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1 The Adjusted Rand index

In order to compare clustering results against external criteria, a measure of agreement is needed. Since we assume
that each gene is assigned to only one class in the external criterion and to only one cluster, measures of agreement
between two partitions can be used.
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. Suppose that � is our external criterion and � is a clustering result. LetD be the number of pairs of objects that are placed in the same class in � and in the same cluster in � , E be the

number of pairs of objects in the same class in � but not in the same cluster in � , F be the number of pairs of
objects in the same cluster in � but not in the same class in � , and G be the number of pairs of objects in different
classes and different clusters in both partitions. The quantities D and G can be interpreted as agreements, and E
and F as disagreements. The Rand index [Rand, 1971] is simply H IKJH IKLMIKN;I�J . The Rand index lies between 0 and 1.
When the two partitions agree perfectly, the Rand index is 1.

A problem with the Rand index is that the expected value of the Rand index of two random partitions does
not take a constant value (say zero). The adjusted Rand index proposed by [Hubert and Arabie, 1985] assumes
the generalized hypergeometric distribution as the model of randomness, i.e., the � and � partitions are picked at
random such that the number of objects in the classes and clusters are fixed. Let � &O* be the number of objects that
are in both class

� & and cluster
� * . Let � &QP and � P * be the number of objects in class

� & and cluster
� * respectively.

The notations are illustrated in Table 1.

Class \ Cluster
�A� �SR ����T�#"

Sums� � � ��� � �!R ���� � �!" � � P� R � R�� � R+R ���� � R+" � R P
...

...
...

...
...� � � �K� � ��R ���� � �U" � � P

Sums � P � � P R ���� � P " � PVP � �
Table 1: Notation for the contingency table for comparing two partitions.

The general form of an index with a constant expected value is
& � JXWZYS[UW;YX\WZN^]QW!J & � JXWZY_ HXY & _$`�_ & � JXW;YS[UW;Y \�W!N^]QWZJ & � JXW;Y , which is

bounded above by 1, and takes the value 0 when the index equals its expected value.
Under the generalized hypergeometric model, it can be shown [Hubert and Arabie, 1985] that:
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The expression D�� G can be simplified to a linear transformation of � &�� * � � &V*	�
 . With simple algebra, the

adjusted Rand index [Hubert and Arabie, 1985] can be simplified to:� &�� * � � &O*	 
���� � & � � &QP	 
 � * � � P *	 
� � � � 	 
�R � � & � � &QP	 
 � � * � � P *	 
� � � � & � � & P	 
 � * � � P *	 
� !� � � 	 
 (2)

Let us illustrate the adjustment for expected value with an example. Example 1 is a contingency table in the
same form as in Table 1.

Class \ Cluster
��� �SR �#"

Sums� �
1 1 0 2� R
1 2 1 4� "
0 0 4 4

Sums 2 3 5 � � 3%$
Example 1

D is defined as the number of pairs of objects in the same class in � and same cluster in � , hence D can be

written as � &�� * � � &O*	 
 . In Example 1, D � � 		 
 � ��&	 
 �('
. E is defined as the number of pairs of objects

in the same class in � but not in the same cluster in � . In terms of the notation in Table 1, E can be written

as � & � � &QP	)
*� � &�� * � � &O*	�
 In Example 1, E � � 		+
 � ��&	#
 � �,&	#
-� '7�/.
. Similarly, F is defined as

the number of pairs of objects in the same cluster in � but not in the same class in � , so F can be written as� * � � P *	 
0� � &�� * � � &V*	 
 � � 		 
 � �,1	 
 � �32	 
4� ' �5'
. G is defined as the number of pairs of objects that are

not in the same class in � and not in the same cluster in � . Since D6� E � F � G � � � 	 
 , G � � 37$	 
 � ' � . � ' � 	 2 .
The Rand index for comparing the two partitions in Example 1 is 8 I R�9: 9 � $ �;' 3#3

, while the adjusted Rand index

is 8 [ � :=< �>"@? : 9A � : I �>"�B�?�R [ � :=< �>"@? : 9 � $ � 1 3 1 (see Equation 2 for the definition of the adjusted Rand index). The Rand index
is much higher than the adjusted Rand index, which is typical. Since the Rand index lies between 0 and 1, the
expected value of the Rand index (although not a constant value) must be greater than or equal to 0. On the other
hand, the expected value of the adjusted Rand index has value zero and the maximum value of the adjusted Rand
index is also 1. Hence, there is a wider range of values that the adjusted Rand index can take on, thus increasing
the sensitivity of the index.

In [Milligan and Cooper, 1986], many different indices were evaluated for measuring agreement between two
partitions in clustering analysis with different numbers of clusters, and they recommended the adjusted Rand
index as the index of choice. We adopt the adjusted Rand index as our measure of agreement between the external
criteria and clustering results.

1.1 Illustrations of the adjusted Rand index

Two examples from the paper will be used to illustrate the use of the adjusted Rand index. The results on the
ovary data set using k-means and Euclidean distance in Figure 5(d) show that the adjusted Rand indices are high
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for the first 2 and 3 PC’s and then drop drastically to below that without PCA. Example 2 and Example 3 show the
contingency tables for the clustering results from k-means and Euclidean distance on the ovary data using the first
3 and 4 PC’s respectively. In the examples, the rows are the classes and the columns are the clusters. It is clear
that the clusters from Example 2 (with the first 3 PC’s) separates the four classes in the ovary data. On the other
hand, the clusters from Example 3 (with the first 4 PC’s) classes 1 and 3 are combined in the same cluster. Using
Equation 2, the adjusted Rand index from Example 2 (with the first 3 PC’s) is 0.663, while the adjusted Rand
index from Example 3 (with the first 4 PC’s) is 0.519. The higher adjusted Rand index from Example 2 confirms
our visual inspection that the clustering result using the first 3 PC’s is of higher quality than that using the first 4
PC’s.

Class \ Cluster
�A� �SR �#" � : Sums� �
55 1 1 1 58� R
10 76 1 1 88� "
3 2 26 1 32� : 6 2 4 45 57

Sums 74 81 32 48 � � 	 1 2
Example 2: clustering result from k-means and Euclidean distance on the ovary data using the first 3 PC’s

Class \ Cluster
� � � R � " � : Sums�U�
1 1 2 54 58��R
1 73 4 10 88� "
2 1 3 26 32� : 45 0 2 10 57

Sums 49 75 11 100 � � 	 1 2
Example 3: clustering result from k-means and Euclidean distance on the ovary data using the first 4 PC’s

When the four classes of the ovary data are viewed in the space of the first 3 PC’s (Figure 1), the four classes
are reasonably well-separated in the Euclidean space. However, when the ovary data is visualized in the space
of the first, second and fourth PC’s, the four classes are not as well-separated (see Figure 2). This visualization
together with the clustering result from Example 3 suggest that the fourth PC contains probably mostly noise.

PC1

PC2

PC3

Figure 1: Visualization of the four classes from the ovary data in the space of the first three PC’s.
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PC1

PC2

PC4

Figure 2: Visualization of the four classes using the first, second and fourth PC’s and k-means with Euclidean
distance from the ovary data.

2 Clustering algorithms and similarity metrics

We implemented three clustering algorithms: the Cluster Affinity Search Technique (CAST) [Ben-Dor and Yakhini, 1999],
the hierarchical average-link algorithm, and the k-means algorithm (with average-link initialization) [Jain and Dubes, 1988].

2.1 CAST

The Cluster Affinity Search Technique (CAST) is an algorithm proposed by [Ben-Dor and Yakhini, 1999] to clus-
ter gene expression data. The input to the algorithm includes the pairwise similarities of the genes, and a cutoff
parameter

�
(which is a real number between 0 and 1). The clusters are constructed one at a time. The current

cluster under construction is called
C��

\W
�

. The affinity of a gene � , D�� ��� , is defined to be the sum of similarity
values between � and all the genes in

C��
\W
�

. A gene � is said to have high affinity if D�� ���	� ��
 C��
\W
� 


. Otherwise,
� is said to have low affinity. Note that the affinity of a gene depends on the genes that are already in

C��
\W
�

. The
algorithm alternates between adding high affinity genes to

C �
\W
�

, and removing low affinity genes from
C �

\W
�

.C �
\W
�

is closed when no more genes can be added to or removed from it. Once a cluster is closed, it is not consid-
ered any more by the algorithm. The algorithm iterates until all the genes have been assigned to clusters and the
current

C �
\�W
�

is closed.
When a new cluster

C �
\W
�

is started, the initial affinity of all genes are 0 since
C �

\W
�

is empty. One additional
heuristic that the authors [Ben-Dor and Yakhini, 1999] implemented in their software BIOCLUST is to choose a
gene with the maximum number of neighbors to start a new cluster. Another heuristic is that after the CAST
algorithm converges, there is an additional iterative step, in which all clusters are considered at the same time, and
genes are moved to the cluster with the highest average similarity.

2.2 Hierarchical average-link

Agglomerative hierarchical algorithms build clusters bottom up. Initially, each object is in its own cluster. In
each step, the two clusters with the greatest cluster similarity are merged. This process is repeated until the
desired number,  , of clusters is produced. In average-link, the cluster similarity criterion is the average pairwise
similarity between objects in the two clusters. Refer to [Jain and Dubes, 1988] and [Anderberg, 1973] for detailed
discussions on hierarchical algorithms.
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2.3 K-means

The number of clusters,  , is an input to the k-means clustering algorithm. Clusters are described by centroids,
which are cluster centers, in the algorithm. In our implementation of k-means [Jain and Dubes, 1988], the initial
centroids consist of the clustering results from average-link. Each object is assigned to the centroid (and hence
cluster) with the closest Euclidean distance. New centroids of the  clusters are computed after all objects are
assigned. The steps of assigning objects to centroids and computing new centroids are repeated until no objects
are moved between clusters.

2.4 Similarity metrics

There are two popular similarity metrics used in the gene expression analysis community: Euclidean distance (for
example, [Wen et al., 1998]) and correlation coefficient (for example, [Eisen et al., 1998]). In our experiments, we
evaluated the effectiveness of PCA on clustering analysis with both Euclidean distance and correlation coefficient,
namely, CAST with correlation coefficient1, average-link with both correlation and distance, and k-means with
both correlation and distance.

If Euclidean distance is used as the similarity metric, the minimum number of components in sets of PC’s ( ��� )
considered is 2. If correlation is used, the minimum number of components ( ��� ) considered is 3 because there
are at most 2 clusters if 2 components are used.

When there are 2 components, the correlation coefficient is either 1 or -1. Suppose there are two genes � � and
� R with two components. Let � &�� * (where

6 
 > � 3 
 	
) be the expression level of gene

6
under component

>
. The

correlation coefficient between � � and � R can be simplified to:

� � � � � � � � � R ��� � � R � � � � R � R �� � � � � � � � � � R � R � � � R � � � � R � R � R (3)

Since the denominator in Equation 3 represents the product of the norms of genes � � and � R , the denominator
must be positive. From Equation 3, the correlation coefficient between genes � � and � R is 1 if � � � � � � � � � R ��� � � R � � �
�
R � R �	� $ , the correlation coefficient is -1 if � � � � � � � � � R �
� � � R � � � � R � R �	� $ . If �

� � � �
�
� � R or �

R � � �
�
R � R , the

correlation coefficient is undefined. Since there are only two possible values that the correlation coefficient can
take when there are two components, there are at most two clusters.
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