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Abstract

We consider robust estimation of gene intensities from cDNA microarray data with

replicates. Several statistical methods for estimating gene intensities from microarrays

have been proposed, but there has been little work on robust estimation. This is par-

ticularly relevant for experiments with replicates, because even one outlying replicate

can have a disastrous effect on the estimated intensity for the gene concerned. Because

of the many steps involved in the experimental process from hybridization to image

analysis, cDNA microarray data often contain outliers. For example, an outlying data

value could occur because of scratches or dust on the surface, imperfections in the

glass, or imperfections in the array production. We develop a Bayesian hierarchical

model for robust estimation of cDNA microarray intensities. Outliers are modeled

explicitly using a t-distribution, and our model also addresses classical issues such as

design effects, normalization, transformation, and non-constant variance. Parameter

estimation is carried out using Markov chain Monte Carlo. By identifying potential

outliers, the method provides automatic quality control of replicate, array and gene

measurements.
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The method is applied to three publicly available gene expression datasets. It is

compared to three other methods: ANOVA normalized log ratios, the median log ratio,

and estimation after the removal of outliers based on Dixon’s test, and the between-

replicate variability of the intensity estimates is lower for our method than for any of

the others.

We also address the issue of whether the background should be subtracted when

estimating intensities. It has been argued that one should not do so because it in-

creases variability, while the arguments for doing so are that there is a physical basis

for the image background, and that not doing so will bias the estimated log-ratios of

differentially expressed genes downwards. We show that the arguments on both sides

of this debate are correct for our data, but that by using our model one can have the

best of both worlds: one can subtract the background without increasing variability

by much.

KEY WORDS: Bayesian hierarchical model; Gene filtering; Heteroscedasticity; Markov

chain Monte Carlo; Outlier; Quality control; t distribution.

1 INTRODUCTION

cDNA microarrays consist of thousands of individual DNA sequences printed in a high

density array on a glass microscope slide using a robotic arrayer. A microarray works by

exploiting the ability of a given labeled cDNA molecule to bind specifically to, or hybridize

to, a complementary sequence on the array. By using an array containing many DNA

samples, scientists can measure—in a single experiment—the expression levels of hundreds

or thousands of genes within a cell by measuring the amount of labeled cDNA bound to each

site on the array. In a typical two-color microarray experiment, two mRNA samples, from

control and treatment situations, are compared for gene expression. Treatment is taken in

a broad sense to mean any condition different from the control. Both mRNA samples, or

targets, are reverse-transcribed into cDNA, labeled using different fluorescent dyes (red and

green dyes), then mixed and hybridized with the arrayed DNA sequences. The hybridized

arrays are then imaged to measure the red and green intensities for each spot on the glass

slide. Image analysis is an important aspect of microarray experiments, whose purpose is to

2



provide estimates of the foreground and background intensities for both the red and green

channels (Yang et al., 2002a). The estimates of the red and green intensities are the starting

point of any statistical analysis.

In order to measure gene expression changes accurately, it is important to take into

account the random and systematic variations that occur in every microarray experiment.

One way to measure the variation is to use replicated experiments in which each gene is

replicated several times. In recent years, there has been a considerable amount of work on

the estimation of gene intensities and the detection of differentially expressed genes (Chen

et al. 1997; Newton et al. 2001; Dudoit et al. 2002; Gottardo et al. 2003). Because

of the large number of steps involved in the experimental process from hybridization to

image analysis, cDNA microarray data often contain outliers, and there is a need for robust

methods.

Some work has been done on quality measure and filtering. Such approaches consist of

calculating individual quality measures (sometime referred to as quality indices), and low

quality spots are usually removed. Such filtering is often done at the image analysis level

(Brown et al. 2001; Dudoit et al. 2002). However, these methods do not remove all “bad”

spots, and some remain. In addition, spots can fall anywhere in the range from “good” to

“bad”, and such uncertainty should be taken into account when computing the estimates,

e.g. log ratio estimates. When two or more replicates are available, Ideker et al. (2000)

remove replicate outliers using Dixon’s test at the 10% level. Tseng et al. (2001) filter genes

based on the coefficient of variation and Lönnstedt and Speed (2002) remove genes with low

intensities, but they do not address the problem of replicate outliers. Li and Wong (2000)

consider the problem of outliers for oligonucleotide arrays, which is quite different and not

applicable to cDNA microarray technology.

In this paper we introduce a Bayesian hierarchical model to estimate the intensities in a

robust way. The robustness is achieved using a hierarchical-t formulation (Besag and Higdon

1999), which is more robust than the usual Gaussian model. Our model also deals with

classical issues such as normalization, data transformation and non-constant variance. We

also propose a way to filter out gene outliers and flag array outliers, based on the parameter

estimates from our model. This provides an automatic quality control method for replicate,

gene and array measurements.
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The paper is organized as follows. Section 2 introduces the data structure and the

notation. In Section 3, we present the Bayesian hierarchical model used to estimate the

intensities and the parameter estimation method. In Section 4, we apply our model to

experimental data and compare our results to those from popular alternative estimators.

We also discuss whether one should subtract the background intensities from the image

analysis. Finally, in Section 5 we discuss our results and possible extensions.

2 DATA

We used three datasets that are fairly typical of data in this area. The first two were produced

by the University of Washington Center for Expression Arrays. They have the advantage that

in each case we know whether or not all or some of the genes were differentially expressed.

The last one is a widely used dataset in the field of gene expression, first analyzed by Dudoit

et al. (2002).

The Like-like data: This dataset consists of 8 experiments using the same RNA prepara-

tion on 8 different slides. The samples that were applied to the arrays were RNA isolations

from a HeLa cell line. The expression levels of about 7680 genes were measured. The same

RNA was used for both samples, and no genes should be differentially expressed.

The HIV1 data: This dataset consists of four experiments using the same RNA prepa-

ration on 4 different slides. The expression levels of 4,608 cellular RNA transcripts were

assessed in CD4-T-cell lines at time t = 1 hour after infection with HIV virus type 1. In-

cluded in this number was a set of selected control genes spotted on each slide. These

included HIV-1 genes used as positive controls, i.e. genes known in advance to be differen-

tially expressed, and non-human genes used as negative controls, i.e. genes known not to be

differentially expressed. Further details are given by van’t Wout et al. (2003).

The HIV2 data: These data were collected in the same way and in the same laboratory

as the HIV1 data, but using a different RNA preparation.

The above datasets are results of balanced dye-swap experiments. Half of the replicates

were hybridized with the green dye (Cy3) for the control and the red dye (Cy5) for the

treatment; then the dyes were reversed.

The Apo Data: The goal of the study is to identify genes with altered expression in the liv-

ers of two lines of mice with very low HDL cholesterol levels compared to inbred control mice

4



(Dudoit et al. 2002). This experiment resulted in two datasets: a control and a treatment.

Here we use the control dataset, which consists of 8 “normal” C57B1/6 mice. The target

cDNA is obtained from mRNA by reverse transcription and labeled using a red-fluorescent

dye (Cy5). The reference sample (green-fluorescent dye Cy3) used in all hybridizations was

prepared by pooling cDNA from the 8 control mice. There is no dye swap in this experiment.

The three datasets were preprocess using a global lowess normalization step (Yang et al.,

2002b). The data take the form

yiscr, i = 1, . . . , I; s = 1, 2; c = 1, 2; r = 1, . . . , R,

where yiscr are the preprocessed background-subtracted intensities of gene i in sample s with

color c from replicate r. We use different indices for the color and the sample to allow for

dye-swap experiments.

Data transformation is an important initial step in microarray data analysis. It is often

assumed that transforming the raw data logarithmically makes the effects additive. This

assumption is approximately correct for gene expression data (Li and Wong 2000; Kerr et al.

2000; Rocke and Durbin 2001; Dudoit et al. 2002). Throughout this paper, logarithms are

to base 2, which is standard in the analysis of microarray data. Figure 1(a) shows that

on the log scale the dye effect is approximately additive. The dye effect is the result of an

imbalance between the red and green intensities, which is known to be nonlinear (Yang et

al., 2002b). Figure 1(b) shows the log ratio intensity plotted against half the sum of the log

intensities from the two channels; we refer to the latter quantity as the “overall intensity.”

Figure 1(b) is just a 45◦ counterclockwise rotation of Figure 1(a). The Locally Weighted

Scatterplot Smoother, or lowess (Cleveland 1979), indicates that such a nonlinear trend is

present in the Like-like data. We can see that the effects from the two different groups where

the dyes have been swapped are almost identical but reversed. As a result, in a balanced

dye-swap experiment, we expect the dye effect to be absent or at least greatly reduced when

computing genewise averages. However, it is common to use lowess normalization (Yang et

al., 2002b) to remove the nonlinear dye bias. This is particularly relevant for the APO data

where there is no dye-swap.

The Like-like data presented here measure the relative expression of a group of genes

using the same mRNA in the two samples. As a result, we expect to observe the technical
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Figure 1: Effect of the Dye Swap on the Like-like Data. (a) Log(sample 1) versus log(sample
2). This shows that the dye effect is approximately additive on the log scale. (b) Overall
intensity versus log ratio. This shows that the nonlinear effects approximately cancel one
another out in a balanced dye-swap experiment. The overall intensity is half the sum of the
log intensities in the two channels, and all logarithms are to base 2.

variation but not the biological variation. Figure 2 shows the normalized log intensities of

ten different genes in two samples. Even though the data are normalized and there is no

biological variation, we observe some replicate outliers in each sample. It is clear that these

outliers can have a big effect on the intensity estimates.

3 ROBUST ESTIMATION AND QUALITY CONTROL

In this section, we introduce the Bayesian hierarchical model we use to estimate the intensities

in each sample. We use a Bayesian linear model (Lindley and Smith 1972) with t-distributed

sampling errors to allow for replicate outliers (Besag and Higdon 1999). We also explicitly

model the non-constant variances by using an exchangeable prior for the gene precisions

(Lewin et al. 2003). Our model includes design effects that deal with normalization issues

(Kerr et al. 2000). We model the intensities on the log scale because the effects are close to

additive on that scale, as shown in Section 2, and because log measurements have a simple

interpretation.

3.1 The Model

We model y∗iscr = log2(yiscr + κ) where κ is a positive additive constant. This shifted log-

arithmic transformation was proposed by Tukey (1957) and studied in detail by Box and

Cox (1964); it is often used to analyze gene expression data (Kerr et al. 2000; Cui et al.
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Figure 2: Dot Plots of 10 Genes from the Like-like Data. Even though the data were
normalized, some replicate outliers are present in each sample.

2002). Rocke and Durbin (2003) showed that the shifted logarithm can be an approximate

variance-stabilizing transformation for gene expression data. The purpose of introducing

the shift κ is to avoid taking the logarithm of negative numbers and to reduce the variance

at low intensities. The parameter κ is estimated beforehand and is treated as fixed in the

estimation of the full model, as described in Section 3.3.

Conditionally on the parameters (µ,α,β,η, δ,γ), it is assumed that the (y∗i1cr, y
∗
i2cr)

′ are

independent and can be written as

y∗iscr = gκ(yiscr − xiscr) = µ+ αs + βc + ηr + γis + δsc +
εiscr√
wicr

, (1)

(γis|λγs
) ∼ N(0, λγs

), (2)

(εi1cr, εi2cr)
′|Vi ∼ N2(0,Vi),

(wicr|νr) ∼ Ga(νr/2, νr/2),

where wicr and (εi1cr, εi2cr)
′ are independent. Since the w’s are independent of the ε’s, we have

εiscr√
wicr

∼ T(νr ,0,Vi), i.e. the (bivariate) errors have a bivariate t distribution with νr degrees

of freedom and covariance matrix Vi. The advantage of writing the model this way is that,

conditioning on the wicr, the sampling errors are again normal but with different precisions,

and estimation becomes a weighted least squares problem. The hierarchical structure of the

model is summarized in the directed acyclic graph in Figure 3.

7



aε, bε

y∗

I
y∗

2
y∗

1

wIw1

µ,α,β, δ,η

γ2γ1

λγ

γI

w2

ε1 ε2 εI

λε1 λε2 λεI

ν

Figure 3: Directed Acyclic Graph of the General Model in Equation (1).

In (1), µ is the baseline intensity. The sample effect αs is used to remove the bias between

the two samples. If only a few of the genes are differentially expressed, the sample effect

will measure only the sample bias and will not greatly affect the differentially expressed

genes. The dye effect is represented by βc, and accounts for the fact that the green dye

tends to be brighter than the red dye (Yang et al., 2002b). The interaction of the sample

s with the sample c is denoted by δsc, and is present because the different dyes tend to

have different biases in different samples. The dye effects βc and δsc are estimable only

in a dye-swap experiment; otherwise they need to be removed from the model by setting

βc = 0 and δsc = 0. The array effect of replicate r, ηr, is intended to normalize the overall

intensity of each array across replicates. This parameter is needed because differences in

overall intensity are frequent in microarray data. There are several reasons why this is so;

for example, the amount of RNA solution used on each array might not be the same, leading

to brighter arrays after the scanning process. Finally, γis, the effect of gene i in sample s,

is the quantity of interest. We model it as a random effect with a Gaussian distribution as

defined by (2).

For a given gene, the correlation matrix, Vi, allows the measurements from the two

samples to be correlated. Ideker et al. (2000) use a similar covariance structure in their
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linear model. The log transformation usually stabilizes the variance for high intensity genes

but low intensity genes can be highly variable. A model that allows gene-dependent variances

seems more appropriate. The precision matrix (i.e. the inverse of the covariance matrix) is

given by

(V−1
i |ρ, λε1i

, λε2i
) =

1

(1− ρ2)

(

λε1i

−
√

λε1i
λε2i

ρ

−
√

λε1i
λε2i

ρ

λε2i

)

,

(λεsi
|aε, bε) ∼ Ga(a2

ε/bε, aε/bε),

where ρ is the correlation between samples, λεsi
is the precision of gene i in sample s, and

Ga(a2
ε/bε, aε/bε) denotes a Gamma distribution with mean aε and variance bε. We use an

exchangeable prior for the precisions, so that information is shared between the genes. This

allows shrinkage of very small and very large variances.

3.2 Priors

We use a vague but proper prior for the precision of the random effects λγs
, exponential with

mean 200, so that λγs
∼ Ga(1, 0.005). Apart from the γ’s, all the other effects are assumed to

be random with a large variance, namely N(0, 25). They are fixed effects but are estimated

in a Bayesian way, so that uncertainty about those parameters can be captured as part of

the estimation process (Lindley and Smith 1972).

For identifiability, we impose the constraints α1 = 0 and β1 = 0, δ11 = δ12 = δ21 = 0,

η1 = 0, and ηR = 0. The constraint ηR = 0 is not needed if there is no dye-swap, because in

that case βc = 0. We also need two constraints on the γis, such as
∑

i γis = 0 for s = 1, 2.

However, instead of including these constraints as part of the model definition, we let the

γ’s be “free” during the MCMC sampling process, and identify the parameters afterwards

from the sampled values; see Section 3.3.

We also use vague but proper priors for the error precisions, namely aε ∼ U[0,10000] and

bε ∼ U[0,10000]. The prior for the correlation between the two samples is given by ρ ∼ U[−1,1].

The prior for the degrees of freedom νr is uniform on the set {1, 2, . . . , 10, 20, . . . , 100}.
A similar approach was taken by Besag and Higdon (1999). They used a uniform hyperprior

on the set {1, 2, 4, 8, 16, 32, 64} for the degrees of freedom. From a practical point of the

view, the biggest difference between our approach and theirs is that we also include 3 in the

set of possible values of νr. Our results suggest this to be useful, as there can be a noticeable
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difference between results for low degrees of freedom, especially 2, 3 and 4, but much smaller

differences for larger values of νr. By using a prior that allows degrees of freedom between

1 and 100, we allow a wide range of sampling errors from the heavy tailed Cauchy (ν = 1)

to nearly Gaussian (ν = 100).

3.3 Parameter Estimation

Realizations were generated from the posterior distribution via Markov chain Monte Carlo

(MCMC) algorithms (Gelfand and Smith 1990). We used Gibbs updates when the full

conditionals had a simple form; otherwise we used slice sampling with the “stepping out”

procedure (Neal 2003).

The model (1) does not allow the identification of all parameters because we do not

impose any constraint on γ. However, contrasts involving elements of γ are identified,

and one could force all the parameters to be identified by imposing constraints such as
∑

i γis = 0 for s = 1, 2. For simplicity, we did not take such an approach. Instead we

fitted the unconstrained model and postprocessed the MCMC output to identify all the

parameters. By postprocessing, we mean that after running the MCMC algorithm, we

changed the simulated values of γis so that
∑

r γsr = 0 for s = 1, 2, and then recomputed

the corresponding other parameters at each iteration. A similar approach has been taken

to solving the label-switching problem in Bayesian inference for finite mixture models using

MCMC (Stephens 2000; Celeux et al. 2000). There exists other methods to overcome the

lack of identifiability and we refer the reader to Vines, Gilks, and Wild (1996) for further

details.

We started the Markov chain from the least squares estimates of the parameters. We

used the method of Raftery and Lewis (1992, 1996) to determine the number of iterations,

based on a short pilot run of the sampler. For each dataset presented here, this suggested

that a sample of no more than about 50,000 iterations with 1,000 burn-in iterations was

enough to estimate standard posterior quantities.

We estimated the shift κ in advance by fitting (1) with wicr ≡ 1, ρ = 0 and λεis ≡ λεs via

MCMC, and treating κ as a parameter with a vague uniform prior κ ∼ U[0,10000]. We then

estimated κ by its posterior mean.

At first sight it would seem natural to estimate κ instead by including it as a parameter
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in the MCMC estimation of the full model (1), but we did not do so, for the following reason.

If we did so, the posterior distribution of the quantities of interest, the γis, would be averaged

over different values of κ. However, when κ changes, so does the scale on which γis is mea-

sured and hence its interpretation, and so this would amount to averaging quantities denoted

by the same symbol, but that actually have different interpretations. We therefore opted to

estimate κ first and then estimate the other parameters conditionally on the resulting value

of κ. A similar issue arises in making inference about regression parameters when a Box-Cox

(1964) transformation has been used. Box and Cox (1982) pointed out that inflating the

standard errors of regression parameters to take account of uncertainty about the transfor-

mation used amounts to averaging over inferences on different scales, and so is scientifically

inappropriate. They recommended first estimating the transformation parameter, and then

making inference about the regression parameters conditionally on the resulting estimate.

In practice, in our datasets, the posterior distribution of κ was highly concentrated, and the

results would have been similar had we treated κ as a parameter of the full model (1) in the

MCMC estimation.

The full estimation, including estimation of the shift, took about 5 hours for the HIV

data, about 8 hours for the Like-like data, and about the same for the APO data, on an

Intel Xeon processor running at 3GHz. An R software package called rama implementing

the method is be available from Bioconductor at www.bioconductor.org.

3.4 Quality control and gene filtering

Our model not only accounts for replicate outliers, but it can also be used to identify gene and

array outliers. To identify such outliers we use the posterior mean of the w’s, which we refer

to as weights. For a single gene, if half or more of the replicates are “severely” downweighted,

one might think that all the measurements from that same gene are unreliable. We propose

to filter out a gene if b(R + 1)/2c or more replicate measurements have associated weights

smaller than a fixed threshold wmin, where b·c is the floor function. In the example explored

here we use wmin = 0.3, which removes less than 1% of the data, while significantly improving

the quality.

Similarly, one could flag array outliers, i.e. arrays containing too many downweighted

measurements. The number of outliers on a single array directly affects the corresponding
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array degrees of freedom, νr. One can therefore use the posterior mode of νr to determine if

the rth array is a potential outlier. We do not necessarily recommend discarding the whole

array in that case, but a small value of νr should certainly be used as a warning.

3.5 Combining biological and technical variation

The three datasets explored in this paper contain biological or technical replicates only. If

an experiment contains both biological and technical replicates, it is possible to elaborate

model (1) in order to account for each source of variation separately. We need to introduce a

new subscript, b, indicating that replicate r comes from biological replicate b. We let yiscbr be

the log shift transformed intensity of replicate r, biological replicate b, of gene i in sample s

and color c. Assuming that each replicate was spotted on a different slide, we modify model

(1) as follows:

y∗iscbr = gκ(yiscbr) = µ+ αs + βc + ηr + γis + δsc + ψiscb +
εiscbr√
wicbr

, (3)

ψiscb ∼ N(0, λ−1
ψis

),

(εi1cbr, εi2cbr)
′|Vi ∼ N2(0,Vi),

(wicbr|νr) ∼ Ga(νr/2, νr/2),

where ψiscb is the biological error component, and all the other terms are as in model (1).

For the model to be identifiable, we need additional constraints; we suggest
∑

b ψiscb = 0 for

each i and s. We would use an exchangeable prior for the precisions of the biological error

component, i.e. λψis
∼ Ga(a2

ψ/bψ, aψ/bψ), and we would again let aψ and bψ be uniform over

broad intervals, which could be determined from previous experiments. If the number of

replicates is small, the number of precision parameters could be reduced by assuming that

one of the error components has a constant variance. Finally, the shift could be estimated

by fitting (3) with wicr ≡ 1, ρ = 0 and λεis ≡ λεs via MCMC, and treating κ as a parameter

with a vague uniform prior κ ∼ U[0,10000], as for model (1).

Model (3) is given only as a general guideline, and some designs might require modifica-

tions.
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4 RESULTS

4.1 Methods to be compared

Here, we briefly review the different methods to be compared on the three datasets presented

in Section 2.

ANOVA log ratios without shift: A popular estimate is the ANOVA normalized log ratio,

(γ̂i1 − γ̂i2), where γ̂is is the least squares estimate of the effect of gene i in sample s, which

corresponds to fitting Model (1) with fixed effects, Gaussian errors and constant variance,

to the non-shifted log measurements (κ = 0). The name “ANOVA normalization” was

introduced by Kerr et al. (2000), and we use the same terminology even though our model

is slightly different.

ANOVA log ratios: This is the same as above but on the log shifted measurements, where

the shift κ is estimated from our model.

Median log ratios: A more robust alternative to the mean is the median. For each single

gene, we compute the median of the log ratios (with shift) across replicates.

Robust Analysis of MicroArrays (RAMA): From model (1), we estimate the effect of gene

i in sample s by the posterior mean of γis, denoted by γ̄is. The log ratio of gene i is estimated

by γ̄i1− γ̄i2. In addition we filter out gene outliers by removing genes that have half or more

of their weights smaller than 0.3, as described in Section 3.4.

ANOVA log ratios with Dixon’s test: These are the same as the ANOVA log ratios, except

that Dixon’s test (Dixon 1950) at the 10% level is now applied to the shifted log ratios to

filter out replicate outliers. Dixon’s test was used by Ideker et al. (2000) to remove replicate

outliers from cDNA microarray data.

4.2 Application to Experimental Data

In this section, we use specific genes from the HIV data described in Section 2 to demonstrate

the potential of our model. Table 1 summarizes the estimated coefficients when our model

is applied to the HIV1 data. The posterior modes of the degrees of freedom of the t-

distribution, νr, ranged from 3 to 6, indicating that the sampling errors are heavier-tailed

than the Gaussian distribution. There is substantial between-sample correlation, estimated

as 0.73, even after removing design effects and gene effects. Our model also captures the
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nonconstant variance with posterior means 7.31 and 1.91 for aε and bε respectively. The

posterior mean of 1.91 for the variance of the gene precisions, bε, allows the gene precisions

to be quite different and should capture the larger variance at low intensity. The estimated

shift is 11.47, which is relatively small on the raw scale which runs from 0 to 65535.

Table 1: Estimation of the Coefficients from our Bayesian Model on the HIV1 Data. The
posterior modes of the degrees of freedom of the t-distribution, νr, ranged from 3 to 6,
indicating that the sampling errors are heavier-tailed than the Gaussian distribution.

Parameter Effect Bayesian estimate Posterior sd q0.025 q0.975
µ baseline intensity 7.71 0.006 7.70 7.73
α2 sample effect -0.02 0.006 -0.03 -0.01
β2 dye effect 0.19 0.009 0.18 0.21
δ22 dye×sample interaction -0.009 0.005 -0.015 0.0022
η2 array 2 effect -0.50 0.008 -0.52 -0.48
η3 array 3 effect -0.09 0.009 -0.11 -0.08
λγ1 gene precision sample 1 0.29 0.006 0.28 0.31
λγ2 gene precision sample 2 0.30 0.007 0.29 0.31
ρ correlation between samples 0.73 0.004 0.72 0.74
aε mean of error precisions 7.31 0.10 7.11 7.51
bε variance of error precisions 1.91 0.49 1.08 3.01
ν1 df for array 1 6 0.23 6 7
ν2 df for array 2 5 0.05 5 5
ν3 df for array 3 4 0 4 4
ν4 df for array 4 3 0 3 3

Note: The Bayesian estimate is the posterior mean, except for ν1, ν2, ν3 and ν4, for which
it is the posterior mode.
q0.025: 0.025 quantile. q0.975: 0.975 quantile

The methods compared in Tables 2–5 are all applied to the log shifted measurements

where the shift is estimated from our model. Tables 2–4 show the effect of the t-distribution

when replicate outliers are present. The weights correspond to the posterior mean of the

wicr for each pair of observations. Conditioning on the wicr’s, the posterior mean can be seen

as a weighted mean with the wicr as weights. Table 2 shows that Dixon’s test at the 10%

level fails to remove a clear replicate outlier. Because of the outlier, the difference between

the estimates of the effect of the same gene from the HIV1 data and the HIV2 data is quite

large, a difference of 0.46. Our model clearly downweights the outlier, and as a result the

difference between the two estimates is much smaller with our method, at 0.29. The median
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also performs well in this case.

Table 2: Log Ratios of One Gene of the HIV Datasets. Dixon’s test fail to remove a clear
replicate outlier whereas it is downweighted by our model.

Replicates posterior Dixon
1 2 3 4 mean median mean mean

HIV 1 (log ratio) -0.01 0.11 0.12 -0.10 0.03 0.06 0.03 0.03
weights 1.16 1.26 1.26 0.55
HIV 2 (log ratio) -1.31 -0.56 0.06 0.10 -0.43 -0.25 -0.26 -0.43
weights 0.25 0.83 0.87 0.82
difference 0.46 0.31 0.29 0.46

Note: ?gene removed by Dixon’s test on the normalized measurement at the 10% level.
The Dixon mean is the sample mean after removing the replicate measurements identified
as outliers by Dixon’s test (if any).

In Table 3, there are clear replicate outliers in the HIV1 and HIV2 data that are removed

by Dixon’s test and are also downweighted by our model. In this case our method gives

estimates that differ between experiments by 0.06, which is better than the three other

methods.

Table 3: Log Ratios of One Gene of the HIV Datasets. Dixon’s test remove two clear replicate
outliers. The same two outliers are also downweighted by our model.

Replicates posterior Dixon
1 2 3 4 mean median mean mean

HIV 1 (log ratio) 0.26 -0.85? 0.68 0.59 0.17 0.43 0.34 0.52
weights 1.07 0.31 0.76 1.21
HIV 2 (log ratio) -4.09? 0.29 0.57 0.21 -0.75 0.25 0.28 0.36
weights 0.02 1.23 0.87 1.17
difference 0.92 0.18 0.06 0.16

Note: ?gene removed by Dixon’s test on the normalized measurement at the 10% level.
The Dixon mean is the sample mean after removing the replicate measurements identified
as outliers by Dixon’s test (if any).

Even though the median and the Dixon mean are more robust than the usual mean, they

can be quite inefficient when the number of replicates is small. In particular, Dixon’s test

often falsely identifies replicate outliers. For example, in an experiment with four replicates,

it is not unusual for some of the genes to have three replicate measurements close together,

by chance only, making the last measurement look like an outlier (Table 4).
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Table 4: Log Ratios of One Gene of the HIV Datasets. A non-outlying replicate is incorrectly
removed by Dixon’s test.

Replicates posterior Dixon
1 2 3 4 mean median mean mean

HIV 1 (log ratio) -0.17? 0.18 0.19 0.19 0.10 0.18 0.08 0.19
weights 1.08 1.24 1.29 1.26
HIV 2 (log ratio) 0.09 -0.06 -0.13 -0.05 -0.03 0.06 -0.05 -0.03
weights 1.03 1.22 1.05 0.91
difference 0.13 0.24 0.13 0.22

Note: ?gene removed by Dixon’s test on the normalized measurement at the 10% level.
The Dixon mean is the sample mean after removing the replicate measurements identified
as outliers by Dixon’s test (if any).

Finally, Table 5 shows a gene outlier removed by our filtering method. For this particular

gene, the posterior mean performs worst due to the fact that half of the replicates are greatly

downweighted. However, the gene is easily identified as a gene outlier, and removed from

further analysis.

Table 5: Log Ratios of an Outlying Gene of the HIV Datasets. This gene is removed by our
filtering method since it contains two replicates with weights smaller than 0.3. The posterior
mean is not performing well, but the gene is easily identified as a gene outlier.

Replicates posterior Dixon
1 2 3 4 mean median mean mean

HIV 1 (log ratio) -1.37 -1.44 1.51 -0.16 -0.36 -0.76 -1.21 -0.36
weights 0.98 0.99 0.06 0.17
HIV 2 (log ratio) -0.31 0.55 0.35 -0.97 -0.10 0.02 0.03 -0.10
weights 0.90 0.84 0.99 0.35
difference -0.26 -0.78 -1.24 -0.26

Note: ?gene removed by Dixon’s test on the normalized measurement at the 10% level.
The Dixon mean is the sample mean after removing the replicate measurements identified
as outliers by Dixon’s test (if any).

4.3 Between-Replicate Variability of Estimates

In this section, we compare the different log ratio estimates introduced in Section 3.3, by

dividing each dataset into two groups of four replicates. We first compare our estimates with

the ANOVA normalized log-ratios without shift obtained from the first four replicates of the

Like-like data, as shown in Figure 4. These are a natural first point of comparison, because
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Figure 4: Log Ratio Estimates as a Function of the Overall Intensity, i.e. the average of the
gene effects in each sample, on the Like-like Data (first 4 replicates). Using our method (b),
26 gene outliers were filtered out. The dashed lines show a two-fold change. The number of
false positives for the normalized log ratios is 21, as against only 0 for the posterior means,
an 100% reduction.

they are essentially the averaged log ratios, since the data are lowess normalized. In theory,

the Like-like data should not show any differentially expressed genes. The dashed lines in

Figure 4 show a two-fold change. The ratio of two is sometimes used as a rule of thumb for

selecting differentially expressed genes (Schena et al. 1995; Yang et al. 1999). Because of

the high variability at low intensity, some of the genes show a greater than two-fold change

in expression. Using the two-fold change rule, the number of false positives for the ANOVA

normalized log ratios is 21, as against zero for the posterior means, an 100% reduction.

We highlighted two groups of genes in the two HIV datasets. The first group consists of

HIV genes (positive controls) that are known to be differentially expressed, and the second

one consists of non-human genes (negative controls), which are known not to be differentially

expressed. Figure 5 shows that our model enhances the identification of the differentially

expressed genes. It shrinks the low intensity (highly variable) genes, but does not modify

the differentially expressed genes too much. Note that one of the 13 HIV positive control

genes, which we expected to be highly expressed, has a small log ratio estimate using all of

the methods, suggesting that the corresponding probe did not properly hybridize (Figure 5).

We now compare all the methods described in Section 3.3 by computing an estimate of

the log ratio for each gene from each of the two groups, and computing the mean squared

differences (MSD) between the two estimates, averaged over genes. The eight replicates of
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Figure 5: Log Ratio Estimates as a Function of the Overall Intensity, i.e. the sum of the
gene effects in each sample, on the HIV2 Data. The dashed lines show a two-fold change.
Using our method (b), eight gene outliers were filtered out. The number of false positives at
low intensity is greatly reduced. The log ratio estimates of the true differentially expressed
genes stay about the same.

the HIV data were separated into two groups of four, consisting of the HIV1 and HIV2

replicates respectively. Even though those two groups are biological rather than technical

replicates, we expect the log ratios from each group to be similar. For the Like-like and Apo

data, we used five randomly chosen partitions of the eight replicates into two groups of four.

As part of our method, we remove the genes that were identified as gene outliers in either

dataset. This removed on average 24 genes from the HIV data, 35 genes from the Apo data

and 55 from the Like-like data, which represents less than 1% in each case.

The ANOVA log ratios without shift perform poorly, with high variability between es-

timates. The ANOVA log ratios with shift perform much better, as shown in Table 6.

Removing replicate outliers using Dixon’s test does not improve things; it actually does

worse even though it removed more than 500 measurements in each dataset. The median

performs slightly better for the Like-like data but not the other two.

The between-replicate variability is substantially decreased when using our model. Our

method reduced the mean squared difference between estimates by 6% for the Like-like data,

3% for the HIV data, and 6% for the APO data compared to the ANOVA estimates with

shift. In Table 6, we use the ANOVA estimates with shift estimated by our model as the

baseline, in order for the data to be on the same scale. However, our method provides an

overall framework in which estimation of the shift is included, and this turned out to be an
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important feature (Figures 4 and 5).

Table 6: Mean Squared Differences (MSD) Between the Estimates when Dividing each
dataset into Two Groups of Four Replicates. For the Like-like data and the Apo data
the MSD numbers are averages from five random splits. The posterior mean reduces the
MSD by 6%, 3% and 6% in each dataset, respectively, relative to the MSD from the ANOVA
log ratios with shift estimated from our model (MSDb). The lowest MSD for each dataset is
indicated in bold.

Like-like HIV APO
Estimates MSD MSD/MSDb MSD MSD/MSDb MSD MSD/MSDb

ANOVA (No Shift) 0.062 2.77 0.181 2.39 0.038 1.15
ANOVA (Baseline) 0.022 1.00 0.074 1.00 0.033 1.00
ANOVA (w/ Dixon) 0.023 1.01 0.077 1.04 0.036 1.09
Median 0.022 0.99 0.077 1.04 0.034 1.03
Posterior mean 0.021 0.94 0.072 0.97 0.031 0.94

Note: MSDb: MSD from the baseline, i.e. ANOVA normalized log ratios.
ANOVA (No Shift): ANOVA log ratios without shift
ANOVA (Baseline): ANOVA log ratios (with shift estimated from our model)
ANOVA (w/ Dixon): Same as ANOVA and Dixon’s test at the 10% level was used to
remove replicate outliers.

Table 7 gives the MSD values computed from variants of our model. We calculated the

MSD when fitting our model with Gaussian errors, which can be seen as a limiting case as

ν goes to infinity, and with t errors as in (1) with and without gene filtering. Note that it

is not clear how to do gene filtering with the Gaussian model since in that case the weights

are all equal to one. In each case, we give two numbers for each dataset, one obtained from

the log transformed data and one obtained from the log shift transformed data where the

shift is estimated from our model. It can be seen that the shift brings a large improvement

for the Like-like and HIV data, but it is not as large for the APO data. The t distribution

alone improves the MSD for the APO data over the Gaussian model, but the gene filtering

is necessary for the other two datasets to improve the MSD over the Gaussian model. This

is consistent with the results shown in Table 5. Gene outliers can lead to large squared

differences with the t model due to the downweighting of too many replicates; this does not

occur with the Gaussian model. However, using our model with t errors, gene outliers are

easily identified and removed from the dataset. Overall, our model provides a framework

for shift estimation, replicate outlier accommodation, and gene outlier filtering. All these
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Table 7: Mean Squared Differences (MSD) Between Estimates (posterior means) obtained
from variants of our model when Dividing each Dataset into Two Groups of Four Replicates.
For the Like-like data and the Apo data the MSD is an average over five random divisions.
The first line corresponds to the MSD computed from our model replacing the t errors with
Gaussian errors. The second line is the MSD obtained from the t model as described in
Section 3.1. The last line corresponds to the MSD from the t model obtained after removing
gene outliers as described in Section 3.4. For each dataset, we provide two numbers, one
where the shift was set to zero (No Shift) and one where the shift was estimated from our
model (Shift). For each dataset, the lowest MSD is shown in bold.

Like-like HIV APO
No Shift Shift No Shift Shift No Shift Shift

Gaussian 0.046 0.022 0.128 0.074 0.040 0.035
t 0.049 0.023 0.161 0.076 0.036 0.032
t with gene filtering 0.038 0.021 0.086 0.072 0.036 0.031

features combined give the best results in terms of MSD on all three datasets.

Finally, we compared our approach to the quality filtering of Tseng et al. (2001). They

filter so-called low quality genes, based on genewise coefficient of variations. A gene whose co-

efficient of variation (on the raw scale) is too large is removed from the dataset. We used their

software, which can be downloaded at http://biosun1.harvard.edu/~tseng/download.html.

In their method, the user has to decide on a threshold used to filter the genes, which cor-

responds roughly to the proportion of genes filtered out. Tseng et al. (2001) recommended

using a 90% threshold, i.e. removing about 10% of the data. We used this threshold and it

seemed to be too aggressive, for example filtering out all the HIV genes. We then used a 1%

threshold, which is closer to the proportion of genes removed by our gene filtering method,

but it still removed three HIV genes in the HIV 1 data and four in the HIV 2 data, while

our filtering method removed only one gene from the HIV 1 data and none from the HIV 2

data. It thus seems that for this dataset, our gene filtering methods performed better. In

their paper, Tseng et al. (2001) also recommend looking for replicate outliers when a gene

fails to pass the quality filtering. However, they do not mention how to decide if a replicate

is an outlier. This is a crucial point especially when the number of replicates is small.
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4.4 Should the Background be Subtracted?

The image from which individual gene expression levels are estimated takes the form of

roughly circular spots superimposed on a background. Expression levels are estimated by

measuring the average intensity in the spot. The measured intensity in the background

is often greater than zero for various physical reasons, including fluorescence of the glass

substrate, amplifier offset, dark current, and so on. Thus the estimate of the intensity in

a spot is often modified by subtracting the estimated background intensity. In general,

background intensities vary spatially within a slide, and so it is common to estimate the

background for each spot separately (e.g. Yang et al., 2002a).

However, some authors have pointed out that subtracting the background can have the

negative effect of increasing the variability, especially at low intensities (Rocke and Durbin

2001; Cui et al. 2002; Glasbey and Ghazal 2003). A counterargument to this is that by not

subtracting the background one increases all the intensity measurements, and so one tends to

reduce the estimates of ratios that are large, thus biasing the ratio estimates of differentially

expressed genes downwards. This debate about whether or not to subtract the background

remains unresolved.

A comparison of standard unshifted ANOVA log ratios with and without background

subtraction (Figures 5 and 6) shows that the arguments on both sides of the debate are

correct for our data. Figure 5(a) shows the estimates with background subtraction, and the

high variance at low intensities is clear; using the two-fold change rule of thumb, this seems

likely to lead to a considerable number of false positive assessments of differential expression.

Figure 6 shows the same plot, but without background subtraction. The variance is indeed

considerably reduced. But this comes at a high price in terms of bias. For the 13 genes known

to be differentially expressed, the median log ratio is 6.3 with background subtraction, and 3.3

without. Such a level of bias could lead us to miss genes that are moderately differentially

expressed, and indeed one of our differentially expressed genes now falls below the two-

fold threshold when the background is not subtracted. On the other hand, four of the 29

genes known not to be differentially expressed exceed the threshold when the background is

subtracted, but none do so when the background is not subtracted.

Inspection of the posterior means in Figure 5 suggests that our method allows one to have

the best of both worlds: one can subtract the background without paying such a high price in
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Figure 6: ANOVA Normalized Log Ratio Estimates Without Background Subtraction for
the HIV Data. Not subtracting the background shrinks the estimates towards the x-axis.
One of the genes known to be differentially expressed shows a less than two-fold change
whereas it does not with background-subtracted data.

terms of variance. After background subtraction, the variance at low intensities is much less

than with the standard non-robust method, and the median log ratio for the 13 differentially

expressed genes is 5.6, much closer to the non-robust estimates with background subtraction

than without. With our method, the same known differentially expressed genes as with the

ANOVA log ratios without shift exceed the two-fold threshold, while none of the 29 genes

known not to be differentially expressed do so.

5 DISCUSSION

We have developed a Bayesian hierarchical model for estimating cDNA microarray intensities

in a way that is robust to outlying measurements caused by things such as scratches, dust,

imperfections in the glass and imperfections in the array production. The robustness is

achieved by using a hierarchical t-distribution and allowing the data to choose the number

of degrees of freedom. Our model borrows strength from all the genes when deciding if a

replicate measurement is an outlier. This is essential: it is hard to detect outliers based

only on the four measurements for a single gene. Classical robust estimators, such as M-

estimators, would be inefficient with a small number of replicates. For example a trimmed

mean with four replicates would remove at least two observations and the estimate would
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then be based on two replicates. Our model works well with four replicates, thanks to

the borrowing of strength. Our model also deals with the classical issues of design effects,

normalization, transformation and non-constant variance. Our framework requires more

computing than some other methods because it involves MCMC, and users would need to

decide whether the improved results are worth the additional computing time. However,

MCMC methods allow us to sample from the full posterior distribution of all the parameters

and to focus on any quantity of interest. For example, in addition to point estimates, one

could compute measures of uncertainty such as log ratio posterior standard deviations, or

even the joint posterior distribution of the ranks of the log ratios, etc.

We have specified our model on the scale of log transformed intensities. Durbin et al.

(2002) and Huber et al. (2002) independently proposed a transformation that stabilizes

the variance very well. However, this transformation is somewhat complex, and Rocke and

Durbin (2003) have shown that the shifted log transformation provides a good approximation

while keeping the ease of interpretation of log ratios.

We estimate the dye bias assuming that most of the genes are not differentially expressed.

This assumption is usually at least approximately correct, and without it one cannot dis-

tinguish a poor RNA preparation from differential expression. If one does not accept this

assumption, the term α, the dye effect, should be removed from the model. If we still want

to estimate the sample bias, a technique similar to that of Tseng et al. (2001), where a group

of genes that are believed not to be differentially expressed is selected, could be used.

In our application we have considered only simple designs. However, our model could

easily be modified to take account of other designs such as those proposed by Kerr and

Churchill (2001) and Dobbin et al. (2003). For example, our model could be extended to

the loop design introduced by Kerr and Churchill (2001). Note that a loop design with only

two samples (or varieties) is just a dye swap experiment, and so a more general loop design

is a natural extension of the present work.

In our comparison with the ANOVA method, we assumed that the variance was con-

stant, which is commonly done in practice (Kerr et al. 2000; Churchill 2002; Chen et al.

2003). However, as pointed out by Kerr and Churchill (2001), if there were evidence for

heteroscedasticity, it would be possible to use weighted least squares to fit gene specific vari-

ance models. In our comparison, the datasets used have four replicates, and gene-specific
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variance estimates would typically be noisy. We have tried fitting ANOVA models with

gene specific variances and it did not improve things. One alternative would be to use the

shrunken variance estimates of Cui et al. (2003), which would be closer to our exchangeable

prior for the gene precisions.

In our model we assumed that the gene effects arise from a common Gaussian distribution.

It seems to work well with the dataset explored in this paper, but this could be modified to

allow more flexibility. For example one could easily use a t distribution if the gene effects

are heavier tailed. If parametric assumptions are still to restrictive one could use a non-

parametric prior as in Newton et al. (2004), or even model the effects as fixed.
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