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Abstract

Motivation: There is a great need to develop analytical
methodology to analyze and to exploit the information con-
tained in gene expression data. Because of the large num-
ber of genes and the complexity of biological networks, clus-
tering is a useful exploratory technique for analysis of gene
expression data. Other classical techniques, such as prin-
cipal component analysis (PCA), have also been applied to
analyze gene expression data. Using different data analysis
techniques and different clustering algorithms to analyze the
same data set can lead to very different conclusions. Our goal
is to study the effectiveness of principal components (PC’s) in
capturing cluster structure. Specifically, using both real and
synthetic gene expression data sets, we compared the quality
of clusters obtained from the original data to the quality of
clusters obtained after projecting onto subsets of the princi-
pal component axes.
Results: Our empirical study showed that clustering with the
PC’s instead of the original variables does not necessarily
improve, and often degrade, cluster quality. In particular, the
first few PC’s (which contain most of the variation in the data)
do not necessarily capture most of the cluster structure. We
also showed that clustering with PC’s has different impact on
different algorithms and different similarity metrics. Over-
all, we would not recommend PCA before clustering except
in special circumstances.
Availability: The software is under development.
Contact: kayee@cs.washington.edu
Supplementary information:
http://www.cs.washington.edu/homes/kayee/pca

1 Introduction and Motivation

DNA microarrays offer the first great hope to study varia-
tions of many genes simultaneously (Lander, 1999). Large
amounts of gene expression data have been generated by re-
searchers. There is a great need to develop analytical method-
ology to analyze and to exploit the information contained in
gene expression data (Lander, 1999). Because of the large
number of genes and the complexity of biological networks,
clustering is a useful exploratory technique for analysis of
gene expression data. Many clustering algorithms have
been proposed for gene expression data. For example, (Eisen
et al., 1998) applied a variant of the hierarchical average-link
clustering algorithm to identify groups of co-regulated yeast
genes. (Ben-Dor and Yakhini, 1999) reported success with
their CAST algorithm.

Other techniques, such as principal component analysis
(PCA), have also been proposed to analyze gene expression
data. PCA (Jolliffe, 1986) is a classical technique to reduce
the dimensionality of the data set by transforming to a new
set of variables (the principal components) to summarize the

features of the data. Principal components (PC’s) are uncor-
related and ordered such that the kth PC has the kth largest
variance among all PC’s. The kth PC can be interpreted as
the direction that maximizes the variation of the projections
of the data points such that it is orthogonal to the first & — 1
PC’s. The traditional approach is to use the first few PC’s in
data analysis since they capture most of the variation in the
original data set. In contrast, the last few PC’s are often as-
sumed to capture only the residual “noise” in the data. PCA
is closely related to a mathematical technique called singular
value decomposition (SVD). In fact, PCA is equivalent to ap-
plying SVD on the covariance matrix of the data. Recently,
there has been a lot of interest on applying SVD to gene ex-
pression data, for example, (Holter et al., 2000) and (Alter
etal., 2000).

Using different data analysis techniques and different clus-
tering algorithms to analyze the same data set can lead to
very different conclusions. For example, (Chu et al., 1998)
identified seven clusters in a subset of the sporulation data
set using a variant of the hierarchical clustering algorithm of
(Eisen et al., 1998). However, (Raychaudhuri et al., 2000)
reported that these seven clusters are very poorly separated
when the data is visualized in the space of the first two PC’s,
even though they account for over 85% of the variation on the
data.

PCA and clustering: In the clustering literature, PCA is
sometimes applied to reduce the dimensionality of the data
set prior to clustering. The hope for using PCA prior to clus-
ter analysis is that PC’s may “extract” the cluster structure in
the data set. Since PC’s are uncorrelated and ordered, the first
few PC’s, which contain most of the variations in the data, are
usually used in cluster analysis, for example, (Jolliffe et al.,
1980). There are some common rules of thumb to choose how
many of the first PC’s to retain, but most of these rules are in-
formal and ad-hoc (Jolliffe, 1986). On the other hand, there
is a theoretical result showing that the first few PC’s may not
contain cluster information: assuming that the data is a mix-
ture of two multivariate normal distributions with different
means but with an identical within-cluster covariance matrix,
(Chang, 1983) showed that the first few PC’s may contain less
cluster structure information than other PC’s. He also gener-
ated an artificial example in which there are two clusters, and
if the data points are visualized in two dimensions, the two
clusters are only well-separated in the subspace of the first
and last PC’s.

A motivating example: A subset of the sporulation data
(477 genes) were classified into 7 temporal patterns (Chu
et al., 1998). Figure 1(a) is a visualization of this data in the
space of the first 2 PC’s, which contains 85.9% of the varia-
tion in the data. Each of the seven patterns is represented by
a different color or different shape. The seven patterns over-
lap around the origin in Figure 1(a). However, if we view
the same subset of data points in the space of the first 3 PC’s
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Figure 1: Visualization of a subset of the sporulation data

(containing 93.2% of the variation in the data) in Figure 1(b),
the seven patterns are much more separated. This example
shows that a small variation (7.4%) in the data helps to distin-
guish the patterns, and different numbers and different sets of
PC’s have varying degree of effectiveness in capturing cluster
structure. Therefore, there is a great need to investigate the
effectiveness of PCA as a preprocessing step to cluster anal-
ysis on gene expression data before one can identify clusters
in the space of the PC’s. This paper is an attempt of such an
empirical study.

2 Our approach

Our goal is to empirically investigate the effectiveness of clus-
tering gene expression data using PC’s instead of the original
variables. In this paper, genes are clustered, hence the exper-
imental conditions are the variables. Our methodology is to
run a clustering algorithm on a given data set, and then ap-
ply the same algorithm to the data after projecting it into the
subspaces defined by different sets of PC’s. The effectiveness
of clustering with the original data and with different sets of
PC’s is determined by assessing the quality of clusters, which
is measured by comparing the clustering results to an objec-
tive external criterion of the data. In our experiments, we
assume the number of clusters is known and clustering results
with the correct number of clusters are produced. Both real
gene expression data sets with external criteria and synthetic
data sets are used in this empirical study.

2.1 Agreement between two partitions

In order to compare clustering results against external criteria,
a measure of agreement is needed. The adjusted Rand index
(Hubert and Arabie, 1985) assesses the degree of agreement

between two partitions of the same set of objects. Based on
an extensive empirical comparison of several such measures,
(Milligan and Cooper, 1986) recommended the adjusted Rand
index as the measure of agreement even when comparing par-
titions having different numbers of clusters.

Given a set of n objects S = {O1,...,0,}, suppose U =
{u1,...,ug}and V = {v1,...,vc} represent two different
partitions of the objects in S such that UL u; = S = UL, v;
andu; Nuy =0 =wv;Nup forl <i#4¢ <Rand1l <
j # j' < C. Inour case, one of the partitions is the external
criterion and one is a clustering result. Let a be the number of
pairs of objects that are placed in the same element in partition
U and in the same element in partition V', and d be the number
of pairs of objects in different elements in partitions U and
V. The Rand index (Rand, 1971) is simply the fraction of

agreement, i.e., (a +d)/ TQL . The Rand index lies between

0and 1. When the two partitions are identical, the Rand index
is 1. A problem with the Rand index is that the expected
value of the Rand index of two random partitions does not
take a constant value. The adjusted Rand index (Hubert and
Arabie, 1985) corrects for this by assuming the general form
mazi:nnj;mi_nedzz;efciiiigie;indez - Its maximum value is 1 and
its expected value in the case of random clusters is 0. As with
the Rand index, a higher adjusted Rand index means a higher
correspondence between the two partitions. Please refer to
our supplementary web site or (Yeung and Ruzzo, 2000) for
a detailed description of the adjusted Rand index.

2.2 Subsetsof PC's

Motivated by Chang’s theoretical result (Chang, 1983), we
would like to compare the effectiveness of clustering with the
first few PC’s to that of other sets of PC’s. In particular, if
there exists a set of “best” PC’s that is most effective in cap-



turing cluster structure, it would be interesting to compare the
performance of this set of “best” PC’s to the traditional wis-
dom of clustering with the first few PC’s of the data. Since
no such set of “best” PC’s is known, we used the adjusted
Rand index with the external criterion to determine if a set
of PC’s is effective in clustering. One way to determine the
set of PC’s that gives the maximum adjusted Rand index is
by exhaustive search over all possible sets of PC’s. However,
exhaustive search is very computationally intensive. There-
fore, we used heuristics to search for a set of PC’s with high
adjusted Rand index.

The greedy approach: A simple heuristic we implemented
is the greedy approach, which is similar to the forward se-
quential search algorithm (Aha and Bankert, 1996). Let my
be the minimum number of PC’s to be clustered, and p be the
number of experimental conditions in the data.

e This approach starts with an exhaustive search for a set
of mg PC’s with maximum adjusted Rand index. Denote
the optimum set of PC’s as Sy, .

e Foreachm = (mo +1),...,p,

— For each component currPC notin S,

x The data with all the genes projected onto
components Sy,—1 U {currPC} is clustered,
and the adjusted Rand index is computed.

x Record the maximum adjusted Rand index
over all possible currPC.

— Sy is the union of the component with maximum
adjusted Rand index and S, 1.

The modified greedy approach: The modified greedy ap-
proach requires an additional integer parameter, k, which rep-
resents the number of best solutions to keep in each search
step. Denote the optimum k& sets of components as S,,, =
{SL . ..., Sk}, where m = my,...,p. This approach also
starts with an exhaustive search for my PC’s with the maxi-
mum adjusted Rand index. However, & sets of components
which achieve the top & adjusted Rand indices are stored. For
each m (Where m = (mgo + 1),...,p) and each of the S¢,
(where ¢ = 1,...,k), one additional component that is not
already in S¢,_; is added to the set of components, the sub-
set of data with the extended set of components is clustered,
and the adjusted Rand index is computed. The top k sets of
m components that achieve the highest adjusted Rand indices
are stored in S,,,. The modified greedy approach allows the
search to have more choices in searching for a set of compo-
nents that gives a high adjusted Rand index. Note that when
k = 1, the modified greedy approach is identical to the simple

greedy approach, and when k = #L , the modified greedy

approach is reduced to exhaustive search. So the choice for &
is a tradeoff between running time and quality of solution. In
our experiments, k is set to be 3.

2.3 Summary

Given a gene expression data set with n genes and p exper-
imental conditions, our evaluation methodology consists of
the following steps:

1. A clustering algorithm is applied to the given data set,
and the adjusted Rand index with the external criterion
is computed.

2. PCA is applied to the given data set. The same clus-
tering algorithm is applied to the first m PC’s (where
m = my,-..,p). The adjusted Rand index is computed
for each of the clustering results using the first m PC’s.

3. The same clustering algorithm is applied to sets of PC’s
computed with the greedy and the modified greedy ap-
proaches.

2.4 Random PC’sand Random Projections

As a control, we also investigated the effect on the quality of
clusters obtained from random sets of PC’s. Multiple sets of
random PC’s (30 in our experiments) were chosen to com-
pute the average and standard deviation of the adjusted Rand
indices.

We also compared the quality of clustering results from
random PC’s to that of random orthogonal projections of the
data. Again, multiple sets (30) of random orthogonal projec-
tions were chosen to compute the average and standard devi-
ations.

3 Data sets

We used two gene expression data sets with external criteria,
and three sets of synthetic data to evaluate the effectiveness
of PCA. The word class refers to a group in the external crite-
rion that is used to assess clustering results. The word cluster
refers to clusters obtained by a clustering algorithm. We as-
sume both classes and clusters are partitions of the data, i.e.,
every gene is assigned to exactly one class and to exactly one
cluster.

3.1 Geneexpression data sets

The ovary data: A subset of the ovary data obtained by
(Schummer et al., 1999) and (Schummer, 2000) is used. The
ovary data set was generated by hybridizing to a membrane
array containing a randomly selected cDNA library. The sub-
set of the ovary data we used contains 235 clones and 24 tissue
samples, 7 of which are derived from normal tissues, 4 from
blood samples, and the remaining 13 from ovarian cancers in
various stages of malignancy. The tissue samples are the ex-
perimental conditions. The 235 clones were sequenced, and
discovered to correspond to 4 different genes. The numbers of



clones corresponding to each of the four genes are 58, 88, 57,
and 32 respectively. We expect clustering algorithms to sepa-
rate the four different genes. Hence, the four genes form the
four class external criterion for this data set. Different clones
may have different hybridization intensities. Therefore, the
data for each clone was normalized across the 24 experiments
to have mean 0 and variance 1.

The yeast cell cycle data: The second gene expression data
set we used is the yeast cell cycle data set (Cho et al., 1998)
which shows the fluctuation of expression levels of approxi-
mately 6000 genes over two cell cycles (17 time points). (Cho
et al., 1998) identified 420 genes which peak at different time
points and categorized them into five phases of cell cycle. Out
of the 420 genes they classified, 380 genes were classified into
only one phase (some genes peak at more than one phase in
the cell cycle). Since the 380 genes were identified accord-
ing to the peak times of genes, we expect clustering results
to correspond to the five phases to a certain degree. Hence,
we used the 380 genes that belong to only one class (phase)
as our external criterion. The data was normalized to have
mean 0 and variance 1 across each cell cycle as suggested in
(Tamayo et al., 1999).

3.2 Synthetic data sets

Since the array technology is still in its infancy, the “real”
data may be noisy, and clustering algorithms may not be able
to extract all the classes contained in the data. There may
also be information in real data that is not known to biolo-
gists. Therefore, we complemented our empirical study with
synthetic data, for which the classes are known.

Modeling gene expression data sets is an ongoing effort by
many researchers, and there is no well-established model to
represent gene expression data yet. The following three sets
of synthetic data represent our preliminary effort on synthetic
gene expression data generation. We do not claim that any
of the three synthetic data sets capture all of the characteris-
tics of gene expression data. Each of the synthetic data set
has strengths and weaknesses. By using all three sets of syn-
thetic data, we hope to achieve a thorough comparison study
capturing many different aspects of expression data.

The first two synthetic data sets represent attempts to gen-
erate replicates of the ovary data set by randomizing different
aspects of the original data. The last synthetic data set is gen-
erated by modeling expression data with cyclic behavior. In
each of the three synthetic data sets, ten replicates are gen-
erated. In each replicate, 235 observations and 24 variables
are randomly generated. We also ran experiments on larger
synthetic data sets and observed similar results (see supple-
mentary web site for details).

Mixture of normal distributions on the ovary data: Visual
inspection of the ovary data suggests that the data is not too
far from normal. Among other sources of variation, the ex-

pression levels for different clones of the same gene are not
identical because the clones represent different portions of the
cDNA. Figure 2(a) shows the distribution of the expression
levels in a normal tissue in a class (gene) from the ovary data.
We found that the distributions of the normal tissue samples
are typically closer to normal distributions than those of tu-
mor samples, for example, Figure 2(b).

The sample covariance matrix and the mean vector of each
of the four classes (genes) in the ovary data are computed.
Each class in the synthetic data is generated according to a
multivariate normal distribution with the sample covariance
matrix and the mean vector of the corresponding class in the
ovary data. The size of each class in the synthetic data is the
same as in the original ovary data.

This synthetic data set preserves the covariance between
the tissue samples in each gene. It also preserves the mean
vectors of each class. The weakness of this synthetic data set
is that the assumption of the underlying multivariate normal
distribution for each class may not be true for real data.
Randomly resampled ovary data: In these data sets, the
random data for an observationin class ¢ (wherec =1, ..., 4)
under experimental condition j (where j = 1,...,24) are
generated by randomly sampling (with replacement) the ex-
pression levels under experiment j in the same class ¢ of the
ovary data. The size of each class in this synthetic data set is
again the same as the ovary data.

This data set does not assume any underlying distribution.

However, any possible correlation between tissue samples
(for example, the normal tissue samples may be correlated) is
not preserved due to the independent random sampling of the
expression levels from each experimental condition. Hence,
the resulting sample covariance matrix of this randomly re-
sampled data set would be close to diagonal. However, in-
spection of the original ovary data shows that the sample co-
variance matrices are not too far from diagonal. Therefore,
this set of randomly resampled data represents reasonable
replicates of the original ovary data set.
Cyclic data: This synthetic data set models cyclic behavior
of genes over different time points. The cyclic behavior of
genes is modeled by the sine function. There is evidence that
the sine function correctly models the cell cycle behavior (see
(Holter et al., 2000) and (Alter et al., 2000)). Classes are
modeled as genes that have similar peak times over the time
course. Different classes have different phase shifts and have
different sizes.

Let 2; ; be the simulated expression level of gene ¢ and
condition j in this data set with ten classes. Let z;; =
85+ A (ai+Bid(i, 1)), where ¢(i, j) = sin( 252 —wy;)+e€)
(Zhao, 2000). «; represents the average expression level of
gene 4, which is chosen according to the standard normal dis-
tribution. 3; is the amplitude control for gene 4, which is
chosen according to a normal distribution with mean 3 and
standard deviation 0.5. ¢(4,7) models the cyclic behavior.
Each cycle is assumed to span 8 time points (experiments).
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Figure 2: Histograms of the distributions of the expression levels in the ovary data

k(@) is the class number of gene 4, which is chosen accord-
ing to Zipf’s Law (Zipf, 1949) to model classes with differ-
ent sizes. Different classes are represented by different phase
shifts wy,;), which are chosen according to the uniform distri-
bution in the interval [0, 27]. €, which represents noise of gene
synchronization, is chosen according to the standard normal
distribution. A; is the amplitude control of condition j, and is
chosen according to the normal distribution with mean 3 and
standard deviation 0.5. §;, which represents an additive ex-
perimental error, is chosen according to the standard normal
distribution. Each observation (row) is normalized to have
mean 0 and variance 1 before PCA or any clustering algorithm
is applied. A drawback of this model is the ad-hoc choice of
the parameters for the distributions of «;, 8;, A;, and ¢;.

4 Clustering algorithmsand similarity
metrics

We used three clustering algorithms in our empirical study:
the Cluster Affinity Search Technique (CAST) (Ben-Dor and
Yakhini, 1999), the hierarchical average-link algorithm, and
the k-means algorithm (with average-link initialization) (Jain
and Dubes, 1988). Please refer to our supplementary web site
for details of the clustering algorithms. In our experiments,
we evaluated the effectiveness of PCA on clustering analy-
sis with both Euclidean distance and correlation coefficient,
namely, CAST with correlation coefficient, average-link with
both correlation and distance, and k-means with both corre-
lation and distance. CAST with Euclidean distance usually
does not converge, so it is not considered in our experiments.
If Euclidean distance is used as the similarity metric, the min-
imum number of components in sets of PC’s (m,) considered
is 2. If correlation is used, the minimum number of compo-
nents (myg) considered is 3 because there are at most 2 clusters
if 2 components are used (when there are 2 components, the
correlation coefficient is either 1 or -1).

5 Results and Discussion

Here are the overall conclusions from our empirical study:

e The quality of clustering results (i.e., the adjusted Rand
index with the external criterion) on the data after PCA
is not necessarily higher than that on the original data on
both real and synthetic data.

e We also showed that in most cases, the first m PC’s
(where m = my, ..., p) do not give the highest adjusted
Rand index, i.e., there exists another set of m compo-
nents that achieves a higher adjusted Rand index than
the first m components.

e There are no clear trends regarding the choice of the op-
timal number of PC’s over all the data sets and over all
the clustering algorithms and over the different similar-
ity metrics. There is no obvious relationship between
cluster quality and the number or set of PC’s used.

e On average, the quality of clusters obtained by cluster-
ing random sets of PC’s tend to be slightly lower than
those obtained by clustering random sets of orthogonal
projections, especially when the number of components
is small.

In the following sections, the detailed experimental results
are presented. In a typical result graph, the adjusted Rand in-
dex is plotted against the number of components. Usually the
adjusted Rand index without PCA, the adjusted Rand index of
the first m components, and the adjusted Rand indices using
the greedy and modified greedy approaches are shown in each
graph. Note that there is only one value for the adjusted Rand
index computed with the original variables (without PCA),
while the adjusted Rand indices computed using PC’s vary
with the number of components. Enlarged and colored ver-
sions of the graphs can be found on our supplementary web
site. The results using the hierarchical average-link cluster-
ing algorithm turn out to show similar patterns to those using
k-means (but with slightly lower adjusted Rand indices), and



hence are not shown in this paper. The results of average-link
can be found on our supplementary web site.

5.1 Geneexpression data
5.1.1 The ovary data

CAST: Figure 3(a) shows the result on the ovary data using
CAST as the clustering algorithm and correlation coefficient
as the similarity metric. The adjusted Rand indices using the
first m components (where m = 3,...,24) are mostly lower
than those without PCA. However, the adjusted Rand indices
using the greedy and modified greedy approaches for 4 to 22
components are higher than those without PCA. This shows
that clustering with the first m PC’s instead of the original
variables may not help to extract the clusters in the data set,
and that there exist sets of PC’s (other than the first few which
contain most of the variation in the data) that achieve higher
adjusted Rand indices than clustering with the original vari-
ables. Moreover, the adjusted Rand indices computed using
the greedy and modified greedy approaches are not very dif-
ferent. Figure 3(b) shows the additional results of the aver-
age adjusted Rand indices of random sets of PC’s and ran-
dom orthogonal projections. The standard deviation in the
adjusted Rand indices of the multiple runs (30) of random or-
thogonal projections are represented by the error bars in Fig-
ure 3(b). The adjusted Rand indices of clusters from random
sets of PC’s are more than one standard deviation lower than
those from random orthogonal projections when the number
of components is small. Random sets of PC’s have larger vari-
ations over multiple random runs, and their error bars overlap
with those of the random orthogonal projections, and so are
not shown for clarity of the figure. It turns out that Figure 3(b)
shows typical behavior of random sets of PC’s and random or-
thogonal projections over different clustering algorithms and
similarity metrics, and hence those curves will not be shown
in subsequent figures.

K-means: Figures 3(c) and 3(d) show the adjusted Rand in-
dices using the k-means algorithm on the ovary data with cor-
relation and Euclidean distance as similarity metrics respec-
tively. Figure 3(c) shows that the adjusted Rand indices us-
ing the first m components tends to increase from below the
index without PCA to above that without PCA as the num-
ber of components increases. However, the results using the
same algorithm but Euclidean distance as the similarity met-
ric show a very different picture (Figure 3(d)): the adjusted
Rand indices are high for first 2 and 3 PC’s and then drop
drastically to below that without PCA. Manual inspection of
the clustering result of the first 4 PC’s using k-means with
Euclidean distance shows that two classes are combined in
the same cluster while the clustering result of the first 3 PC’s
separates the 4 classes, showing that the drastic drop in the ad-
justed Rand index reflects degradation of cluster quality with
additional PC’s. When the data points are visualized in the
space of the first three PC’s, the four classes are reasonably

well-separated in the Euclidean space. However, when the
data points are visualized in the space of the first, second and
fourth PC’s, the classes overlap. The addition of the fourth
PC caused the cluster quality to drop. With both the greedy
and the modified greedy approaches, the fourth PC was the
second to last PC to be added. Therefore, we believe that
the addition of the fourth PC makes the separation between
classes less clear. Figures 3(c) and 3(d) show that different
similarity metrics may have very different effect on clustering
with PC’s.

The adjusted Rand indices using the modified approach in
Figure 3(c) show an irregular pattern. In some instances, the
adjusted Rand index computed using the modified greedy ap-
proach is even lower than that using the first few components
and that using the greedy approach. This shows, not surpris-
ingly, that our heuristic assumption for the greedy approach
is not always valid. Nevertheless, the greedy and modified
greedy approaches show that there exists other sets of PC’s
that achieve higher adjusted Rand indices than the first few
PC’s most of the time.

Effect of clustering algorithm: Note that the adjusted Rand
index without PCA using CAST with correlation (0.664) is
much higher than that using k-means (0.563) with the same
similarity metric. Manual inspection of the clustering results
without PCA shows that only CAST clusters mostly contain
clones from each class, while k-means clustering results com-
bine two classes into one cluster. This again confirms that
higher adjusted Rand indices reflect higher cluster quality
with respect to the external criteria. With the first m compo-
nents, CAST with correlation has a similar range of adjusted
Rand indices to the other algorithms (approximately between
0.55 t0 0.68).

Choosing the number of first PC’s: A common rule of
thumb to choose the number of first PC’s is to choose the
smallest number of PC’s such that a chosen percentage of to-
tal variation is exceeded. For the ovary data, the first 14 PC’s
cover 90% of the total variation in the data. If the first 14
PC’s are chosen, it would have a detrimental effect on cluster
quality if CAST with correlation, k-means with distance, or
average-link with distance is the algorithm being used.

When correlation is used (Figures 3(a) and 3(c)), the ad-
justed Rand index using all 24 PC’s is not the same as that
using the original variables. On the other hand, when Eu-
clidean distance is used (Figure 3(d)), the adjusted Rand in-
dex using all 24 PC’s is the same as that with the original
variables. This is because the Euclidean distance between a
pair of genes using all the PC’s is the same as that using the
original variables. Correlation coefficients, however, are not
preserved after PCA.
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Figure 3: Adjusted Rand index against the number of components on the ovary data.
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5.1.2 The yeast cell cycle data

CAST: Figure 4(a) shows the result on the yeast cell cycle
data using CAST as the clustering algorithm and correlation
coefficient as the similarity metric. The adjusted Rand indices
using the first 3 to 7 components are lower than that without
PCA, while the adjusted Rand indices with the first 8 to 17
components are comparable to that without PCA.

K-means: Figure 4(b) shows the result on the yeast cell cycle
data using k-means with Euclidean distance. The adjusted
Rand indices without PCA are relatively high compared to
those using PC’s. Figure 4(b) on the yeast cell cycle data
shows a very different picture than Figure 3(d) on the ovary
data. This shows that the effectiveness of clustering with PC’s
depends on the data set being used.

5.2 Synthetic data
5.2.1 Mixture of normal distributions on the ovary data

CAST: The results using this synthetic data set are similar to
those of the ovary data in Section 5.1.1. Figure 5(a) shows the
results of our experiments on the synthetic mixture of normal
distributions on the ovary data using CAST as the clustering
algorithm and correlation coefficient as the similarity metric.
The lines in Figure 5(a) represent the average adjusted Rand
indices over the 10 replicates of the synthetic data, and the
error bars represent one standard deviation from the mean
for the modified greedy approach and for using the first m
PC’s. The error bars show that the standard deviations us-
ing the modified greedy approach tend to be lower than that
using the first m components. A careful study also shows
that the modified greedy approach has lower standard devi-
ations than the greedy approach (data not shown here). The
error bars for the case without PCA are not shown for clar-
ity of the figure. The standard deviation for the case with-
out PCA is 0.064 for this set of synthetic data, which would
overlap with those using the first components and the mod-
ified greedy approach. Using the Wilcoxon signed rank test
(Hogg and Craig, 1978), we show that the adjusted Rand in-
dex without PCA is greater than that with the first m com-
ponents at the 5% significance level for all m = 3,...,21.
A manual study of the experimental results from each of the
10 replicates (details not shown here) shows that 8 out of the
10 replicates show very similar patterns to the average pattern
in Figure 5(a), i.e., most of the cluster results with the first
m components have lower adjusted Rand indices than that
without PCA, and the results using the greedy and modified
greedy approach are slightly higher than that without PCA. In
the following results, only the average patterns will be shown.
Figure 5(a) shows a similar trend to real data in Figure 3(a),
but the synthetic data has higher adjusted Rand indices for

the clustering results without PCA and with the greedy and
modified greedy approaches.

K-means: The average adjusted Rand indices using the k-
means algorithm with the correlation and Euclidean distance
as similarity metrics are shown in Figure 5(b) and Figure
5(c) respectively. In Figure 5(b), the average adjusted Rand
indices using the first m components gradually increase as
the number of components increases. Using the Wilcoxon
signed rank test, we show that the adjusted Rand index with-
out PCA is less than that with the first m components (where
m = 5,...,24) at the 5% significance level. In Figure 5(c),
the average adjusted Rand indices using the first m compo-
nents are mostly below that without PCA. The results using
average-link (not shown here) are similar to the results using
k-means.

5.2.2 Randomly resampled ovary data

Figures 6(a) and 6(b) show the average adjusted Rand indices
using CAST with correlation, and k-means with Euclidean
distance on the randomly resampled ovary data. The general
trend is very similar to the results on the ovary data and the
mixture of normal distributions.

5.2.3 Cyclic data

Figure 7(a) shows the average adjusted Rand indices using
CAST with correlation. The quality of clusters using the first
PC’s are worse than that without PCA, and is not very sensi-
tive to the number of first PC’s used.

Figure 7(b) shows the average adjusted Rand indices with
the k-means algorithm with Euclidean distance as the similar-
ity metric. Again, the quality of clusters from clustering with
the first PC’s is not higher than that from clustering with the
original variables.

5.3 Summary of results

On both real and synthetic data sets, the adjusted Rand indices
of clusters obtained using PC’s determined by the greedy or
modified greedy approach tend to be higher than the adjusted
Rand index from clustering with the original variables. Table
1 summarizes the comparisons of the average adjusted Rand
indices from clustering with the first PC’s (averaged over the
range of number of components) to the adjusted Rand indices
from clustering the original real expression data. An entry
is marked “+” in Table 1 if the average adjusted Rand index
from clustering with the first components is higher than the
adjusted Rand index from clustering the original data. Other-
wise, an entry is marked with a “-”. Table 1 shows that with
the exception of k-means with correlation and average-link
with correlation on the ovary data set, the average adjusted
Rand indices using different numbers of the first components
are lower than the adjusted Rand indices from clustering the
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original data. On the synthetic data sets, we applied the one-
sided Wilcoxon signed rank test to compare the adjusted Rand
indices from clustering the first components to the adjusted
Rand index from clustering the original data set on the 10
replicates. The p-values, averaged over the full range of pos-
sible numbers of the first components, are shown in Table 2.
A low p-value suggests rejecting the null hypothesis that the
adjusted Rand indices from clustering with and without PCA
are comparable. Table 2 shows that the adjusted Rand indices
from the first components are significantly lower than those
from without PCA on both the mixture of normal and the
cyclic synthetic data sets when CAST with correlation is used.
On the other hand, the adjusted Rand indices from the first
components are significantly higher than those from without
PCA when k-means with correlation is used on the mixture
of normal synthetic data or when average-link with correla-
tion is used on the randomly resampled data. However, the
latter results are not clear successes for PCA since (1) they
assume that the correct number of classes is known (which
would not be true in practice), and (2) CAST with correlation
gives better results on the original data sets without PCA in
both cases. The average p-values of k-means with correla-
tion on the cyclic data are not available because the iterative
k-means algorithm does not converge on the cyclic data sets
when correlation is used as the similarity metric.

6 Conclusions

Our experiments on two real gene expression data sets and
three sets of synthetic data show that clustering with the PC’s
instead of the original variables does not necessarily improve,
and may worsen, cluster quality. Our empirical study shows
that the traditional wisdom that the first few PC’s (which con-
tain most of the variation in the data) may help to extract clus-
ter structure is generally not true. We also show that there
usually exists some other sets of m PC’s that achieve higher
quality of clustering results than the first m PC’s.

Our empirical results show that clustering with PC’s has
different impact on different algorithms and different similar-
ity metrics (see Table 1 and Table 2). When CAST is used
with correlation as the similarity metric, clustering with the
first m PC’s gives a lower adjusted Rand index than cluster-
ing with the original variables for most of m = 3,...,24,
and this is true in both real and synthetic data sets. On the
other hand, when k-means is used with correlation as the sim-
ilarity metric, using all of the PC’s in cluster analysis instead
of the original variables usually gives higher or similar ad-
justed Rand indices on all of our real and synthetic data sets.
When Euclidean distance is used as the similarity metric on
the ovary data or the synthetic data sets based on the ovary
data, clustering (either with k-means or average-link) using
the first few PC’s usually achieves higher or comparable ad-
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justed Rand indices to without PCA, but the adjusted Rand
indices drop sharply with more PC’s. Since the Euclidean
distance computed with the first m PC’s is just an approxima-
tion to the Euclidean distance computed with all the experi-
ments, the first few PC’s probably contain most of the clus-
ter information while the last PC’s are mostly noise. There
is no clear indication from our results of how many PC’s
to use in the case of Euclidean distance. Choosing PC’s by
the rule of thumb to cover 90% of the total variation in the
data are too many in the case of Euclidean distance on the
ovary data and yeast cell cycle data. Based on our empiri-
cal results, we recommend against using the first few PC’s if
CAST with correlation is used to cluster a gene expression
data set. On the other hand, we recommend using all of the
PC’s if k-means with correlation is used instead. However,
the increased adjusted Rand indices using the “appropriate”
PC’s with k-means and average-link are comparable to that
of CAST using the original variables in many of our results.
Therefore, choosing a good clustering algorithm is as impor-
tant as choosing the “appropriate” PC’s.

There does not seem to be any general relationship be-
tween cluster quality and the number of PC’s used based on
the results on both real and synthetic data sets. The choice
of the first few components is usually not optimal (except
when Euclidean distance is used), and often achieves lower
adjusted Rand indices than without PCA. There usually ex-
ists another set of PC’s (determined by the greedy or modified
greedy approach) that achieves higher adjusted Rand indices
than clustering with the original variables or with the first m
PC’s. However, both the greedy and the modified greedy ap-
proaches require the external criteria to determine a “good”
set of PC’s. In practice, external criteria are seldom available
for gene expression data, and so we cannot use the greedy
or the modified greedy approach to choose a set of PC’s that
captures the cluster structure. Moreover, there does not seem
to be any general trend for the the set of PC’s chosen by the
greedy or modified greedy approach that achieves a high ad-
justed Rand index. A careful manual inspection of our em-
pirical results shows that the first two PC’s are usually chosen
in the exhaustive search step for the set of my components
that give the highest adjusted Rand indices. In fact, when
CAST is used with correlation as the similarity metric, the
3 components found in the exhaustive search step always in-
clude the first two PC’s on all of our real and synthetic data
sets. The first two PC’s are usually returned by the exhaustive
search step when k-means with correlation, or k-means with
Euclidean distance, or average-link with correlation is used.
We also tried to generate a set of random PC’s that always in-
cludes the first two PC’s, and then apply clustering algorithms
and compute the adjusted Rand indices. The result is that the
adjusted Rand indices are similar to that computed using the
first components.

To conclude, our empirical study shows that clustering with
the PC’s enhances cluster quality only when the right number



data CAST k-means  k-means average-link average-link
correlation correlation distance  correlation distance

ovary data = + = + =

cell cycle data = = = = =

Table 1: Comparisons of the average adjusted Rand indices from clustering with different numbers of the first components to
the adjusted Rand indices from clustering the original real expression data. An entry marked “+” indicates the average quality
from clustering with the first components is higher than that from clustering the original data.

synthetic alternative CAST k-means k-means average-link average-link
data hypothesis correlation  correlation distance correlation  distance
mixture of normal no PCA > first | 0.039 0.995 0.268 0.929 0.609
mixture of normal no PCA < first | 0.969 0.031 0.760 0.080 0.418
randomly resampled | no PCA > first | 0.243 0.909 0.824 0.955 0.684
randomly resampled | no PCA < first | 0.781 0.103 0.200 0.049 0.337

cyclic data no PCA > first | 0.023 not available 0.296 0.053 0.799

cyclic data no PCA < first | 0.983 0.732 0.956 0.220

Table 2: Average p-value of the Wilcoxon signed rank test over different number of components on synthetic data sets. Average

p-values below 5% are bold faced.

of components or when the right set of PC’s is chosen. How-
ever, there is not yet a satisfactory methodology to determine
the number of components or an informative set of PC’s with-
out relying on external criteria of the data sets. Therefore, in
general, we recommend against using PCA to reduce dimen-
sionality of the data before applying clustering algorithms un-
less external information is available. Moreover, even though
PCA is a great tool to reduce dimensionality of gene expres-
sion data sets for visualization, we recommend cautious in-
terpretation of any cluster structure observed in the reduced
dimensional subspace of the PC’s. We believe that our empir-
ical study is one step forward to investigate the effectiveness
of clustering with the PC’s instead of the original variables.
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