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Before applying model-based clustering to gene expression data, we assessed the extent to which the Gaussian
mixture assumption holds. Since we do not expect raw expression data to satisfy the Gaussian mixture assumption,
we explored the degree of normality of each class after applying different data transformations. In particular, we
studied two types of data transformations: the Box-Cox transformations [Box and Cox, 1964], and the standard-
ization of each gene (or clone) to have mean 0 and standard deviation 1.

The Box-Cox transformation [Box and Cox, 1964] is a parametric family of transformations from y to y(*
with parameter A:
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The Box-Cox transformation subsumes many commonly used transformations, including the log transforma-
tion which is very popular for microarray data (for example, [Speed, 2000]).

Standardizing each gene (or clone) to have mean 0 and standard deviation 1 is another very popular data trans-
formation step before clustering, for example, [Tamayo et al., 1999] and [Tavazoie et al., 1999]. Note that this
standardization of subtracting the mean and dividing by the standard deviation makes correlation and Euclidean
distance equivalent in the transformed data set.

1 Methodology to test Gaussian mixture assumption

In order to test the Gaussian mixture assumption, gene expression data sets with external criteria in Section 3.1 in
[Yeung et al., 2001] were used. We tested the multivariate normality of each classin each data set. There are large
collections of tests for multivariate normality. We used three different approaches: goodness of fit tests based on
the empirical distribution function, e.g. [Aitchison, 1986], skewness and kurtosis tests, e.g. [Jobson, 1991], and
maximum likelihood estimation of the transformation parameters, e.g. [Andrews et al., 1973].

Aitchison tests. [Aitchison, 1986] tested three aspects of the data for multivariate normality: the marginal uni-
variate distribution, the bivariate angle distribution and the radius distribution. Suppose a gene expression data set
has n genes and p experiments. Since we are interested in clustering the genes, the p experiments are our variables.
There are a total of p tests for each of the marginal distribution, a total of p(p — 1)/2 bivariate angle tests, and one
radius test.

Let x;; be the expression level of gene ¢ under experiment j. Suppose the data set has G classes, and class g
has n, genes (Zle ng =n). Let i® = [ﬂjg] and 39 = [&gj] (where k,j = 1,...,p) be the sample mean vector
and covariance matrix for class g:
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In the marginal test, the normality of the marginal distribution of each experiment j is evaluated. Let ®(-)
denote the standard normal distribution function, and let 2} = ®{(zi; — i})/(/67;} (wheredi = 1,...,ny). If

the z;;’s are normally distributed in class g under experiment j, the sorted values of z{ in ascending order should
approximate the order statistics of a uniform distribution over the interval (0,1).

Three different forms of empirical distribution functions (Anderson-Darling, Cramer-won Mises, and Wat-
son) were used to measure departures of the sorted z; values from the order statistics of the uniform distribu-
tion. Assuming that z{ are the sorted values from class g, The Anderson-Darling statistic is defined as Q4 =
—{>°72,(2i — 1){log 27 + log(1 — Zy 11-3)} — Mg}/ng. The Cramer-von Mises statistic is defined as Q¢ =
Yie{z! —(2i—1)/(2ng)}? +1/(12n,). The Watson statistic is defined as Qw = Q¢ —ny(Z — 3)* where z =
> 09, 27 /n,. Critical values of the empirical distribution function test statistics are given in [Aitchison, 1986].
We used the critical values corresponding to the 1% significance level. For each class, we computed the empir-
ical distribution function test statistics for each of the Anderson-Darling, Cramer-won Mises, and Watson forms
using the z7’s. If a given test statistic for experiment j is greater than the critical value, we say that the marginal
distribution of experiment j shows departure from normality.

In the bivariate angle test, the bivariate normality of each pair of experiments (k, 7) is evaluated. The idea is
that if a pair of variables (u1,u2) is circular normal, then the radian angle between the vector from the origin (0,0)
to (u1,us) and the uq-axis is approximately uniform in the interval [0, 2]. Since any bivariate normal distribution
can be reduced to a circular normal distribution by a suitable transformation, we applied the transformation to each
pair of experiments (k, j) and tested the resulting angle for the uniform property. Again, the empirical distribution
function test statistics are used to measure the departure from the uniform distribution.

In the radiustest, the radius of each gene i in class g is defined as u; = (x; —ﬁg)T(ﬁ)g)_l(xi — [i8), where x;
is the vector of expression levels of gene 7 under all p experiments. Under the multivariate normal assumption of
x;’s, the radii u;’s are approximately distributed as x2(p). If we define z; as the sorted values of F'(u;), where F
is the distribution function of x?(p), we can again use the empirical distribution function test statistics to measure
deviation from the uniform distribution.

Skewness and Kurtosis: Skewness measures the amount of asymmetry in a distribution. For a normal distribu-
tion, the skewness is 0. Kurtosis measures the extent to which the data are peaked or flat relative to the normal
distribution. For the standard normal distribution, the kurtosis is 3. We computed the skewness and kurtosis of
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each class g in the data. Let m;, = (x; — o8)T(28) ~(x, — ji€), where i,r = 1,...,n,. Multivariate skewness
and kurtosis are defined by _Zi”:gl _711 m3./nZ and Y7, uf /ng, and there are distributions for both the multi-
variate skewness and kurtosis [Mardia, 1970]. A small p-value suggests the multivariate normal assumption to be
questionable.

Maximum likelihood estimation of the transformation parameters: The parameter A in the Box-Cox trans-
formation in Equation 1 is estimated by maximum likelihood using the observations [Andrews et al., 1973]. The
estimated value of A suggests both the scale on which the data are closest to normality, and also the extent to which
the data on other scales deviate from normality.

2 Results of testing the Gaussian mixture assumption

We focused on the popular array data transformations: the logarithmic and square root transformations and the
standardization to mean 0 and standard deviation 1. We applied the Aitchison tests and the skewness and kurtosis
tests to each class in the transformed ovary data and the transformed yeast cell cycle data. Due to the large number
of test statistics from the Aitchison tests ((p + p(p — 1)/2 4 1) = 3) for each class on any data, only a summary of
the Aitchison tests is presented in this technical report. In addition, we found the maximum likelihood estimates
of the transformation parameter for each class.

Geometrically, the standardization of subtracting the mean and dividing by the standard deviation of each
observation puts the data points on the (p-2) dimensional surface of a (p-1)-dimensional sphere. Moreover, the
covariance matrices of the standardized data sets are singular. Hence, the skewness and kurtosis tests and the
radius test (which involve the inverse of the covariance matrix) are not applicable to the standardized data.



Ovary data: Table 1 shows the results of the Aitchison tests on each of the four classes in the ovary data. In
the marginal test, if the test statistics of an experiment j from all three empirical distribution functions are greater
than their corresponding critical values at 1 % significance level, we adopt the shorthand convention of saying
that experiment j violates the normality assumption. The column m in Table 1 shows the number of violations
from the 24 marginal tests on each class in the ovary data. Similarly, the column b in Table 1 shows the number

24

of violations from 9 | = 276 bivariate angle tests on each class in the ovary data. The column r has an entry

1 if the test statistics from all three empirical distribution functions are greater than their corresponding critical
values at 1 % significance level in the radius test. Otherwise, the column r has an entry 0. The results from
Table 1 suggest that the square root transformation is closer to multivariate normal than the log transformation.
On the square root transformed data, the marginal test shows that only one experiment (out of 24) deviates from
normality in class 1. Similarly, class 2 has 6 experiments, class 3 has 4 experiments and class 4 has 3 experiments
that deviate from marginal normality. None of the classes in the square root transformed data shows any deviation
in the bivariate angle or radius tests. On the standardized data, the radius tests are not applicable, so the r columns
for the standardized data are marked “NA” in Table 1.

class1 class2 class3 class4

m b r m b r m b r m b r

raw 0 0 O 5 0 0 18 12 0 4 1 0

log 9 0 O 14 12 0 2 0 0 4 0 0

sqrt 1 0 O 6 0 O 4 0 O 3 0 0
standardized | 3 0 NA |7 13 NA |6 O NA |5 2 NA

Table 1: Results of Aitchison tests on the ovary data.

classl class2 class3 class4
raw | skewness | 0.844 0 0 1
raw | kurtosis 0.999 0.001 0.31 1
log | skewness | 0.002 O 0854 1
log | kurtosis | 0.826 O 0999 1
sqrt | skewness | 0.768 0 0559 1
sgrt | kurtosis | 0.999  0.057 0998 1

Table 2: p-values of skewness and kurtosis on the ovary data.

Table 2 shows the p-values of skewness and kurtosis for each class on the raw, log and square root transformed
ovary data. A small p-value indicates deviations from the skewness and kurtosis criteria. From Table 2, class 2
deviates from the skewness and kurtosis criteria in the raw, log and square root transformed data. On the other
hand, class 4 does not violate the skewness or kurtosis criteria. Both the square root and log transformations
improve skewness in the raw data, but the log transformation makes class 1 skewed. To summarize, the skewness
and kurtosis tests show the same overall picture as the Aitchison tests: the square root transformation is relatively
close to multivariate normal.

Table 3 shows the results of the maximum likelihood estimation of the transformation parameters on each of
the four classes on the raw ovary data. £,,,4,(0.5) and £,,4,(0) are the maximum likelihood of the square root
and log transformations respectively From Table 2, the optimal parameters for the Box-Cox transformation (5\) lie
between 0.40 and 0.73 for the four classes in the ovary data. Comparing the maximum likelihood values of the
square root transformation to those of the log transformation shows that the square root transformation is closer to
the multivariate normal distribution in all four classes.



class | A Lmaz(A) | Lmaz(0.5)  Limaz(0)
1 0.728 750 744 678

2 0.658 1195 1188 1060

3 0.405 1221 1219 1179

4 0.590 725 724 689

Table 3: Estimates of the transformation parameter for the ovary data.

Yeast cell cycle data with the 5-phase criterion: Table 4 shows the results of the Aitchison tests on the yeast
cell cycle data with the 5-phase criterion. The results from Table 4 show that the log transformed yeast cell cycle
data is relatively close to the multivariate normal distribution than the square root transformation. With the log
transformation, classes 1, 3, and 4 show no deviation from any of the marginal, bivariate angle and radius tests.
The only deviations from normality in this data set are: class 2 shows deviation from the radius test, and one
experiment (out of 17) in class 5 shows deviation from marginal normality. The Aitchison tests show that the log
transformation greatly enhances normality in all of the 5 classes: the raw data shows significant deviations from
the marginal, bivariate angle and radius tests in all of the 5 classes. The standardized yeast cell cycle data is also
much more Gaussian than the raw data, but not as much as the log transformed data.

class1 class2 class3 class4 classb5
m b r m b r m b r m b r m b r
raw 17 49 1 17 136 1 17 94 1 17 0 1 17 33 1
log 0O 0 O 0 O 1 0 0 O 0O 0 O 1 0 O
sqrt 8 0 1 17 1 1 15 0 1 0O 0 O 7 0 O
standardized | 5 0 NA |4 5 NA|1 O NA|1 0 NA|[2 0 NA

Table 4: Results of Aitchison tests on the yeast cell cycle data with the 5-phase criterion.

classl class2 class3 class4 classb
raw | skewness | 0 0 0 0 0
raw | kurtosis 0 0 0 0 0
log | skewness | 0.051 O 0 0.046 O
log | kurtosis | 0.735 O 0 0.678  0.001
sqrt | skewness | 0 0 0 0 0
sqrt | kurtosis | O 0 0 0.003  0.001

Table 5: p-values of skewness and kurtosis on the yeast cell cycle data with the 5-phase criterion.

Table 5 portrays a different picture than the Aitchison tests: the raw, square root and log transformed data all
show deviations from the skewness and kurtosis criteria. However, the log transformation seems to show relatively
less deviation.

Table 6 supports the conclusions from the other approaches: the optimal transformation is closer (in terms of
difference between Box-Cox power parameter) to the log transformation than to than the square root transforma-
tion. The estimates A are between 0.14 and 0.22 for all 5 classes.

Yeast cell cycle data with the MIPS criterion: In general, the Aitchison tests, the skewness and kurtosis tests,
and the maximum likelihood estimation all show similar patterns to the 5-phase criterion: the log transform is
relatively more Gaussian than the square root transformation (see Tables 7, 8 and 9). However, class 4 (ribosomal



class | A Lmaz(A) | Lmaz(0.5)  Limaz(0)
1 0.136 -4833 -4910 -4844
2 0.140 -9398 -9591 -9429
3 0.202 -4920 -4975 -4945
4 0.153 -3422 -3468 -3431
5 0.219 -3676 -3713 -3701

Table 6: Estimates of the transformation parameter for the yeast cell cycle data with the 5-phase criterion.

proteins) shows significantly more deviations from normality with very low p-values for both the skewness and
kurtosis tests using the log and square root transformations.

class1 class2 class 3 class4
m b r m b r m b r m b r
raw 17 3 1 17 48 O 17 2 1 9 0 1
log 0O 0 O 0 0 O 4 0 1 17 67 1
sqrt 8 0 O 15 0 O 12 0 1 14 1 1
standardized |6 1 NA |2 0 NA |3 0 NA |15 28 NA

Table 7: Results of Aitchison tests on the yeast cell cycle data with the MIPS criterion.

classl class2 class3 class4

raw | skewness | 0 0 1 0
raw | kurtosis | 0 0046 1 0
log | skewness | 0.136 0.999 1 0
log | kurtosis | 0.896 0.999 1 0
sqrt | skewness | O 0747 1 0
sgrt | kurtosis | 0.014 0.99% 1 0

Table 8: p-values of skewness and kurtosis on the yeast cell cycle data with the MIPS criterion.
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