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Abstract

Understanding biological systems at the level of genes and
proteins is a major challenge. In this paper we represent the
interactions among external environmental inputs and genes
in a biological system with a graph-theoretic model called a
biological pathway. Our goal is to verify a proposed biologi-
cal pathway by observing the mRNA levels in the associated
biological system under changing external environmental in-
puts and internal gene perturbations.

DNAmicroarrays allow large-scale comparisons of mRNA
levels in pairs of cell cultures. A DNA microarray contains
thousands of spots, each containing some portion of a gene.
In a di�erential test, mRNAs from two di�erent cell cultures
are reverse transcribed to cDNAs, labeled with 
uorescent
dyes of two di�erent colors, and applied to the array. The
relative hybridization levels of the two cDNAs determine
the colors of the spots. These colors form the di�erential
gene expression data. In this paper we assume that biologi-
cal pathways can be represented as boolean circuits without
feedback, di�erential tests can be modeled as perturbations
of the external inputs and genes, and di�erent classes of
genes controlled by the pathway can be associated with dif-
ferent outputs of the boolean circuit. A biological pathway
can be veri�ed by applying a set of di�erential tests and
comparing the outcomes of the hybridization experiments
with the predicted outputs of the pathway. Thus, selecting
an economical set of di�erential tests to distinguish all the
outputs is essential to the veri�cation of biological pathways.
In this paper we give an algorithm to construct such a set
of tests. We have applied the algorithm to a model of the
mating pathway in yeast.
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1 Introduction and Motivation

A biological system consists of complicated interactions among
external environmental inputs, genes and proteins. In this
paper, we represent such a system by a graph-theoretic model
called a biological pathway. Such a model captures the con-
nectivity information and the interactions among the com-
ponents of the system. A biological pathway can be inferred
by observing the responses of a biological system due to
changing external environmental inputs and internal gene
perturbations.

In order to infer a biological pathway, the genes (the com-
ponents) and their roles in the system have to be identi�ed.
Genes are converted into messenger RNAs (mRNAs) by the
process of transcription. Messenger RNAs are in turn trans-
lated into proteins, which determine the functions of a cell.
Hence, the distribution of mRNAs present in a cell provides
a clue to its biological functioning. Comparative hybridiza-
tion experiments compare mRNA levels in two cell cultures,
and DNA microarrays allow comparative hybridization ex-
periments to be carried out on a large scale.

After mRNAs are puri�ed to be used in comparative hy-
bridization experiments, they are reverse-transcribed to a
more stable DNA form called complementary DNAs (cD-
NAs). The cDNA samples from each cell culture are labeled
with 
uorescent dyes with di�erent emission wavelengths,
such as Cy3 and Cy5 which have emission wavelengths cor-
responding to the colors green and red respectively, so that
the relative abundance of mRNAs in the two cell cultures
can be determined. The two 
uorescently labeled cDNA
samples are hybridized to a DNAmicroarray with thousands
of spots, each of which contains a di�erent DNA sequence.
If a cDNA sequence is complementary to the DNA sequence
on a particular spot, the cDNA sequence will hybridize to
the spot, and the intensity of hybridization can be detected
by 
uorescence [3]. The relative 
uorescent intensities of
the two cell cultures on the thousands of spots on a DNA
microarray give rise to extensive di�erential gene expression
data that has to be processed. In the case of yeast, the
complete genome has been sequenced, and the Brown Lab
[4] has successfully arrayed all the known genes (approxi-
mately 6200) of yeast.

We are interested in the following scenario. A biologist
has provided a description of a biological system. The rel-
evant variables in this system are external inputs such as
drugs, nutrients or metabolites, and the expression levels of
genes within the system itself. Each of these variables is
two-valued: an input may be present or absent and a gene
may be either expressed or not expressed. The relationships



among these variables are described by a boolean circuit1.
It is also assumed that the levels of many genes outside the
pathway are regulated by the variables in the pathway, and
that these genes fall into distinct coregulated sets associated
with di�erent output signals from the circuit. Each of these
coregulated sets of genes is called an output class. Our goal
is to devise a set of tests that can be applied to the circuit in
order to determine, among a large set of genes, which ones
fall into each output class. If these tests determine that
the measured expression levels of many genes are consistent
with their membership in particular output classes, then we
have evidence that the boolean circuit model describes the
biological system correctly.

Consider a �ctitious biological pathway in which a pro-
tein P is manufactured by a gene G. A drug D can be
applied to form a complex with protein P . Three types
of genes are regulated by this complex: those that are ex-
pressed when drug D is present, those that are expressed
when protein P is present and drug D is absent, and those
that are expressed when protein P and drug D are both
present. This biological pathway is shown in Figure 1, and
its representation as a boolean circuit is shown in Figure 2.
The three output lines of the circuit correspond to the three
classes of genes that are regulated by the pathway.
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Figure 1: An example of a biological pathway.
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Figure 2: A biological pathway represented as a
boolean circuit.

1A boolean circuit model of biological pathways has been consid-
ered in [1].

All inputs in a biological pathway have default values. In
the case of Figure 2, the default value of drug D is 0 which
means that drug D is not applied, and the default value of
gene G is 1 which means that gene G is not knocked out. The
value of a perturbed input is the complement of its default
value. When a cell culture is prepared for a hybridization
experiment, one or more of the inputs may di�er from their
default values, and the actual values of the inputs constitute
the condition of the cell culture. The condition in which all
external inputs are at their default values and no genes are
knocked out is called the wild type. A di�erential test is a
pair of conditions. The mRNA levels in the hybridization
experiments are discretized to either low or high. The dif-
ferential expression data from the microarray are the colors
of each spot on the DNA microarray. When the cell culture
that is labeled with the green 
uorescent dye has higher
mRNA level than the cell culture labeled with the red 
uo-
rescent dye, the spot on the DNA microarray appears green
on stimulation by a laser. Similarly, a spot on the DNA
microarray will appear red if the cell culture labeled red has
higher mRNA level. When both cell cultures have similar
mRNA levels, the spot on the DNA array appears yellow
on stimulation by a laser. Two genes belong to the same
output class if their outcomes under di�erential tests are ei-
ther always the same or always di�erent. We assume that
output classes represent disjoint sets of genes. We say that
a set of output classes are distinguished if they respond dif-
ferently with respect to a set of di�erential tests. Therefore,
a proposed biological pathway can be veri�ed by applying a
set of di�erential tests, and comparing the outcomes of the
hybridization experiments with the predicted outputs of the
pathway. Hence, selecting an economical set of di�erential
tests that can distinguish all output classes is essential to
the veri�cation of biological pathways.

In this paper, we assume biological pathways can be rep-
resented as boolean circuits without feedback. We also as-
sume that genes regulated by the pathway fall into disjoint
output classes. The goal is to determine an economical set of
di�erential tests that can distinguish all the output classes.

2 The Problem Statement

A boolean circuit B = (I, O, f) which represents a bio-
logical pathway is given, where I is the set of inputs, O is
the set of output classes, and f is the function that maps
conditions to output values (which are either 0 or 1) in the
circuit. In addition to the external inputs, I includes an ad-
ditional input, called mutation, for each gene in the pathway,
indicating whether the gene is arti�cially mutated. At this
level of discussion, we suppress the details of the boolean
circuit, i.e., how the gates of the circuit are interconnected,
and how the output classes are associated with the wires in
the circuit.

Our problem instance can be represented by P = (B,
M , �, W ) where B is a boolean circuit, M is the maximum
number of input perturbations in a condition, � maps an in-
put perturbation to the cost of obtaining that perturbation,
and W is the set of default values of all the inputs in I, i.e.,
the wild type condition.

Our goal is to select an economical set of di�erential tests
su�cient to distinguish all pairs of output classes. We attack
the problem in two stages. First, we select a minimum-cost
set of conditions su�cient for the creation of the necessary
di�erential tests. Then, given these conditions, we minimize
the number of di�erential tests. Thus, our primary emphasis
is on the cost of the conditions, with the actual number of



tests playing a secondary role. This is reasonable, since
growing a culture of perturbed cells is signi�cantly more
expensive than performing an array experiment.

We now de�ne the properties required for a set of di�er-
ential tests.

De�nition 1 A condition is a set of inputs, denoted by c
= (Ii1 , Ii2 , . . . , Iim) where Iij is an input perturbed in the
boolean circuit, Iij 2 I and 0 � m �M .

De�nition 2 Let Op 2 O be an output class in a boolean
circuit B. The output value at Op under condition c is given
by fp(c).

Example 1 The following table shows the output values of
the boolean circuit in Figure 2 with default values of D and
G being 0 and 1 respectively:

() (D) (G) (D G)
o1 0 1 0 1
o2 1 0 0 0
o3 0 1 0 0

The rows in the above table are the output classes, and
the columns are the conditions. For example, () is the wild
type condition, and (D G) is the condition with both inputs
D and G perturbed from their default values (i.e. D = 1
and G = 0). The entries in the table are the output values
of the circuit, for instance, f1(D G) is 1.

De�nition 3 A pair of output classes Op; Oq is said to agree
on condition c if fp(c) = fq(c). Similarly, a pair of output
classes Op; Oq is said to disagree on condition c if fp(c) 6=
fq(c)

In Example 1, output classes o1 and o3 agree on condi-
tion (), and they disagree on condition (D G).
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Figure 3: A Differential test diagram.

All the possible values of a pair of conditions can be rep-
resented graphically by a di�erential test diagram shown in
Figure 3. The numbers inside the oval indicate the output
values of a pair of output classes under a condition. For
example, for a pair of output classes Op; Oq , if both of the
output values under a condition c are zero, i.e., fp(c) =
fq(c) = 0, then condition c is in category I. Categories I and
IV correspond to agreement, while categories II and III cor-
respond to disagreement. In Example 1, for output classes
o1 and o2, condition (G) belongs to category I, condition ()
belongs to category II, and conditions (D) and (D G) belong
to category III.

De�nition 4 A di�erential test T is denoted by fci cjg
where ci and cj are conditions. A di�erential test T is said
to be a distinguishing test for a pair of output classes Op; Oq
if one of the following is satis�ed:

� Op; Oq agree on condition ci and Op; Oq disagree on
condition cj , or

� Op; Oq disagree on condition ci and Op; Oq agree on
condition cj

A distinguishing test corresponds to a solid line in Fig-
ure 3. In Example 1, f() (G)g is a distinguishing test for
output classes o1 and o2. Suppose condition () is labeled
with the green 
uorescent dye, and condition (G) is labeled
with the red dye in the comparative hybridization exper-
iments. Spots on the DNA array corresponding to output
class o1 will appear yellow while spots corresponding to out-
put class o2 will appear green.

De�nition 5 A pair of di�erential tests fT1, T2g is said to
be a cross test if they correspond to the pair of dotted lines
in a di�erential test diagram.

Conditions in categories I and IV (dotted line A in Fig-
ure 3) cannot distinguish a pair of output classes because
both output classes show the same response to the condi-
tions. Interestingly, conditions in categories II and III (dot-
ted line B in Figure 3) also cannot distinguish a pair of
output classses since the outcomes are always di�erent and
the two spots may belong to the same output class. How-
ever, a cross test, which is a pair of di�erential tests under
both dotted lines, can distinguish a pair of output classes.
In terms of the comparative hybridization experiments, the
spots on the DNA microarray corresponding to one output
class will show the same color on the pair of di�erential tests
comprising the cross test, while the spots corresponding to
another output class will show di�erent colors on the two
tests. Thus, a pair of output classes can be distinguished by
a cross test since it is established that the outcomes for the
two output classes are neither always the same nor always
di�erent.

De�nition 6 A set of di�erential tests T is said to distin-
guish a pair of output classes Op; Oq if there is at least a
distinguishing test or a cross test in T for output classes
Op; Oq.

In general, a set of di�erential tests T is said to distin-
guish a pair of output classes Op; Oq k times if there are
a total of k distinguishing tests and cross tests for output
classes Op; Oq in T .

De�nition 7 A condition cover is a set of conditions C =
(c1; c2; : : : ; cr) such that for each pair of output classes, there
is at least one condition for which they agree and at least one
condition for which they disagree.

In general, a k-condition-cover is a set of conditions such
that for each pair of output classes, there are at least k con-
ditions for which they agree and at least k conditions for
which they disagree.

De�nition 8 A set of di�erential tests that can distinguish
all pairs of output classes is called a test cover.

In general, a set of di�erential tests that distinguishes
each pair of output classes at least k times is called a k-test-
cover.

2.1 The Cost Model

The cost function �(Ii) in the problem instance P speci-
�es the cost of perturbing input Ii from its default value.
We assume that costs are additive. In addition, a cost tree
model is assumed. A cost tree model allows us to compute



the cost of a set of conditions by determining the minimum
cost of all the input perturbations in the set of conditions.
Suppose the cost of a set of conditions C = (c1; c2; : : : ; cr)
is to be determined. First of all, the conditions are sorted
in increasing number of inputs perturbed. The wild type is
assumed to have cost 0 and is the root of the cost tree. Con-
ditions are added to a node in the existing cost tree in the
order of increasing number of inputs perturbed such that
the additional cost of adding each condition to the cost tree
is minimum.

The above idea is illustrated with conditions C = f(),
(D), (G), (D G)g in Example 1. Suppose the cost of per-
turbing input D and G are �(D) = 2 and �(G) = 6 respec-
tively. First of all, conditions (D) and (G) with only one
input perturbed are added to the cost tree with the wild
type as the root. The cost of adding condition (D) to the
wild type is 2 units, and the cost of adding condition (G)
to the wild type is 6 units. Then, condition (D G) with two
inputs perturbed is added to the cost tree. Condition (D
G) will be added to condition (G) because it will yield the
minimum additional cost of 2 units. The total cost of C is
the total cost of all input perturbations, which is 2 + 6 + 2
= 10 units as shown in Figure 4.

(G)

(D G)

(D)

()

2 6

2

Figure 4: Cost tree for Example 1.

We assume that the cost of a test cover is the cost of the
set of conditions comprising the test cover. This is because
we assume that the cost of a test cover lies in obtaining the
conditions, not in comparing the results of the two condi-
tions. Furthermore, we assume the wild type condition is
always included in the condition cover.

We believe that our problem is NP-hard, and the goal
of our project is to develop algorithms which can e�ciently
generate a k-test-cover with minimum cost such that all out-
put classes are distinguished, where k � 1.

3 The Naive Approach

One obvious approach is to enumerate all possible di�eren-
tial tests. Then, pairs of output classes that each distin-
guishing test and each cross test can distinguish are deter-
mined. Finally, a test cover with minimum cost is deter-
mined.

However, the enumeration approach is not very e�cient.
Suppose we have 15 inputs, and we can perturb at most
2 inputs at a time. The total number of possible condi-

tions is

�
15
0

�
+

�
15
1

�
+

�
15
2

�
= 121. Hence, the

number of possible distinguishing tests that have to be con-

sidered is

�
121
2

�
= 7260. Under the naive enumeration

approach, we have to enumerate 7260 possible distinguishing
tests, which is not very e�cient.

4 Our Approach

Our approach is to divide the problem into two subproblems.
The �rst subproblem is to determine a condition cover with
minimum cost. The second subproblem is to determine a
test cover with the minimum number of di�erential tests
from the condition cover computed in the �rst subproblem.
Since the condition cover consists of relatively few conditions
compared to the set of all possible conditions, the expensive
step of enumerating a huge number of di�erential tests is
avoided.

4.1 Subproblem 1: Condition Cover

The �rst subproblem is to �nd a condition cover C� with
minimum cost. Our approach is illustrated in Example 2.

Example 2 Suppose a 1-condition-cover is to be computed
for a boolean circuit with the following table of output values.

W A B C D E
o1 0 1 0 1 0 1
o2 1 0 1 1 0 1
o3 0 1 1 1 1 0
o4 1 1 0 1 0 1

In Example 2, W, A, B, C, D, and E are conditions while
o1, o2, o3, and o4 are output classes. Furthermore, W is the
wild type condition. Let

x� =

�
1 if condition � is in the condition cover C�

0 otherwise

where � = W, A, B, C, D or E. Consider output classes
o1 and o2, by De�nition 7 there must be a condition in
the condition cover for which they disagree. The idea is
illustrated by the following constraint inequality:

xW + xA + xB � 1

Moreover, at least one condition in the condition cover
has to agree on output classes o1 and o2:

xC + xD + xE � 1

Using this approach, two constraint inequalities can be
obtained for each pair of output classes. The branch and
bound approach [6] can be used to solve for a condition cover
with minimum cost. The search tree is built in a depth-�rst
manner by adding variables to the current path. Initially,
the search tree consists of the root only. Then, the constraint
inequality with the least number of variables which is not yet
satis�ed is considered. The variable in the inequality which
gives the lowest cost when added to the current path will be
added to the current path. This process is continued until
all the constraint inequalities are satis�ed. Conditions on
the path from the root to a leaf form a condition cover. The
current solution is the condition cover so far obtained from
the search tree with the minimum cost. Then, backtracking
occurs at the most recent constraint inequality where there
is a choice of variables. If the cost of adding the current
condition to the path exceeds that of the best solution so
far, the subtree is pruned.

Example 2 is used to illustrate the branch and bound
approach. The set of inequality constraints in order of in-
creasing number of variables is as follows:

xW � 1



xB + xC � 1

xA + xB � 1

xA + xC � 1

xW + xA + xC � 1

xC + xD + xE � 1

xB + xD + xE � 1

xW + xA + xC � 1

xW + xA + xD + xE � 1

xW + xC + xD + xE � 1

xW + xB + xD + xE � 1

xA + xB + xC + xD + xE � 1

Our cost model assumes the wild type condition is always
included in the condition cover. Therefore, condition W
is the root of the search tree as shown in Figure 5. For
simplicity, suppose the costs of adding conditions A, B, C, D,
and E are constant and are 3, 1, 2, 8, and 2 units respectively
(In our cost model, the additional cost of adding a condition
to a set of conditions depends on the conditions already in
the set.)

W

C A

B B C

AC

level 0

level 1

level 2

0

0 + 1

0+1 +2

0+1+3

0+2+3

0+2

solution
abort

abort

Figure 5: Search tree illustrating branch and bound.

The cost of a path is the cost of the set of conditions
represented by the path. For example, the cost of the path
WB is 1 unit and the cost of the path WBC is 3 units. The
bar above a condition in Figure 5 means that the particular
condition is not chosen and will not be included in the sub-
tree. For example, at level 1, when condition C is added to
the search tree, paths containing condition B have already
been explored, so the subtree rooted at BC does not contain
condition B. Therefore, there is no branch for condition B
under node BC at level 2. On path WBCA, the cost at
node CA is 4 units, which is greater than the cost of the
current best solution WBC, so the search tree is pruned at
node CA. Similarly, the search tree is also pruned at node
A on the path WBCA. The conditions in the search tree are
processed in the order of increasing costs, for example, at
level 1, condition B is processed before condition C because
conditions (W,B) have a lower cost than conditions (W,C).
The heuristic of considering lower cost conditions �rst makes
it more likely that the best solution will be discovered in the
early stage of the search.

4.2 Subproblem 2: Test Cover

The second subproblem is to �nd a test cover T � with the
minimum number of di�erential tests from the condition
cover C� computed in the �rst subproblem. The idea is
to enumerate all the possible di�erential tests from the con-
dition cover C�. Then, constraint inequalities are set up in
a similar way as in the case of a condition cover. Let

y� =

�
1 if di�erential test � is in the test cover T �

0 otherwise

Example 3 Consider a condition cover fW, R, S, Tg with
the following table of output values:

W R S T
o1 0 0 1 1
o2 1 1 1 1
o3 0 1 1 0
o4 0 1 1 1
o5 0 1 0 0

In Example 3, the set of all possible di�erential tests from
the given condition cover is fWR, WS, WT, RS, RT, STg.
Figure 6 is the di�erential test diagram for output classes
o1 and o3. WR, WT, RS, and ST are distinguishing tests.
WS and RT form a cross test which is represented in the
constraint inequality by * which has the e�ect of \and".

R S

T

1

0

0

0

1

1

0

1

W

Figure 6: Differential test diagram for output
classes o1 and o3.

The constraint inequality to distinguish output classes
o1 and o3 is as follows:

yWR + yWT + yRS + yST + yWS � yRT � 1

Similarly, a constraint inequality for each pair of output
classes can be determined.

Solving the set of constraint inequalities by branch and
bound with the cost of a test being 1 unit gives a 1-test-
cover. In the case of a cross test, both conditions in the
cross test have to be added to the path in the search tree.

4.3 k-Test-Cover

A k-test-cover does not necessarily arise from a k-condition-
cover. For example, the minimum cost 1-condition-cover
fW, B, Cg in Example 2 contains a 2-test-cover fWB, WC,
BCg. Therefore, our algorithm loops through all the l-
condition-cover, where l = 1; : : : ; k, and determine if a k-
test-cover exists. If a k-test-cover is found, the loop termi-
nates. A l-condition-cover, where 1 � l � k, can be deter-
mined by replacing all the right hand sides in the constraint
inequalities with l instead of 1 in Section 4.1, and solving
the set of constraint inequalities by branch and bound. Simi-
larly, a k-test-cover can be obtained by replacing all the right
hand sides in the constraint inequalities in Section 4.2 with
k, which are then solved by branch and bound.



4.4 Test Cover as a Graph Theory Problem

The problem of �nding a test cover from a given condi-
tion cover C = fc1; c2; : : : ; cng can be modeled as a graph-
theoretic problem. A graph G is de�ned with vertices being
the conditions in the condition cover C, and edges being the
di�erential tests. More speci�cally, let G = (C, E) where
(ci,cj) 2 E if conditions ci and cj form a di�erential test in
a test cover, 1 � i; j � n.

De�nition 9 Conditions P = cl1 ; : : : ; clh j clh+1 ; : : : ; cln
form a partition for a pair of output classes Op; Oq if one of
the following is satis�ed:

� fp(cli) = fq(cli) and fp(clj ) 6= fq(clj ) where i = 1; 2; : : : ; h
and j = h+ 1; h+ 2; : : : ; n, or

� fp(cli) 6= fq(cli) and fp(clj ) = fq(clj ) where i = 1; 2; : : : ; h
and j = h+ 1; h+ 2; : : : ; n.

A single partition c j (C n c) is a partition with exactly
one condition c on one side of the partition.

Consider the condition cover in Example 2, C = fW, B,
Cg. For output classes o1 and o2, C j WB forms a single
partition because they agree on condition C and disagree on
conditions W and B.

A partition can be de�ned for each pair of output classes.
A distinguishing test is a di�erential test between conditions
on di�erent sides of a partition. For example, CW and CB
are distinguishing tests in partition C j WB. Cross tests
cannot be inferred from partitions. A 1-test-cover graph for
Example 2 is shown in Figure 7.

W

C

B

Figure 7: A 1-test-cover graph for Example 2.

A k-edge-connected graph [2] can be used to infer a k-
test-cover when all single partitions exist, where k > 1. The
idea will be formalised in Theorem 1.

De�nition 10 A graph is k-edge-connected if it cannot be
disconnected by the removal of fewer than k edges, where k
> 1.

A minimal k-edge-connected graph is a k-edge-connected
graph with the least number of edges.

Theorem 1 Given a condition cover, if all single partitions
exist, then a minimal k-edge-connected graph gives a k-test-
cover with the least number of tests, where k > 1.

Proof:
Let C = fc1; c2; : : : ; cng be a condition cover. From

the de�nition of a k-edge-connected graph, every k-edge-
connected graph gives a k-test-cover. Since all single parti-
tions exist, i.e., all ci j (C n ci) where i = 1; 2; : : : ; n exist,
a k-test-cover requires that each vertex ci in G has degree
at least k. Let deg(ci) denote the degree of vertex ci. Sum-
ming up the degrees of all the vertices in the graph G, we
get
Pn

i=1
deg(ci) � k � n. Since

Pn

i=1
deg(ci) = 2 � jEj for

any graph, the number of edges jEj required for a k-test-
cover is at least d1=2 � k � ne. It is shown in [2] that there

exists a k-edge-connected graph with d1=2 � k � ne edges.
In fact, any k-edge-connected graph has at least 1=2 � k � n
edges. Therefore, a minimal k-edge-connected graph gives a
k-test-cover with the least number of tests. 2

Theorem 1 fails for k = 1 because there does not exist a
1-cover graph with d1=2 � 1 � ne edges.

In the case of single partitions, cross tests cannot help to
reduce the number of di�erential tests required for a k-test-
cover when k > 1 because cross tests require at least two
conditions on each side of the partition.

Corollary 1 For k > 1, if all single partitions exist, the
minimum k-test-cover can be computed without the branch
and bound step.

Proof: The proof follows from Theorem 1 since the k-edge-
connected graph does not have to be computed from the
branch and bound step. 2

The signi�cance of Theorem 1 is that determining whether
all single partitions exist is a relatively inexpensive step com-
pared to the branch and bound step. Theorem 1 and Corol-
lary 1 apply only when k is strictly greater than 1. In the
case of a 1-cover, the existence of all single partitions does
not imply that a spanning tree gives a 1-test-cover with the
minimum number of tests. Consider the following counter-
example on condition cover fA, B, C, Dg with partitions A
j BCD, B j ACD, C j ABD, D j ABC, AB j CD, AC j BD
and BC j AD. Moreover, partition AB j CD arises from the
di�erential test diagram shown in Figure 8.

1

0

0

0

1

1

0

1

A C

D B

Figure 8: Differential test diagram for partition AB
j CD.

From Figure 8, cross test fAB CDg distinguishes the pair
of output classes giving the di�erential test diagram. There-
fore, fAB, CDg is a minimum 1-test-cover in this example.

Hence, in the case of a 1-test-cover, even if all single par-
titions exist, the branch and bound step cannot be avoided.

5 A Restricted Problem

In case the biological pathway in our model is part of a
larger biological system, mutations may have e�ects on other
components in the biological system that are not represented
in the model. These components may in turn a�ect other
components in our model. Therefore, in this section, we
consider the problem in which di�erential tests are restricted
to a pair of conditions with the same mutations.

Our approach to solving the restricted problem is similar
to the original problem in that the problem is divided into
two subproblems: determining the condition cover, and then



the test cover from the chosen condition cover. However,
there are some modi�cations to both steps so as to ensure
that di�erential tests have the same mutations.

As in the original problem, the �rst subproblem is to
determine a condition cover. In the following description,
we assume that a 1-test-cover is to be determined. In order
to determine a set of conditions with minimum cost that
guarantees di�erential tests with the same mutations, our
approach is to divide the condition cover problem into two
stages. In stage A, a set of conditions, CA, that has at least
one condition that disagree for each pair of output classes is
determined. In stage B, additional conditions are added to
the condition cover obtained in stage A, CA, such that for
each pair of output classes, there is at least one di�erential
test with the same mutation. The condition cover obtained
in stage B is denoted as CB . A test cover can be obtained
by the same branch and bound method on the condition
cover CB as in the original problem. The only di�erence is
that we restrict attention to di�erential tests in which both
conditions have the same mutations.

Example 4 Figure 9 is a table showing the values of output
classes o1, o2, and o3 for conditions A to K. A 1-condition-
cover is to be determined.

In Example 4, a and c are external inputs, while b and d
are mutations. The costs of perturbing inputs a, b, c, and d
from their default values are 3, 8, 9, and 20 respectively.

In stage A, the set of conditions CA that disagree for
each pair of output classes is determined. In order to dis-
tinguish output classes o1 and o2, at least one condition in
the condition cover has to have di�erent output values for
the pair of output classes. The idea is illustrated by the
following constraint inequality:

xA + xB + xD + xE + xF + xG + xH + xK � 1

Similarly, in order to distinguish o1 and o3, we get,

xA + xB + xE + xF + xH + xI + xK � 1

In order to distinguish o2 and o3, we get,

xD + xG + xI � 1

The above set of inequalities can be solved by branch
and bound as in Section 4.1. The following possible CA's
are obtained: fA, Dg with a cost of 9, fA, Gg with a cost
of 12, and fA, Ig with a cost of 17.

In stage B, for each of the possible CA's in the order of
increasing cost, a set of conditions which guarantees a 1-
test-cover is determined. For CA = fA, Dg, since neither
condition A (which is the wild type) nor condition D contain
any mutation, we need at least one condition with no mu-
tation such that output classes o1 and o2 agree. However,
inspecting the output value table closely shows that there
is no such condition. For the pairs o1 and o3, and o2 and
o3, conditions A and D form a valid di�erential test, so no
inequality is required. Since there is no valid test with CA =
fA, Dg to distinguish output classes o1 and o2, there is no
valid condition cover in stage B for CA = fA, Dg. Similarly,
there is no valid condition cover in stage B for CA = fA,
Gg.

Consider CA = fA, Ig, since condition A has no muta-
tion, while condition I contain mutation b, there is no di�er-
ential test already contained in CA. In order to distinguish
output classes o1 and o2, at least one condition is needed

with the same mutation that forms a valid di�erential test
with conditions A or I. As shown in Figure 10, condition F
has the same mutation as condition I and it forms a distin-
guishing test with condition I. Hence, we have the following
constraint inequality:

xF � 1

1

0

0

0

1

1

0

1

I,C

F

A, B, D,G
JE, H, K

Figure 10: Differential Test Diagram for output
classes o1 and o2 in Example 4.

Proceeding in this way, we obtain the following two con-
straint inequalities to distinguish o1 and o3, and o2 and o3
respectively:

xC + xD + xG � 1

xC + xD + xF + xG � 1

Solving the above set of inequalities by branch and bound
gives CB = fA, I, F, Cg. A 1-test-cover can then be com-
puted by branch and bound on condition cover CB, restrict-
ing to di�erential tests with the same mutations.

5.1 k-Test-covers

In the restricted problem, a k-test-cover may arise from am-
condition-cover from stage A, and a l-condition-cover from
stage B, where 1 � m; l � k. Therefore, our algorithm loops
through both stage A and stage B of the condition cover
step to compute a k-test-cover:
Algorithm:

� For m = 1 to k do

{ Compute CmA : a m-condition-cover from stage A.

{ For l = m to k do

� Compute ClB : a l-condition-cover from stage
B with CmA .

� Determine if a k-test-cover exists in ClB.

� Terminate the algorithm if a k-test-cover is
found.

5.2 Critique of the Approach

The approach of dividing the condition cover problem into
stages A and B has the drawback that the cost of the con-
dition cover found in stage A, CA, may not re
ect the cost
of the condition cover in stage B, CB. It is possible for the
best condition cover CB to have an expensive CA. In the
above example, it can be seen that only the most expensive
CA has a valid CB . In our actual implementation, there is a



() (a) (b) (c) (d) (a b) (a c) (a d) (b c) (b d) (c d)
A B C D E F G H I J K

o1 0 0 1 0 0 0 0 0 1 1 0
o2 1 1 1 1 1 1 1 1 1 1 1
o3 1 1 1 0 1 1 0 1 0 1 1

Figure 9: Output value table for Example 4.

time limit to each of the branch and bound step. The best
solution CB may not be computed if it has an expensive
subset CA.

An alternative approach is to determine a mutation cover,
i.e., a set of mutations that guarantees a k-test-cover, in the
�rst subproblem. In the second subproblem, all possible
di�erential tests in the mutation cover is enumerated, and a
k-test-cover can be determined as in Section 4.2. The draw-
back of this approach is that the �rst subproblem minimizes
only the cost of a mutation cover, and not the cost of all
the conditions comprising a test cover. Another drawback
is that the second subproblem may be computationally ex-
pensive if there are a large number of external inputs.

6 Implementational Details and Results

Algorithms for both the general problem and the restricted
problem have been implemented in C. The current imple-
mentation accepts an input �le, a time limit for the branch
and bound step, and the number of test covers required as
arguments. The input �le contains a boolean circuit rep-
resentation of the biological pathway to be tested. The
boolean circuit representation speci�es the input and output
lines for each gate in the circuit. The current implementa-
tion allows the following gates with two inputs: and, nand,
or, nor, exclusive or, and exclusive nor gates. It also
allows the unary not gate and the identity gate. The in-
put �le also speci�es the external inputs, mutations, output
classes, the default values, the maximum number of input
perturbations in a condition and the costs of perturbing ex-
ternal inputs and mutations. The implementation can be
run in both interactive and batch modes.

We have run our implementation on the yeast mating
pathway2 shown in Figure 11. Yeast is well-suited for exper-
iments because the entire genome is known and it has been
arrayed [4]. Moreover, mutations in yeast are relatively easy
to achieve.

There are four pathways in the yeast mating pathway
that are of interest. The kinase cascade consists of output
classes 3, 4, and 5. The kinase cascade with second pathway
consists of output classes 3, 4, 5, and 6. The coarse mat-
ing pathway consists of output classes 1, 5 and 8. The full
pathway consists of all the output classes.

In order to represent mutations in a boolean circuit, each
of the mutable inputs z is replaced by an and gate with z
and the wild type of z, Wz, as inputs and the output is
called Mz as shown in Figure 12. When Wz is 1, Mz gets
the value of z, thus input z is not mutated. However, when
Wz is 0, Mz becomes 0, which has the interpretation that
gene z is knocked out in the actual experiments.

The results of running our implementation on the yeast
mating pathway are shown in the next section. There are
usually more than one condition cover and one test cover for

2We thank Matt Marton and Chris Roberts of Rosetta Inpharmat-
ics for sharing their knowledge of the mating pathway in yeast.
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Figure 11: The Yeast Mating Pathway.
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each of the four pathways, but only a condition cover and a
test cover are shown.

6.1 Summarized Results of the General Problem

The results in Figure 13 are obtained with the maximum
number of perturbations in any condition, M , equal to 3,
and with a running time of two minutes on a Pentium 200.
The same results are obtained with a higher time limit.

The 2-test-covers shown in Figure 13 arise from the 1-
condition-covers shown.

6.2 Summarized Results of the Restricted Problem

The results in Figure 14 are obtained with the maximum
number of inputs perturbed in any condition, M , equal to
3, and with an upper bound of three minutes for the branch
and bound step on a Pentium 200.

Condition covers are not shown in Figure 14 because
the 1-test-covers and 2-test-covers in the table arise from
di�erent condition covers.

It is interesting to note that there does not exist a test
cover for the full pathway when a di�erential test consists
of two conditions with the same mutation. This is because
the values of output classes 2 and 9 cannot be changed by
the external input �-factor.

A major drawback of our approach is that when there are
a large number of solutions in stage A of the condition cover,
there may not be enough memory to compute and store all
the possible solutions of CA. Hence, our implementation
may not be able to compute test covers for certain problem
instances. For example, our implementation fails to compute
a 2-test-cover for output classes 1 to 8 when M is 4.

7 Conclusions and Future Work

E�cient algorithms have been developed and implemented
to determine informative experiments that can classify data
from competitive experiments into the output classes. As
seen from our experimental results, the number of condi-
tions in the condition cover is insigni�cant compared to the
total number of possible conditions. Hence, our approach
of dividing the problem into two subproblems is justi�ed in
the case of the yeast mating pathway.

In order to extend our work to other biological systems,
it may be necessary to use a more general model. Shapiro
et. al. [5] proposed a genetic circuit for the lysis-lysogeny
decision in lambda phage. However, the circuit they pro-
posed is a sequential logic circuit, and our approach does
not handle circuits with feedback. One potential direction
of future work is to extend our work to handle sequential
circuits. Davidson et. al. [7] proposed a computational
network model for the Endo16 cis-regulatory system in sea
urchins. Their model is beyond the scope of our methods,
since it is time-dependent and requires signal values that are
not boolean (although they are drawn from a small discrete
set). Therefore, another possible direction of future work is
to extend our work to handle circuits that are multi-valued
and time dependent.
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1-condition-cover 1-test-cover 2-test-cover
Kinase () (WSte7) (Ste5 WSte7) any spanning tree on any cycle on
Cascade the condition cover the condition cover
with Second () (WBNI1) (WSte7 WBNI1) f(WBNI1) any cycle on the
Pathway (Ste5 WSte7 WBNI1) (Ste5 WSte7 WBNI1)g condition cover

f() (WSte7 WBNI1)g
Coarse Mating () (WSte12) (WSte7 WSte12) any spanning tree any cycle on
Pathway on the condition cover the condition cover
Full Pathway () (WSte12) (WSte7), f(Ste5 WSte7) f(Ste5 WFus3 WKSS1)

(WFus3) (WFus3 WKSS1), (Ste4 WFus3 WKSS1)g, (Ste4 WFus3 WKSS1)g,
(WSte2 WFus3 WKSS1), f(WFus3 WKSS1) f(WSte2 WFus3 WKSS1)
(Ste4 WFus3 WKSS1), (WSte2 WFus3 WKSS1)g, (Ste4 WFus3 WKSS1)g,
(Ste5 WFus3 WKSS1) f(WSte7) (WFus3)g, f(WFus3)

f(WSte12) (WSte2 WFus3 WKSS1)g,
(Ste5 WFus3 WKSS1)g f(WSte7)

(Ste5 WFus3 WKSS1)g,
f(WSte12) (WSte7)g,
f(WFus3 WKSS1)
(WSte12)g,
f(WFus3 WKSS1)
(WFus3)g

Figure 13: Summarized results of the general problem.

1-test-cover 2-test-cover
Kinase f(Ste5) (aF Ste5)g f(Ste5) (aF Ste5)g
Cascade f(WSte7) (aF WSte7)g f(Ste5 WSte12) (aF Ste5 WSte12)g

f(WSte7) (aF WSte7)g
f(WSte7 WSte12) (aF WSte7 WSte12)g

with Second f(Ste5 WSte7) (aF Ste5 WSte7)g f(Ste5) (aF Ste5)g
Pathway f(WSte7) (aF WSte7)g f(Ste5 WSte12) (aF Ste5 WSte12)g

f(WBNI1) (aF WBNI1)g f(WSte7) (aF WSte7)g
f(WSte7 WSte12) (aF WSte7 WSte12)g
f(WBNI1) (aF WBNI1)g
f(WSte12 WBNI1) (aF WSte12 WBNI1)g

Coarse Mating f(WSte7) (aF WSte7)g f(WSte7) (aF WSte7)g
Pathway f(WSte12) (aF WSte12)g f(WSte7 WSte12) (aF WSte7 WSte12)g

f(WSte12) (aF WSte12)g
f(WSte12 WBNI1) (aF WSte12 WBNI1)g

Full Pathway cannot be distinguished cannot be distinguished

Figure 14: Summarized results of the restricted problem.


