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Abstract

We consider the problem of identifying differentially expressed genes under different con-
ditions using gene expression microarrays. Because of the many steps involved in the exper-
imental process, from hybridization to image analysis, cDNA microarray data often contain
outliers. For example, an outlying data value could occur because of scratches or dust on the
surface, imperfections in the glass, or imperfections in the array production. We develop a
robust Bayesian hierarchical model for testing for differential expression. Errors are modeled
explicitly using a t-distribution, which accounts for outliers. The model includes an exchange-
able prior for the variances which allow different variances for the genes but still shrink ex-
treme empirical variances. Our model can be used for testing for differentially expressed genes
among multiple samples, and it can distinguish between the different possible patterns of dif-
ferential expression when there are three or more samples. Parameter estimation is carried out
using a novel version of Markov chain Monte Carlo that is appropriate when the model puts
mass on subspaces of the full parameter space. The method is illustrated using two publicly
available gene expression data sets. We compare our method to six other baseline and com-
monly used techniques, namely the t-test, the Bonferroni-adjusted t-test, Significance Analysis
of Microarrays (SAM), Efron’s empirical Bayes, and EBarrays in both its Lognormal-Normal
and Gamma-Gamma forms. In an experiment with HIV data, our method performed better
than these alternatives, on the basis of between-replicate agreement and disagreement.

KEY WORDS: Affymetrix; Bayesian hierarchical model; Bonferroni adjustment; cDNA mi-
croarrays; Empirical Bayes; Heteroscedasticity; Markov chain Monte Carlo; Mixture distribu-
tion; Outlier; Singular distribution; t-distribution.

1 Introduction

cDNA microarrays (Schena et al. 1995) consist of thousands of individual DNA sequences printed

on a high density array on a glass microscope slide using a robotic arrayer. A microarray works
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by exploiting the ability of a given labeled cDNA molecule to bind specifically to, or hybridize

to, a complementary sequence on the array. By using an array containing many DNA samples,

scientists can measure—in a single experiment—the expression levels of hundreds or thousands of

genes within a cell by measuring the amount of labeled cDNA bound to each site on the array. In

a typical two-color microarray experiment, two messenger RNA (mRNA) samples, from control

and treatment situations, are compared for gene expression. Both mRNA samples are reverse-

transcribed into cDNA, labeled using different fluorescent dyes (red and green dyes), and then

mixed and hybridized with the arrayed DNA sequences. The hybridized arrays are then imaged

to measure the red and green intensities for each spot on the glass slide. The estimates of the red

and green intensities are the starting point of any statistical analysis. Similarly, microarrays can be

used to compare the mRNA levels of thousands of genes under several experimental or biological

conditions by using several samples. One of the main research areas is to detect genes that are

differentially expressed across the different conditions.

In recent years, there has been a considerable amount of work on the detection of differentially

expressed genes. An early statistical treatment can be found in Chen, Dougherty, and Bittner

(1997). A common approach is to test a hypothesis for each gene and then try to correct for multiple

testing. Most of the statistics used are variants of t or F statistics. This was done by Dudoit et al.

(2002) using Welsh’s t statistic with p-values estimated by permutations. Tusher, Tibshirani, and

Chu (2001) and Baldi and Long (2001) used a modification of the t statistic where the denominator

was modified by adding a constant to improve the estimate of the standard deviation.

In each of these situations, two types of error can occur: a false positive (type I error) or a false

negative (type II error). When many hypotheses are tested at the same time, the chance of making

a type I error increases. One approach to overcoming this problem is to try to control the total

number of type I errors or false positives. This can be done using multiple testing procedures to

control some measure of the overall type I error. The most two common measures in the area of

microarrays are the familywise error rate (FWER), which is the probability of making at least one

type I error, and the false discovery rate (FDR), which is the proportion of false positives among

the total number of discoveries reported. One of the most used FWER-based adjustments is that of

Bonferroni. Tusher et al. (2001) used a permutation technique to estimate and control the FDR.
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Newton et al. (2001) and Kendziorski et al. (2003) introduced an empirical Bayes approach

to detect changes in gene expression on cDNA slides. Efron (2004) , extending the work of Efron

et al. (2001), used an empirical Bayes approach to detect differentially expressed genes with a

two component mixture model. Ibrahim, Chen, and Gray (2002) and Tadesse, Ibrahim, and Mutter

(2003) have introduced more fully Bayesian approaches where “exact” estimation is carried out by

Markov chain Monte Carlo.

In this paper we introduce a Bayesian hierarchical model to test for differentially expressed

genes in a robust way based on the previous work of Gottardo et al. (2003b) to estimate the mean

intensities from replicates. Robustness is achieved by using a hierarchical t formulation (Besag and

Higdon 1999), which is more robust to outliers than the usual Gaussian model. The model includes

an exchangeable prior for the variances, allowing each gene to have a different variance while still

achieving some shrinkage. We elaborate this model by introducing a prior that allows us to detect

differentially expressed genes in multiple-sample experiments, where the number of samples can

be greater than two. The prior is written as a mixture of singular Gaussian distributions. We show

how one can use Markov chain Monte Carlo to estimate the parameters, even though the model

contains a component that is a mixture of singular distributions. Inference is based on the posterior

probabilities of differential expression calculated from our model. We call our method BRIDGE

(Bayesian Robust Inference for Differential Gene Expression).

The paper is organized as follows. Section 2 introduces the data structure and the notation. In

Section 3 we present the Bayesian hierarchical model, and in Section 4 we show how it is used

to test for differential expression. Section 4 also reviews six other baseline and commonly used

methods to test for differentially expressed genes in the two sample case. In Section 5, we apply the

methods to experimental data and compare the results. In Section 6, we show how one can extend

our model to multiple-sample experiments and use it to detect differentially expressed genes in a

three sample experiment. Finally, in Section 7 we discuss our results and possible extensions.
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2 Data

We used two data sets that are fairly typical of data in this area. We use the word “sample” to

describe different experimental or biological conditions.

The HIV data: This data set, described by van’t Wout et al. (2003), consists of four experiments

using the same RNA preparation on 4 different slides. The expression levels of 7680 cellular RNA

transcripts were assessed in CD4-T-cell lines at time t = 24 hour after infection with HIV virus

type 1. This dataset contains two samples, one of which corresponds to the HIV infected cells

and the other to non-infected cells. It also contains 12 HIV-1 genes used as positive controls, i.e.

genes known in advance to be differentially expressed. This dataset is the result of a balanced

dye-swap experiment. Two of the four (technical) replicates were hybridized with the green dye

(Cy3) for the control and the red dye (Cy5) for the treatment; then the dyes were reversed on the

other two replicates. After the image analysis, the data take the form yisr, i = 1, . . . , I; s =

1, 2; r = 1, . . . , R, where yisr are the log transformed estimated intensities of gene i in sample s

from replicate r.

The BRCA data: Hedenfalk et al. (2001) conducted a study to examine breast cancer tissues from

patients carrying mutations in the predisposing genes, BRCA1 or BRCA2, or from patients not

expected to carry a hereditary mutation. Hedenfalk et al. (2001) examined 22 breast cancer tumor

samples: 7 tumors with BRCA1, 8 tumors with BRCA2 and 7 sporadic tumors, i.e. with neither

mutation. In this data, “samples” refer to tissue sample types and there is no color swap. A set

of 3226 genes was pre-selected by Hedenfalk et al. (2001) by filtering the raw images. The data

take the form yisr ≡ log2(xisr/ref ir), i = 1, . . . , I; s = 1, 2, 3; r = 1, . . . , Rs, where xisr is the

intensity from gene i of the r-th (biological) replicate in sample s, and ref ir is the intensity from

a common reference sample. Note that here, Hedenfalk et al. (2001) used a reference sample

because there are three samples of interest: BRCA1, BRCA2 and sporadic.

Each dataset was normalized so that the mean of the log expression values across genes in each

experiment is zero. There are more elaborate normalization techniques (Tseng et al. 2001; Yang

et al. 2002) but we do not adress normalization issues in this paper, and we assume that it was

done as a preprocessing step.
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3 Differential Expression with Two Samples

In this section, we introduce the Bayesian hierarchical model used to test for differentially ex-

pressed genes in the two sample case. Our model extends the one used by Gottardo et al. (2003b)

to allow it to detect differentially expressed genes with two samples. We consider two types of

design: direct comparison using cDNA microarrays, and indirect comparison using cDNA mi-

croarrays or oligonucleotide arrays (e.g. Affymetrix). The difference lies in how the errors are

modeled. In the case of direct comparison with cDNA microarrays, we use a bivariate distribution

with non-zero correlation, because measurements come in pairs. In the case of indirect comparison

designs and oligonucleotide arrays, there is no need for this additional feature. In each situation,

we model the measurements from each gene as the sum of a sample effect and an error term.

The sample effects and error variances are assumed to arise from a genomewide distribution with

hyperparameters specific to each sample.

3.1 The Models

3.1.1 Direct comparison using cDNA microarrays

Two-color microarrays can be used to compare two samples of interest directly. Each measurement

consists of a pair of observation (yi1r, yi2r) from the two samples. The model is as follows:

yisr = γis +
εisr√
wir

, (1)

(εi1r, εi2r)
′|Vi ∼ N2(0,Vi),

(wir|νr) ∼ Ga(νr/2, νr/2),

where wir and (εi1r, εi2r)
′ are independent. Since the w’s are independent of the ε’s, we have

εisr/
√

wir ∼ T(νr ,0,Vi), i.e. the (bivariate) errors have a bivariate t-distribution with νr degrees of

freedom and covariance matrix Vi.

For a given gene, the correlation matrix, Vi, allows the measurements from the two samples to

be correlated and each gene to have its own variance. The precision matrix (i.e. the inverse of the

covariance matrix) is given by

(V−1
i |ρ, λεi1

, λεi2
) =

1

(1 − ρ2)

(

λεi1

−
√

λεi1
λεi2

ρ

−
√

λεi1
λεi2

ρ

λεi2

)

,
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where ρ is the correlation between samples and λεis
is the precision of gene i in sample s.

3.1.2 Indirect comparison and oligonucleotide arrays

In this case, the experimental design can be unbalanced and there is no physical reason to model

the observation as bivariate. We modify the model as follows:

yisr = γis +
εisr√
wisr

, (2)

(εisr|λεis
) ∼ N(0, λ−1

εis
),

(wisr|νr) ∼ Ga(νr/2, νr/2),

where wisr and εisr are independent. It follows that εisr/
√

wisr has a t-distribution with νr degrees

of freedom and scale parameter λ−1
εis

.

In both of models (1) and (2), we model γis, the effect of sample s on gene i, as a random effect

with a mixture of two singular Gaussian distributions, i.e.

(γi|λγ, p) ∼ (1 − p)N(γi1; 0, λ
−1
γ12

)1[γi1=γi2] + pN(γi1; 0, λ
−1
γ1

)N(γi2; 0, λ
−1
γ2

)1[γi1 6=γi2], (3)

where γi = (γi1, γi2)
′ and λγ = (λγ1 , λγ2 , λγ12). The first component corresponds to the genes that

are not differentially expressed (γi1 = γi2), while the second component corresponds to the genes

that are differentially expressed (γi1 6= γi2). Note that the formulation is not standard as it is not

absolutely continuous with respect to two-dimensional Lebesgue measure. However it defines a

proper distribution with respect to a more general dominating measure, namely the sum of a one-

dimensional Lebesgue measure on the line γi1 = γi2 and the two-dimensional Lebesgue measure

(Gottardo and Raftery 2004).

Finally, we use an exchangeable prior for the precisions, so that information is shared between

genes, namely λεis
∼ Ga(a2

εs
/bεs

, aεs
/bεs

), i.e. a gamma distribution for each sample with mean

aεs
and variance bεs

.

3.2 Priors

We use a vague but proper prior for the parameters λγ12 , λγ1 , λγ2 of the distributions of the sample

effects γis in (3). This is exponential with mean 200, so that λγ ∼ Ga(1, 0.005).
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We also use vague but proper priors for the error precisions, specified by aεs
∼ U[0,1000] and

bεs
∼ U[0,1000]. The prior for the correlation between the two samples is given by ρ ∼ U[−1,1]. The

prior for the mixing parameter, p, is uniform over [0, 1]. The prior for the degrees of freedom, νr,

is uniform on the set {1, 2, . . . , 10, 20, . . . , 100}.

3.3 Parameter Estimation

Realizations were generated from the posterior distribution using Markov chain Monte Carlo

(MCMC) algorithms (Gelfand and Smith 1990). All updates are straightforward except for γ,

for which the update is nonstandard since the distribution is formed by two singular components.

However, there is a common dominating measure and so the Metropolis-Hastings algorithm can

be used (Gottardo and Raftery 2004). In the case of model (1), if the errors were taken to be

independent, i.e. ρ = 0, the full conditional of γ would be given by

(γi| . . . ) ∝ (1−p)ciN(γi1; µ
∗
i , λ

∗
i
−1)1[γi1=γi2] +pci1ci2N(γi1; µ

∗
i1, λ

∗
i1
−1)N(γi2; µ

∗
i2, λ

∗
i2
−1)1[γi1 6=γi2],

where

λ∗
i =

∑

r,s

wirλεis
+ λγ12 , µ∗

i = λ∗
i
−1
∑

r,s

wirλεis
yisr,

and

λ∗
is = λεis

∑

r

wir + λγs
, µ∗

is = λ∗
is
−1
∑

r

wirλεis
yisr.

The constants ci, ci1 and ci2 are given by

ci =

√

λγ12

λ∗
i

exp







−0.5
∑

r,s

wirλεis
y2

isr + 0.5λ∗
i
−1

(

∑

r,s

wirλεis
yisr

)2






,

and

cis =

√

λγs

λ∗
i1

exp







−0.5λεis

∑

r

wiry
2
isr + 0.5λ∗

is
−1

(

∑

r

wirλεis
yisr

)2






.

To update γ, one draws new pairs (γi1, γi2) from the null component of the full conditional with

probability (1 − p∗) ≡ (1 − p)c/[pc1c2 + (1 − p)c], or from the other component with probability

p∗. When ρ 6= 0, we used the full conditional given above as proposal and corrected the acceptance

probability with a Hastings correction factor. This gave a high acceptance rate, about 90% in the
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example presented here. In the case of model (2), the errors are independent and the Gibbs sampler

as described above can be used, replacing wis by wisr.

Trace plots and autocorrelation plots were used as convergence diagnostic tools. For each

dataset presented here, we found that a sample of 50,000 iterations with 1,000 burn-in iterations

and storing every 10th iterations was sufficient to produce reliable results. Guided by this, and

leaving some margin, we used 100,000 iterations with 5,000 burn-in iterations, and stored every

10th iteration after the burn-in period. This took about 9 hours for the HIV data and 6 hours for

the BRCA data (BRCA1 and BRCA2 samples only) on an Intel Xeon processor at 3GHz.

4 Methods to be Compared

In this section, we describe seven methods for detecting differentially expressed genes with cDNA

microarrays. These seven methods will be compared in section 5.

Bayesian Robust Inference for Differential Gene Expression (BRIDGE): From model (1) and (2)

we can compute the marginal posterior probability of differential expression of gene i, namely

%i = Pr(γi1 6= γi2|y). For each gene i, the marginal posterior probability of differential expres-

sion, %i, corresponds to the posterior probability that γi1 6= γi2 given the data. For a given posterior

sample S of size B we estimate the posterior probabilities by %̂i = 1
B

∑

k∈S 1
[γ

(k)
i1 6=γ

(k)
i2 ]

, where γ
(k)
i1

and γ
(k)
i2 are the values generated at the kth MCMC iteration and 1

[γ
(k)
i1 6=γ

(k)
i2 ]

is the indicator func-

tion, equal to one if γ
(k)
i1 6= γ

(k)
i2 . When the Gibbs sampler is available for updating γ, which is

the case for model (2), Rao-Blackwelization could be used to improve the estimates. One would

need to replace the indicator function by the conditional probability P (γ
(k)
i1 6= γ

(k)
i2 | · · · ), i.e. the

probability that γ
(k)
i1 6= γ

(k)
i2 given all the other parameters. Inference is based on the posterior

probabilities and we discuss possible thresholds at the end of this section.

Raw and Bonferroni-adjusted t-tests: A classical procedure for testing a null hypothesis about

the mean of a distribution or the equality of two means is the t-test. Here we apply one sample

t-tests to log-ratios (i.e. HIV data), or two sample t-tests on the log measurements in the case of
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oligonucleotide arrays or designs with a reference sample, such as the BRCA data. Because of

the large number of hypotheses tested we also report the results of adjusting the p-values using

the Bonferroni adjustment. The Bonferroni adjustment method controls the familywise error rate

(FWER), which is the probability of yielding one or more false positives. If P is the raw p-value,

then the Bonferroni-adjusted p value is min{IP, 1}. We declare a gene to be differentially ex-

pressed if its raw or adjusted p-value is less than 0.05.

Significance Analysis of Microarrays (SAM): This is a statistical technique for finding significant

genes in a set of microarray experiments, proposed by Tusher, Tibshirani, and Chu (2001). SAM

uses regularized t-tests where the estimate of the standard deviation is regularized with a common

estimate of the standard deviation and controls an estimate of the FDR, which is the proportion of

falsely identified genes among the genes declared to be differentially expressed. Using the SAM

software (Chu et al. 2002), we select the largest rejection region with estimated FDR less than 0.1.

In the literature, FDR values between 5% and 10% are commonly used (Tusher, Tibshirani, and

Chu 2001; Efron 2004). In our experiments, the results were not very sensitive to the choice of the

FDR value and we used 10%.

Empirical Bayes (EBarrays) Lognormal-Normal and Gamma-Gamma models: Newton et al. (2001)

developed a method for detecting changes in gene expression in a single two-channel cDNA slide

using a hierarchical gamma-gamma model. Kendziorski et al. (2003) extended this to replicate

chips with multiple conditions, and provided the option of using a hierarchical lognormal-normal

(LNN) model. For the gamma-gamma (GG) model, the observation component is a gamma dis-

tribution with mean γ and scale α/γ. The coefficient of variation α is taken to be constant across

genes and α/γ is assumed to have an inverse gamma distribution. For the lognormal-normal (LNN)

model the observation component is a lognormal distribution with mean parameter γ and variance

parameter σ2, taken to be the same for all the genes. The conjugate prior for γ is normal with mean

γ0 and variance τ 2
0 . For both models, the prior can be integrated out and the EM algorithm can

be used to estimate the unknown parameters. Inference is based on the posterior probabilities of

differential expression (Kendziorski et al. 2003) and we discuss possible thresholds at the end of
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this section.

Efron’s Empirical Bayes: Efron (2004) uses an empirical Bayes approach combined with a lo-

cal version of the false discovery rate to test for differential expression. He uses a two component

mixture to model z-scores (gene specific summary statistics) and detect differentially expressed

genes. In the two sample case, the z-scores are obtained from two sample t-statistics; see Efron

(2004). For each gene, inference is based on the local false discovery rate fdr(z) ≡ f0(z)/f(z)

where f0 is the empirical null density and f is the mixture density estimated from the observed

data. Efron (2004) used a 10% fdr to call a gene differentially expressed.

Using posterior probabilities, a common rule is to declare a gene to be differentially expressed

if its posterior probability is greater than 0.5, which corresponds to the usual 0-1 loss. To compare

EBarrays and BRIDGE to the different cutoffs used in SAM and Efron’s method, we also use two

other posterior probability thresholds for declaring genes, one comparable to SAM and the other

comparable to Efron’s method. The first threshold controls the FDR at 10%, which corresponds

to selecting the largest list having average null posterior probability less than 0.1 (Genovese and

Wasserman 2002). The second threshold is 0.9.

5 Results

5.1 HIV data

We fitted model (1), described in Section 3.1, to the HIV data. The posterior modes of the degrees

of freedom of the t-distribution, νr, ranged from 4 to 100, indicating that the sampling errors can

be heavier-tailed than the Gaussian distribution and that the proportion of outliers varies from array

to array. There is substantial between-sample correlation, estimated as 0.56, even after removing

the sample effects.

The proportion of differentially expressed genes is estimated to be 0.007. Figure 1 is a plot of

the posterior probabilities against the posterior means of the log-ratios computed from our model.

A relatively small number of genes seem to be differentially expressed. To evaluate the effect of
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the t-distribution, we fitted the model given by (1) replacing the t errors with Gaussian errors.

The t-based model clearly leads to a more powerful test than the Gaussian as the corresponding

posterior probabilities are higher (Figure 1). The model with the t-distribution detects more genes,

35 as against 25 at the 0.5 posterior threshold. Table 1 illustrates this for two genes containing

outliers. The posterior probabilities of expression from the model with the t-distribution are more

than twice as large as those from the Gaussian model. This is because the downweighting of

extreme values leads to smaller estimated variances and hence a higher posterior probability of

differential expression for genes such as those in Table 1.

In comparison, the unadjusted t-test yields many p-values less than 0.05. More than 700 genes

have raw p-values less than 0.05 whereas only 2 have adjusted p-values less than 0.05. The adjust-

ment is clearly too conservative since we know for sure from external information that at least 12

genes are differentially expressed. SAM, EBarrays GG and LNN (at the 0.5 threshold) and Efron’s

method report 125, 83, 75 and 122 differentially expressed genes, respectively, while BRIDGE (at

the 0.5 threshold) reports 35 differentially expressed genes. BRIDGE and EBarrays GG and LNN

controlling the FDR at 10%, detect 33, 86 and 81 genes, respectively. BRIDGE and EBarrays

GG and LNN, with a cutoff posterior probability of 0.9 (comparable to Efron’s method with 10%

local fdr), detect 23, 63 and 60 genes, respectively. All the methods except the t-test with ad-

justed p-values correctly detect the 12 positive control genes, i.e. those known to be differentially

expressed.

In order to evaluate the performance of each method, we divided the four replicates of the HIV

data into groups of two replicates. We did this division in both the possible ways that preserves the

dye-swap design. We applied each method to each group of replicates and looked at the agreement

and disagreement between the genes declared to be differentially expressed. All the methods except

the t-test (both raw and adjusted p-values) detected the 12 positive controls. Overall, the number

of genes declared to be differentially expressed was smaller when two replicates were used than

when four replicates were used, for all the methods except EBarrays and Efron’s method.

Table 2 shows the number of agreements and disagreements between the two groups of repli-

cates, for each of the seven methods we consider. The raw and adjusted t-tests both performed

poorly: the raw t-test recorded a very high level of disagreement, presumably corresponding to a
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large number of false positives, while the adjusted t-test was clearly too conservative. Among the

other methods, the numbers of genes on which there was agreement were comparable, but EBar-

rays and Efron’s recorded much larger numbers of genes on which there was disagreement than

BRIDGE or SAM. Comparing BRIDGE with SAM, BRIDGE recorded agreement on more genes

than SAM, with lower levels of disagreement for each group. It thus seems that for this particular

dataset, using the criterion of agreement between replicates, BRIDGE did better than the other

methods at identifying differentially expressed genes.

5.2 BRCA data

This time, we fitted model (2) described in Section 3.1 to the BRCA data. The posterior modes

of the degrees of freedom of the t-distribution, νr, again ranged from 4 to 100, indicating that

the sampling errors can be heavier-tailed than the Gaussian distribution and that the proportion of

outliers varies from array to array. The proportion of differentially expressed genes is estimated

to be 0.36, which is much larger than for the HIV data and indicates that more genes are differ-

entially expressed. This is consistent with the results of Hedenfalk et al. (2001) where the author

observed that the BRCA1 and BRCA2 mutations differed significantly in their global patterns of

gene expression.

We compare the numbers of genes declared to be differentially expressed by each method. This

time we only used the LNN model, because if the intensity measurements arise from a lognormal

distribution, then so should the ratio. However this is not the case for a gamma distribution. Efron’s

method and the t-test with adjusted p-values seem very conservative with only 0 and 2 genes

declared differentially expressed, respectively. BRIDGE, SAM, and EBarrays controlling the FDR

at 10%, detect about the same numbers of genes: 291, 374 and 375, respectively. BRIDGE and

EBarrays with a cutoff posterior probability of 0.9, which is comparable to Efron’s method with

10% local fdr, still detect 157 and 153 genes. BRIDGE with posterior probabilities greater than 0.5

detect more genes than EBarrays with the same threshold, 880 against 415. The different methods

are also compared in the next section when using the full BRCA data.
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6 The Multiple Sample Case

Even though the models introduced in Section 3.1 are intended to test for differential expression

between two samples, they can be extended to situations where there are more than two samples

and differences in expression of the same gene between any two samples may be of interest. Here

the alternative hypothesis is not as simply defined as before, because there are many possible

patterns of differential gene expression. In order to account for all possible patterns, the prior

for the γ’s in (3) needs to be modified. Because most microarray technologies allow the direct

comparison of at most two samples, we need only to introduce a single model, which is similar

to (2). We need to show how the prior for γ can be modified for the case where we have three

samples. The generalization to more than three samples should be straightforward.

6.1 The model

The general model is the same as (2) with three samples, i.e. s = 1, 2, 3. We need only to modify

the distribution of γ, the vector of sample effects in each sample, to allow each possible pattern of

differential expression to have positive probability. We still model it as a random effect, but this

time with a mixture of five singular Gaussian distributions, as follows:

(γ|λγ, p) ∼ p1N(γ1; 0, λ
−1
γ1

)1[γ1=γ2=γ3]

+ p2N(γ1; 0, λ
−1
γ1

)N(γ2; 0, λ
−1
γ23

)1[γ1 6=γ2=γ3]

+ p3N(γ2; 0, λγ2)N(γ1; 0, λ
−1
γ13

)1[γ1=γ3 6=γ2]

+ p4N(γ3; 0, λ
−1
γ3

)N(γ1; 0, λ
−1
γ12

)1[γ1=γ2 6=γ3]

+ p5N(γ1; 0, λ
−1
γ1

)N(γ2; 0, λ
−1
γ2

)N(γ3; 0, λ
−1
γ3

)1[γ1 6=γ2 6=γ3], (4)

where λγ = (λγ1 , λγ2 , λγ3, λγ12 , λγ13 , λγ23 , λγ123) is the vector of precisions, and p is the vector of

probabilities for the five patterns, constrained to sum to one. The five components correspond to

all five possible patterns of expression. As before, the formulation is not standard since it is not

absolutely continuous with respect to the three-dimensional Lebesgue measure, but it does define

a proper distribution with respect to a more general dominating measure (Gottardo and Raftery

2004).
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We kept the priors described in Section 3.2. All the λγ’s have exponential prior distributions

with mean 200. The mixing probabilities have a prior distribution that is uniform over the simplex

S = {p :
∑

i pi = 1}, i.e. the prior is D(1, 1, 1, 1, 1), Dirichlet with common hyperparameters 1.

Due to the independence of the errors, the full conditional for γ is available and so Gibbs sampling

can be used as described in Section 3.3.

6.2 Results

We fitted the model given by (2) with three samples to the BRCA data. The posterior modes of

the degrees of freedom of the t-distribution, νr, ranged as low as 4, indicating that the sampling

errors can be more heavy-tailed than the Gaussian distribution. The posterior mixing probabilities,

p1, . . . , p5, of the five patterns of differential expression, are summarized in Table 3 by their pos-

terior means. The mixing probabilities clearly favor the null pattern of no differential expression,

suggesting that most of the genes are not differentially expressed. They also suggest that there

is more difference between the BRCA1 and the BRCA2 tumors than any BRCA with sporadic

tumors. This confirms results from Hedenfalk et al. (2001).

EBarrays is similar in this case to what it was for the two sample case described in Section 4;

see Kendziorski et al. (2003) for further details. Efron’s method and SAM can also be used in a

three sample context. In Efron’s method, one can simply replace the t-test by an F -test, and in

SAM the modified t-statistic is replaced by a modified F -statistic (Chu et al. 2002).

For each gene, we wish to compare the five different patterns of differential expression given

by each component of (4), which we denote by Pi. For each gene and pattern, we can compute the

posterior probability that the gene conforms to that pattern. We computed the BRIDGE posterior

probabilities from our model and the posterior probabilities using EBarrays. For comparison pur-

poses, we followed Kendziorski et al. (2003) in classifying a gene as conforming to a pattern if

the corresponding posterior probability was greater than 0.5. The numbers of genes classified into

each pattern are quite different. (Table 3).

This may be due to two main differences between the two methods. First, EBarrays models

within-gene variances as constant, while BRIDGE allows for them to vary between genes. If

within-gene variances do indeed vary between genes, then a method such as EBarrays that assumes
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constant variance may be more likely to incorrectly classify genes with high variances. Second, in

its lognormal-normal version, EBarrays assumes measurement errors to be normally distributed,

while BRIDGE allows their distribution to have heavier tails. If the tails are indeed heavier, for

example if there are outliers, then a method such as EBarrays that assumes normality may be

more likely to (incorrectly) declare genes with outlying measurements in some replicates to be

differentially expressed.

To illustrate the latter point, consider Figure 2, which shows the expression levels for the three

genes classified into pattern P5 by EBarrays. The posterior probabilities of being in pattern P5

reported by EBarrays are 0.99, 0.75 and 0.96. The same three genes are not classified into the

P5 pattern by our method but into patterns P1, P3 and P3, respectively, with BRIDGE posterior

probabilities 0.74, 0.58 and 0.58. The first gene in Figure 2 seems to contain several possible

outliers, e.g. measurements 9 and 10. The posterior mean of the weights, w, from our model

shows that these values have been downweighted. As a result, the gene is not declared to be

differentially expressed in any way by our method. Similarly, the sporadic tumor samples of the

two other genes (samples 16-22) contain several possible outliers that are downweighted by our

model. The three tumor types no longer seem differentially expressed and our method classifies

the two genes into pattern P3, though the posterior probabilities of being in model P2 were also

high at 0.41 and 0.31 respectively. Visual inspection suggests that the choices made by EBarrays

were quite influenced by a few extreme values, which our method downweights.

Looking at the numbers of genes that are significantly different from the null pattern, Efron’s

method is still conservative with only 0 genes declared differentially expressed. BRIDGE, SAM,

and EBarrays controlling the FDR at 10%, detect about the same numbers of genes: 252, 324

and 447, respectively. BRIDGE and EBarrays with a cutoff posterior probability of 0.9, which

is comparable to Efron’s method with 10% local fdr, detect 133 and 295 genes. BRIDGE with

posterior probabilities greater than 0.5 detect more genes than EBarrays with the same threshold,

806 against 505. This results are consistent with the two sample case.
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7 Discussion

We have developed a framework for testing for differential expression in gene expression arrays, in

a way that is robust to outlying measurements and powerful even with a small number of replicates.

Our Bayesian hierarchical model is based on a model used by Gottardo et al. (2003b) to estimate

microarray intensities in a robust way. We modified the model by using a novel form of prior that

allows us to detect differentially expressed genes in multiple-sample experiments. When there are

three or more samples, the model allows us to detect the differentially expressed genes, and also to

classify them into the different patterns of differential expression. In an experiment with HIV two

sample data, we compared our method with six other baseline and commonly used methods, and

it performed better, at least in terms of agreement and disagreement between groups of replicates.

Our model requires more computing than some other methods because it involves MCMC, and

users would need to decide whether the improved results are worth the additional computing time.

We assume that normalization was done as a preprocessing step but it is possible to include

normalization effects in the model (Gottardo et al. 2003b). We also assumed that the genes were

independent and that measurement for a given gene were independent too. While it would be

hard to incorporate dependence among the genes, it would be possible to introduce some genewise

correlation for the measurement errors. This was not done here but could be done as in Kendziorski

et al. (2003). As we have shown in the three-sample case, our model can easily be generalized

to test for differential expression among an arbitrary number of samples. However, the number of

components needed and the associated number of parameters grow exponentially. It will be hard

to fit the model when the number of samples is too large. One solution would be to consider only

certain patterns of expression to reduce the number of components in the mixture (Kendziorski

et al. 2003).

In order to compare our method with others, we identified a gene as differentially expressed

if the posterior probability of its being so was greater than a given threshold. In practice, though,

we would often not use a cutoff, but instead would report the posterior probabilities themselves. A

biologist could then choose to do further research on a number of the most likely genes, taking ac-

count of resource constraints, or to study genes whose posterior probability exceeds a pre-specified
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threshold. The posterior probabilities from our model are well calibrated and easy to interpret.

In this paper, we have compared our model with six alternatives, but there are many other

methods for detecting differentially expressed genes with gene expression data. We chose these

six because they are either obvious baseline methods or widely used; they are also representative

of other methods. For example, there are several other empirial Bayes methods that we could have

used. These includes the lognormal-normal models of Lönnstedt and Speed (2002) and Gottardo

et al. (2003a) and the less parametric approaches of Efron et al. (2001) and ?). More comparisons

between statistical tests can be found in Cui and Churchill (2003). Among explicit adjustments for

multiple testing, we considered only the Bonferroni adjustment and the FDR control methods given

by SAM and Efron’s method; these are widely used and easy to understand. But other adjustments

for multiple comparisons have been proposed, and we refer the reader to Dudoit, Shaffer, and

Boldrick (2003) for recent review.
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Figure 1: Posterior probabilities from the BRIDGE method with both Gaussian and t errors plotted
against the posterior differences between γ1 and γ2 (estimated log-ratios) from the model with t-
distribution for the HIV24 data. Most of the log-ratios are shrunk close to zero and have very
low posterior probabilities of differential expression. The use of the t-distribution increases the
posterior probabilities of expression for several of the genes.

22



BRCA Data Log Ratios

2 4 6 8 10 12 14 16 18 20 22

1

2

3

−1 0 1 2 3 4 5

BRCA Data: BRIDGE Weights

2 4 6 8 10 12 14 16 18 20 22

1

2

3

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Figure 2: The three genes with the greatest EBarrays posterior probabilities of conforming to
pattern P5 (all three samples different) based on the LNN model (top). The corresponding posterior
weights from our model (bottom). The first 7 samples (1-7) correspond to BRCA1 tumors, the
next 8 samples (8-15) correspond to BRCA2 tumors and the last 7 samples (16-22) correspond
to sporadic tumors. Several possibly outlying samples were heavily downweighted by our model.
The two dark outliers, measurements 9-10 from gene 1, were truncated to 5 for clarity. The actual
data values are 6.64 and 7.13, respectively.
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Table 1: Log Ratios of Two Genes of the HIV Data Sets. The BRIDGE posterior probabilities
were computed using both t-distributed errors and Gaussian errors. The use of the t-distribution
downweights the potential outliers and increases the posterior probability of expression.

Replicates Post. prob.
1 2 3 4 Gauss. t

gene 1 1.29 0.75 2.39 1.82 0.20 0.51
weights 0.99 0.94 0.60 0.88
gene 2 1.35 1.67 2.77 1.18 0.35 0.77
weights 1.00 1.14 0.50 0.98

Note: The weights are the posterior means of the w’s computed from our model.
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Table 2: Agreement and disagreement about the differential expression of genes in the HIV data
when the 4 replicates are divided into two sets of two. For each method, “Agreement” denotes the
number of genes declared to be differentially expressed based on both sets of two replicates, while
“Disagreement” refers to the number of genes that were declared to be differentially expressed
based on one set of two replicates, and not to be differentially expressed based on the other set of
two replicates. Using BRIDGE and EBarrays, we report three numbers, the first two corresponding
to posterior probability thresholds of 0.5 and 0.9, while the third controls the FDR at 10%.

Rep. 1&3 vs. 2&4 Rep. 1&4 vs. 2&3
Agreement Disagreement Agreement Disagreement

BRIDGE PP>.5 18 11 18 6
PP>.9 14 7 15 4
FDR<.1 18 12 20 5

SAM FDR<.1 17 16 16 6
EBarrays GG PP>.5 22 78 22 46

PP>.9 20 54 22 28
FDR<.1 23 82 22 50

EBarrays LNN PP>.5 30 133 26 99
PP>.9 26 100 24 59
FDR<.1 31 143 26 103

Efron’s method local fdr<.1 22 308 44 399
t-test Raw p<0.05 25 467 21 427

Adj. p<0.05 0 0 0 0
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Table 3: Estimates of the mixing probabilities for the five patterns of expression, and the numbers
of genes classified into each pattern on the BRCA data from model (2) with three samples, and
from EBarrays. A gene was classified into a pattern if the corresponding posterior probability
of its conforming to that pattern was greater than 0.5. The null pattern has the highest average
posterior probability according to both methods.

P1 P2 P3 P4 P5

BRIDGE Mix. prob. 0.66 0.11 0.22 0.01 0.0006
Nb. of genes 2415 89 356 17 0

EBarrays (LNN) Mix. prob. 0.79 0.067 0.11 0.019 0.00025
Nb. of genes 2721 147 272 36 3
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