 ).
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FIGURE 4 Mean and 95% credible interval from posterior distribution of the location parameters �F and � (left), and median
with 95% credible interval from posterior distribution of heterogeneity parameter �2 along with value of �2 (right). Results are
presented for different values of hyper-parameters  2 and �2 from the hierarchical Normal prior distribution (�i|� ∼ N(�, �2),
for i = 1, ..., k; � ∼ N(0,  2).

5 CONCLUSIONS

We have proposed and implemented a fixed effects approach to meta-analysis within a Bayesian framework, while maintaining
exchangeability of the study effects that is a key feature of many random effects analyses. Our approach is based on the estimation
of a weighted average, �F , which describes the overall location of the effect-size parameters, along with the estimation of a
weighted average of their squared deviations �2), which describes their heterogeneity.
In the frequentist framework for meta-analysis, the inverse variance weighted average is optimal among all affine combinations

of the effect size parameters, in the sense that it is the one for which the corresponding estimator has the minimum variance.
When a distributional assumption is made, this same optimality translates into it being the affine combination for which the
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FIGURE 5 Mean and 95% credible interval from MCMC samples of posterior distributions of the location parameters �F and
� (left), and median and 95% credible interval from posterior distribution of heterogeneity parameter �2 along with value of �2
(right). Results are presented for different values of hyper-parameters  2 and � from the hierarchical model: �i|� ∼ N(�, �2),
for i = 1, ..., k; � ∼ N(0,  2); �2 ∼ U (0, �).

corresponding estimator provides the maximum possible information. This maximum amount of information is actually the
sum of the information provided by each estimator for its parameter. It should be noticed that, in practice, the true values of the
variances �21 , ..., �

2
k are unknown, so the analysis, as proposed here, actually estimates a weighted average where the weights are

proportional to �̂−2i rather than to �−2i . This results in our proposed analysis estimating not exactly the optimal weighted average
as described above, but one that is very close (as close as we can get) to that optimal parameter.
When considering a different approach for constructing a Bayesian analog to the optimal weighted average, we can think of

targeting our inference to the affine combination for which the posterior variance is minimized. Thus, by using weights that are
proportional to the inverse of the posterior variances, we would obtain the weighted average with the highest posterior precision.
However, given that the posterior variances depend both on the prior and the data, these weights would also depend on the prior,
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meaning that the target parameter would be somewhat driven by the prior. As this seems undesirable, we instead propose an
analysis in which the target parameter (an specific weighted average) is driven by the data, while the estimation is based on the
data but is improved and strengthened by the information contained in the prior. The fact that the data drive the target parameter
is what makes the the estimation of this parameter more robust and much less sensitive to the prior. As result, we have a desirable
behavior of a Bayesian estimator defaulting to the frequentist estimate in the absence of strong beliefs, but gaining in precision
when the such beliefs are reflected in the prior distribution.
In this paper, we have also discussed different prior distributions, either in the form of multivariate priors or hierarchical

models with priors on hyperparameters (like the mean and variance of a normal random effects model). We have analyzed how
these priors reflects beliefs of homogeneity and exchangeability. When using priors that involve hyperparameters, we have made
a point that that inference is not, and should not, be restricted to these hyperparameters, but that results for parameters under
the two models (fixed effects or random effects) can be obtained, thus providing information that is complementary. However,
a cautionary note should be made related to the priors that are implied by a classic random effects model, and this is that the
joint distribution that they induce on the effect-size parameters contains a "ridge", suggesting strong homogeneity of the effects.
While this produces the shrinkage that is well known in the random effects analysis, in practice it might suggest homogeneity
much more strongly that is actually intended. Therefore, we advise careful evaluation of such priors, to make sure that they truly
reflect prior beliefs on how effect sizes might differ.
In summary, we have proposed a Bayesian fixed effects approach to meta-analysis, in which parameters describing location

and heterogeneity correspond to data-driven weighted averages, which make them robust and stable to the choice of prior, even
when the number of studies is small. We emphasize once more that such gains are not given by an estimation method but rather
by targeting inference to a parameter for which the data provide more information.
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APPENDIX

A POSTERIOR DISTRIBUTION OF �2 WHEN USING A CONJUGATE MULTIVARIATE
NORMAL PRIOR

The following equations have been adapted from (author?) 19 . Let the matrix C be the Cholesky decomposition of Cov[�F |�̂],
so that CTC = Cov[�F |�̂], and let P , with PP T , such that it diagonalizes the the matrix C(W −W 1kkW )CT , so that

PC(W −W 1kkW )CTP T = D = diag{�1, �2, ..., �k}

Given that the rank of (W −W 1kkW ) is k−1, we have that �1 ≥ ... ≥ �k−1 ≥ 0 and �k = 0. Then, letting Y = P (CT )−1(�|�̂),
with Y ∼ Nk(P (CT )−1E[�F |�̂], Ik), we get that

(�2|�̂) = (�|�̂)T
(

W −W 1kkW
)

(�|�̂)

= Y TDY =
k−1
∑

i=1
�i�

2(�i)

where �i equal to the square of the itℎ element of P (CT )−1E[�F |�̂]. From this equation, the expected value and variance of
(�2|�) can be easily evaluated:

E[�2|�̂] =
k−1
∑

i=1
�i(1 + �i)

Var[�2|�̂] =
k−1
∑

i=1
�2i (2 + 4�i)

Also,19 have implemented some algorithms to evaluate probabilities of a sum of chi-square random variables into the R package
CompQuadForm, which can be used to obtain selected percentiles of this posterior distribution.

http://dx.doi.org/10.1111/rssa.12275
http://dx.doi.org/10.1111/rssa.12275
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B POSTERIOR DISTRIBUTION OF �F WHEN USING A HIERARCHICAL PRIOR

The posterior variance and mean of �F = 1TkW � are given by (8) and (7). Re-parametrizing in terms of �2 and  2 we obtain
the following identities:

�−1 =
(

�2I i +  21kk
)−1 = �−2Ik −

(

 2∕�2

�2 + k 2

)

1kk

(�−1 + �−1)−1 = �2Diag
{

�2

�2 + �2

}

+
⎛

⎜

⎜

⎝

 2

1 +  2
∑

i
1

�2i +�2

⎞

⎟

⎟

⎠

Diag
{

�2

�2 + �2

}

1kkDiag
{

�2

�2 + �2

}

Then, for the posterior variance of �F we obtain:

Var[�F |�̂] =
1
Φ2
1tk�

−1(�−1 + �−1)−1�−11k

= 1
Φ2
1tk

[

�2Diag{�−2i }Diag
{

�2

�2 + �2

}

Diag{�−2i }
]

1k

+ 1
Φ2
1tk

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

 2

1 +  2
∑

i
1

�2i +�2

⎞

⎟

⎟

⎠

Diag
{

1
�2 + �2

}

1k1tkDiag
{

1
�2 + �2

}

⎤

⎥

⎥

⎦

1k

= 1
Φ2

⎡

⎢

⎢

⎣

k
∑

i=1

( 1
�2

)

(

�2

�2 + �2

)

+
⎛

⎜

⎜

⎝

 2

1 +  2
∑

i
1

�2i +�2

⎞

⎟

⎟

⎠

( k
∑

i=1

1
�2 + �2

)2
⎤

⎥

⎥

⎦

= 1
Φ2

k
∑

i=1

1
�2i

⎡

⎢

⎢

⎣

(

1 −
�2i

�2i + �2

)

+
⎛

⎜

⎜

⎝

 2
∑

i
1

�2i +�2

1 +  2
∑

i
1

�2i +�2

⎞

⎟

⎟

⎠

�2i
�2i + �2

⎤

⎥

⎥

⎦

= 1
Φ2

k
∑

i=1

1
�2i

⎡

⎢

⎢

⎣

1 −
⎛

⎜

⎜

⎝

1
1 +  2

∑

i
1

�2i +�2

⎞

⎟

⎟

⎠

�2i
�2i + �2

⎤

⎥

⎥

⎦

.

And for the posterior mean:

E[�F |�̂] =
1
Φ
1tk�

−1(�−1 + �−1)−1�−1�̂ + 1
Φ
1tk�

−1(�−1 + �−1)−1�−11k�,

where the first term reduces to:
1
Φ2
1tk

[

�2Diag{�−2i }Diag
{

�2

�2 + �2

}

Diag{�−2i }
]

�̂

+ 1
Φ2
1tk

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

 2

1 +  2
∑

i
1

�2i +�2

⎞

⎟

⎟

⎠

Diag
{

1
�2 + �2

}

1k1tkDiag
{

1
�2 + �2

}

⎤

⎥

⎥

⎦

�̂

= 1
Φ

k
∑

i=1

⎡

⎢

⎢

⎣

(

1
�2i

)(

�2

�2i + �2

)

+
⎛

⎜

⎜

⎝

 2
∑

i
1

�2i +�2

1 +  2
∑

i
1

�2i +�2

⎞

⎟

⎟

⎠

(

1
�2i + �2

)

⎤

⎥

⎥

⎦

�̂i

= 1
Φ

k
∑

i=1

(

1
�2i

)

⎡

⎢

⎢

⎣

(

1 −
�2i

�2i + �2

)

+
⎛

⎜

⎜

⎝

 2
∑

i
1

�2i +�2

1 +  2
∑

i
1

�2i +�2

⎞

⎟

⎟

⎠

(

�2i
�2i + �2

)

⎤

⎥

⎥

⎦

�̂i

= 1
Φ

k
∑

i=1

(

1
�2i

)

⎡

⎢

⎢

⎣

1 −
⎛

⎜

⎜

⎝

1
1 +  2

∑

i
1

�2i +�2

⎞

⎟

⎟

⎠

(

�2i
�2i + �2

)

⎤

⎥

⎥

⎦

�̂i,

and within the second term we have that:
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�−1(�−1 + �−1)−1�−1

= Vec

{

�2i
�2i + �2

}

+

⎛

⎜

⎜

⎜

⎝

 2�−2
∑

i
�2i

�2i +�2

1 +  2
∑

i
1

�2i +�2

⎞

⎟

⎟

⎟

⎠

Vec

{

�2i
�2i + �2

}

−
(

k 2

�2 + k 2

)

Vec

{

�2i
�2i + �2

}

−
⎛

⎜

⎜

⎝

k 2

1 +  2
∑

i
1

�2i +�2

⎞

⎟

⎟

⎠

(

 2�−2

�2 + k 2

)

(

∑

i

�2i
�2i + �2

)

Vec

{

�2i
�2i + �2

}

=
⎡

⎢

⎢

⎣

1 −
k 2

�2 + k 2
+
⎛

⎜

⎜

⎝

 2�−2

1 +  2
∑

i
1

�2i +�2

⎞

⎟

⎟

⎠

(

∑

i

�2i
�2i + �2

)

(

1 −
k 2

�2 + k 2

)

⎤

⎥

⎥

⎦

Vec

{

�2i
�2i + �2

}

=
⎡

⎢

⎢

⎣

�2

�2 + k 2

⎛

⎜

⎜

⎝

1 +
k 2�−2 −  2

∑

i
1

�2i +�2

1 +  2
∑

i
1

�2i +�2

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

Vec

{

�2i
�2i + �2

}

=
⎛

⎜

⎜

⎝

1
1 +  2

∑

i
1

�2i +�2

⎞

⎟

⎟

⎠

Vec

{

�2i
�2i + �2

}

.

so that

E[�F |�̂] =
1
Φ

k
∑

i=1

(

1
�2i

)⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

1 −
⎛

⎜

⎜

⎝

1
1 +  2

∑

i
1

�2i +�2

⎞

⎟

⎟

⎠

(

�2i
�2i + �2

)

⎤

⎥

⎥

⎦

�̂i +
⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

1
1 +  2

∑

i
1

�2i +�2

⎞

⎟

⎟

⎠

(

�2i
�2i + �2

)

⎤

⎥

⎥

⎦

�

⎫

⎪

⎬

⎪

⎭

C SAMPLE CODE FOR MCMC SAMPLING

The following is a sample code in R (as an interface to WinBUGS16) used for sampling of the posterior distribution of the
parameters of interest, through MCMC methods.

library(R2WinBUGS)

## Setting hierarchical model

hmodel <- function()

{

for (i in 1:k)

{

w[i] <- pow(se[i], -2)

hatbeta[i] ~ dnorm(beta[i], w[i])

theta[i] ~ dnorm(mu,prec)

num[i] <- w[i]*beta[i]

qua[i] <- w[i]*pow(beta[i],2)

}

mu ~ dnorm(0,0.001)

tau ~ dunif(0,100)

tau2 <- pow(tau,2)

prec <- 1/tau2

betaF <- sum(num[])/sum(w[])

zeta2 <- sum(qua[])/sum(w[]) - pow(betaF,2)

}



16 DOMINGUEZ AND RICE

## Saving to file

myfilename <- file.path(mydirectory, "hier_model.bug")

write.model(hmodel, myfilename)

## Initial Values (3 chains)

myinitial <- list( list(beta=rep(0,k),mu=0, tau=0.1),

list(beta=rep(0,k),mu=0, tau=0.9),

list(beta=rep(0,k),mu=0, tau=0.4) )

## Data

mydata <- list(hatbeta=y,se=yse,k=6,psi2=100)

## Parameters of interest

myparameters <- c("beta","mu","tau2","betaF","zeta2")

## Running chains

output <- bugs(data=mydata, inits=initial, parameters=myparameters,

model.file=myfilename, n.chains=3, n.iter=200000,

n.thin=10, bugs.directory=bugs.dir, debug=TRUE)

## Displaying results

summary(output)
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