Received: 24 May 2016

Revised: 7 August 2016

ommunications in

Published online in Wiley Online Library

Rapid Commun. Mass Spectrom. **2016**, *30*, 2607–2616 (wileyonlinelibrary.com) DOI: 10.1002/rcm.7743

Choice of ¹⁷O correction affects clumped isotope (Δ_{47}) values of CO₂ measured with mass spectrometry

Andrew J. Schauer^{1*}, Julia Kelson¹, Casey Saenger^{1,2} and Katharine W. Huntington¹

¹IsoLab, Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA ²JISAO, University of Washington, Seattle, WA, USA

RATIONALE: The clumped isotope composition of $CO_2(\Delta_{47})$ derived from carbonate is widely used as a paleotemperature proxy with broad applications in geoscience. Its accuracy is, however, limited by inter-laboratory discrepancies of reference materials and disagreement among carbonate geothermometer calibrations. Here we show how the correction for the abundance of ¹⁷O influences these discrepancies.

METHODS: We used CO₂-H₂O equilibration at known temperatures and phosphoric acid digested carbonates to generate CO₂ samples with a wide range in ¹³C and ¹⁸O compositions. All samples were purified using an offline vacuum line. We used a Thermo MAT 253 isotope ratio mass spectrometer with a Faraday collector array for m/z 44–49, to measure δ^{13} C, δ^{47} , and Δ_{47} values. Data were compiled using a traditional correction ('Santrock') for the ¹⁷O interference in m/z 45 as well as a more recently proposed correction ('Brand') for ¹⁷O interference. Two reference frames using CO₂ with distinct ¹³C compositions were constructed to simulate an inter-laboratory comparison.

RESULTS: The traditional Santrock ¹⁷O correction leads to a simulated Δ_{47} inter-laboratory comparison offset of 0.06 ‰, and a 0.1 ‰ Δ_{47} range in CO₂-H₂O 23°C equilibrations that is dependent on the ¹³C composition. The more recent Brand ¹⁷O correction removes these discrepancies. The traditional ¹⁷O correction yields distinct temperature- Δ_{47} calibration curves for synthetic carbonates precipitated using different methods to degas CO₂, while the more recent ¹⁷O correction collapses all calibration data onto a single curve.

CONCLUSIONS: The ¹⁷O correction strategy employed by CO₂ and carbonate clumped-isotope researchers can have a large effect on the accuracy of Δ_{47} values. Use of the traditional ¹⁷O correction may have caused errors in published studies as large as 0.1 ‰ and may account for Δ_{47} differences among laboratories and disagreement among previously published carbonate clumped isotope thermometry calibrations. Copyright © 2016 John Wiley & Sons, Ltd.

Measurements of the clumped-isotope composition of CO₂ (Δ_{47}) have broad applications in geosciences, most of which use the temperature dependence of Δ_{47} in CO₂ derived from acid-digested carbonate for geothermometry (e.g., ^[1-6]). The parameter Δ_{47} represents the ratio of the measured abundance of CO₂ isotopologues with m/z 47 (mostly CO₂ molecules containing ¹³C-¹⁸O bonds, ¹³C¹⁸O¹⁶O) and the calculated abundance of m/z 47 isotopologues that would be expected for the sample if all isotopes were distributed randomly among isotopologues.^[7] The full signal of Δ_{47} representing CO₂ or carbonate formation temperatures from 0 to 1000°C is of the order of 1 % and hence Δ_{47} values require careful measurement and calibration to achieve a useful precision. Significant progress has been made to standardize laboratory methods^[8] and data reporting using a reference frame of CO₂ equilibrated at different temperatures.^[9] Several subsequent workers have suggested further improvements to the measurement.^[10,11] However, inter-laboratory discrepancies and disagreement among carbonate geothermometer

calibrations based on analyses of synthetic carbonates remain (e.g. ^[12–14]). Data from synthetic carbonates precipitated at known temperatures using different strategies and analyzed using identical methods rule out most of the sample synthesis, preparation and analysis differences that have been proposed to cause the calibration discrepancies.^[14] Colman^[15] recently raised the possibility that there may be a very basic problem with the assumption made regarding the quantity of ¹⁷O in a CO_2 sample, which would influence Δ_{47} and therefore the reference frame calibration. The Δ_{47} value relies heavily on the estimates of ¹³C and ¹⁸O,^[8] which must be corrected for mass interference from ¹⁷O when measured by isotope ratio mass spectrometry (IRMS). Specifically, IRMS estimates of 13 C and 18 O in CO₂ are calculated from measurements of m/z44, 45, and 46 that are affected by a mass interference from ¹⁷O, which is traditionally corrected for using an assumed relationship between ¹⁷O and ¹⁸O:^[16–18]

$${}^{17}\mathrm{R} = \mathrm{K} \cdot {}^{18}\mathrm{R}^{\lambda} \tag{1}$$

where λ describes the fractionation process of ¹⁷O and ¹⁸O, and K is a coefficient relating the ¹⁷R and ¹⁸R of the reference material (typically VSMOW or VPDB), where ⁱR is the abundance ratio of the heavier isotopic species of interest to the more abundant lighter isotopic species. The definition of

^{*} *Correspondence to*: A. J. Schauer, IsoLab, Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA. E-mail: aschauer@uw.edu

A. J. Schauer et al.

 Δ_{47} (as in ^[7,8]) shows the dependence of clumped isotopic values of CO₂ on the estimates of ¹³C and ¹⁸O, and therefore on Eqn. (1):

$$\Delta_{47} = \left[\left(\frac{4^7 R}{4^7 R^*} - 1 \right) - \left(\frac{4^6 R}{4^6 R^*} - 1 \right) - \left(\frac{4^5 R}{4^5 R^*} - 1 \right) \right]$$
(2)

where

$${}^{47}R^* = 2^{13}R \cdot {}^{18}R + 2^{17}R \cdot {}^{18}R + {}^{13}R \cdot \left({}^{17}R\right)^2 \tag{3}$$

$${}^{46}R^* = 2^{18}R + 2^{13}R \cdot {}^{17}R + \left({}^{17}R\right)^2 \tag{4}$$

$${}^{45}R^* = {}^{13}R + 2{}^{17}R \tag{5}$$

Calculating the random (stochastic) distribution of isotopologues (given as ${}^{1}R^{*}$ in Eqns. (2)–(5)) for a given bulk isotopic composition requires ${}^{13}R$, ${}^{17}R$ and ${}^{18}R$ to be determined. If the ${}^{1}R$ values are accurate, the calculated Δ_{47} values should reflect sample formation/equilibration temperature or other chemical or physical processes independent of the ${}^{13}C$ and ${}^{18}O$ composition of a sample. The clumped isotope community generally cites

Huntington et al.^[8] when describing data reduction, implicitly assuming the values of λ and K used therein to calculate ⁱR and Δ_{47} . Following Affek and Eiler,^[7] the λ value given by Huntington et al.^[8] is 0.5164, cited to Gonfiantini et al.;^[19] this λ value originally came from Matsuhisa *et al.*,^[20] who derived it from terrestrial water and rock samples for the quartz-water system. The K value, as derived from Huntington *et al.*^[8] is 0.00922118. Therefore, the λ and K values used by Affek and Eiler^[7] and Huntington et al.^[8] are indistinguishable from those of Santrock et al.,^[17] which is a common citation for the correction of ¹³C for ¹⁷O interference. The K value of Santrock et al.^[17] is based on the work of Nier.^[21] These λ and K values traditionally used by clumped isotope researchers differ from the more recent values suggested by Brand et al., [18] who reasoned that $\lambda = 0.528$ and $\tilde{K} = 0.01022461$, where λ originates from the meteoric water line and K is calculated from the ¹⁷R and ¹⁸R of VPDB-CO₂. In the present work, we compare the λ and K values of Santrock *et al.*^[17] (hereafter 'Santrock method') and Brand et al.^[18] (hereafter 'Brand method') as they relate to the parameter Δ_{47} .

While there is no conclusive evidence that a particular value of λ or K is most appropriate for Δ_{47} calculations, recent work hints at their importance. Affek and Eiler^[7] argued that Δ_{47} values are relatively insensitive to the choice of λ , noting that λ values of 0.5 to 0.528 result in only a 0.002 ‰ variation in Δ_{47} . However, recent preliminary results of Colman^[15] suggest that Δ_{47} is sensitive to the δ^{17} O value for *some* samples, and Schauer *et al.*^[22] observed an unexplained dependence of Δ_{47} on δ^{13} C.

Here, we build upon these works with experiments that aim to illustrate the effect of ¹⁷O correction choices on the accuracy of Δ_{47} values. In the present work, using the Santrock method, we show (1) two distinct absolute reference frames constructed with reference gases having disparate δ^{13} C values and (2) CO₂-H₂O equilibrations from a single temperature that result in Δ_{47} values that differ by as much as 0.1 ‰ or ~20°C depending on the δ^{13} C value. Furthermore, we show the removal of this dependency of calculated Δ_{47} values on δ^{13} C values when the λ and K values of Brand *et al.*^[18]

used. We also show how the choice of ¹⁷O correction influences inter-laboratory calibration carbonates (e.g. ETH reference materials) and synthetic calcite temperature calibration efforts.

EXPERIMENTAL

Sample preparation

All samples discussed here were prepared, purified and analyzed at the University of Washington's IsoLab (Seattle, WA, USA) as described previously^[14,23] and summarized here. These samples include CO_2 -H₂O equilibrations; 1000°C heated CO_2 gases; carbonate reference materials; and synthetic calcites synthesized and analyzed by Kelson *et al.*^[14] The CO_2 -H₂O equilibrations used 200 µL of water and 90 µmol CO_2 in a ¹4" OD Pyrex tube equilibrated for longer than 1 day at 5, 23, or 60 °C. Heated gases were created from a suite of CO_2 -H₂O equilibrations with subsequent cryogenic removal of water and then heating of the CO_2 to 1000 °C in ¹4" OD quartz tubes for at least 2 h. Carbonate reference materials were weighed to approximately 8 mg into silver capsules and digested in a common bath of phosphoric acid (specific gravity 1.9–1.95) held at 90°C for 10 min.

Whether from a Pyrex/quartz tube or a carbonate, CO₂ was cryogenically separated from water on an automated stainless steel/nickel vacuum line using an ethanol/dry ice slush trap, isolated in a liquid N₂ trap, and passed through a Porapak Q trap (50/80 mesh, 122 cm long, 3.2 mm OD) held at -20° C. The CO₂ was transferred through the Poropaq Q trap using helium as the carrier gas at a flow rate of ~35 mL/min for a total transfer time of 20 min, then isolated cryogenically and transferred into a 6 mm OD Pyrex break seal.

Isotopic analyses

Break seals containing CO₂ purified on the vacuum line were loaded into an automated 10-port tube-cracker inlet system and analyzed by dual-inlet isotope ratio mass spectrometry (DI-IRMS) on a Thermo MAT 253 mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) configured to measure m/z 44–49 inclusive. The mass spectrometer was fitted with nickel capillaries and a standard MEMCO Faraday cup configuration with additional cups for m/z47-49. To start each sample analysis, the sample bellows were fully expanded and evacuated. Sample gas was then expanded into the sample bellows and the pressure was measured. Following sample gas introduction, the evacuated reference bellows at 100% expansion were automatically filled to a pressure equal to that measured in the sample bellows with working reference gas CO_2 ($\delta^{13}C = -10.2$ $\frac{1}{2}$ %, $\delta^{18}O = -6.4$ ‰, both vs NBS19 on the VPDB scale) using a modified ISL script (detailed in the Supporting Information, Schauer_RCM_17OCorrectionClumped_IsodatISLScripts.docx). Following bellow fill, the m/z 45 signal was used for peak centering, and the bellows were compressed for pressure adjustment that produced a m/z 44 signal of 16 V. The pressure baseline (PBL)^[10,24] was automatically measured using a modified background ISL script (detailed in the Supporting Information, Schauer_RCM_17OCorrectionClumped_sodatI ISLScripts.docx) in the mass spectrometer software (Isodat version 3.0.88.1, Thermo Fisher Scientific; see next section) with the measurement made 0.08 kV left of peak center prior to each sample. The sample CO₂ m/z 44–49 signals were measured against working reference gas CO₂ for six acquisitions of 10 sample-reference comparison cycles with 26-s integration times. The signals for m/z 44–46 were measured with standard amplification (3 × 10⁸, 3 × 10¹⁰, 1 × 10¹¹ Ω , respectively, while the signals for m/z 47–49 were measured with 1 × 10¹² Ω amplification. At the end of each six-acquisition sample measurement, the water backgrounds were measured by peak centering on the m/z 45 Faraday collector and measuring the m/z 18 signal of both sample and working reference gas.

Data processing

A custom Matlab (Mathworks, Natick, MA, USA) script (provided as Supporting Information, Schauer_RCM_ 17OCorrectionClumped_MatlabScripts.docx) was used to reduce measured mV signals to measured delta values. The measured mV signals were output to a comma separated value file. The measured mV signal output is already corrected for background (PBL in our case) in the mass spectrometer software; the traditional background measurement ISL script is replaced by our modified script such that the background values are passed through Isodat normally with the end result being a PBL corrected mV signal (detailed in Supporting Information, Schauer_RCM_17OCorrectionClumped_IsodatI SLScripts.docx). We use the Matlab fsolve function to iteratively minimize the result when Eqns. (1), (4), and (5) are set to zero for each measurement of the sample gas and the mean of each of the flanking measurements of the mass spectrometer working reference gas (working gas). For a given K, λ and measured ${}^{45}R$ and ${}^{46}R$, we then obtain estimates of 17 R, 18 R, and 13 R for both sample and working gases. The $\delta^{13}C$ and $\delta^{18}O$ values as well as the stochastic predictions for both sample and working gases are calculated. Lastly, the measured Δ_{47} , Δ_{48} and Δ_{49} are calculated. The above calculations from the measured PBL-corrected mV signals to measured Δ values are carried out twice for each sample, once using the Santrock method K (0.00922118) and λ (0.5164) and a second time using the Brand method K (0.01022461) and λ (0.528). Further processing of measured Δ_{47} values into the absolute reference frame^[9] is described in detail below.

Two absolute reference frames

We constructed two absolute reference frames (as in Dennis *et al.*^[9]) using two isotopically distinct CO₂ gases contained in compressed gas cylinders to prepare the CO₂-H₂O equilibrations and heated CO₂ gases. One cylinder had CO₂ that originated from an ethanol/corn-fermentation plant with a δ^{13} C value of -10.5 % VPDB (hereafter referred to as 'FC' for fermented corn). The other cylinder had CO₂ that originated from fossil fuel combustion with a δ^{13} C value of -35.5 % (hereafter referred to as 'FF' for fossil fuel). These two types of CO₂ were equilibrated with evaporatively enriched water, local tap water, South Pole ice core water, and mixtures of these waters, which spanned δ^{18} O values ranging from -50 to +40 ‰ VSMOW. The Δ^{17} O values of these waters were measured in our laboratory using the methods described by Schoenemann *et al.*,^[25] the Δ^{17} O values are -156, +34, and +9

permeg, respectively. The reference frame temperatures used were 5, 60, and 1000°C. The data from heated and waterequilibrated CO₂ gases prepared using the two respective CO₂ cylinders were treated independently to construct the two distinct reference frames (FC and FF reference frames). A single slope and three intercepts (for 5, 60, and 1000°C) were calculated as per Dennis *et al.*^[9] for each respective reference frame. Independent empirical transfer functions (ETFs) were created for both of the two reference frames.

23°C CO₂-H₂O equilibrations

We created a set of known-temperature CO₂-H₂O equilibrated samples at 23°C using a variety of δ^{13} C and δ^{18} O values. We used both the FF and the FC CO₂ gas cylinders referred to above as well as phosphoric-acid-digested carbonates to generate a range in CO₂ δ^{13} C values. All the CO₂ samples were equilibrated with evaporatively enriched water, local tap water, and South Pole ice core water at 23°C. The Δ_{47} values were corrected using both, separately, the FC and the FF CO₂ reference frames and the associated ETFs, and the apparent equilibration temperature was calculated from the Δ_{47} values using Eqn. (A2) from Dennis *et al.*^[9] (which is derived from Table 4(I) of Wang *et al.*^[26]) and the Matlab fsolve function.

Carbonate reference materials

We analyzed three in-house carbonate reference materials (C64, C2 and Coral) as well as four inter-laboratory carbonate reference materials (ETH 1, 2, 3, 4). C64 and C2 are reagent grade calcites while Coral is a Porites spp. of the Great Barrier Reef similar in growth temperature to the RIB Porites presented in Saenger et al.^[27] ETH 1-4 are a collection of carbonates increasingly used by the carbonate clumped isotope community. Meckler *et al.*^[28] originally published the carbon, oxygen, and clumped isotope composition of the ETH reference materials as 'Iso A' now ETH 1, 'Iso B' now ETH 2, 'Iso C' now ETH 3, and 'Iso R' now ETH 4 (see Table 1 of Meckler et al.^[28]). All the carbonates were digested in a common phosphoric acid bath at 90°C. We used the carbonate data from these seven materials to create a hypothetical inter-laboratory comparison where one lab used the FC CO_2 reference frame and the other lab used the FF CO_2 reference frame to calculate Δ_{47} values.

Synthetic carbonates

The synthetic carbonates discussed in this paper are the same samples that were precipitated at known temperatures using various methods and analyzed as described in detail in Kelson *et al.*^[14] We present the Δ_{47} values that were calculated by Kelson et al.^[14] using the Brand method and reprocess the raw data using the Santrock method for comparison. All the synthetic carbonate Δ_{47} values were corrected using the FC CO₂ reference frame and the associated ETF. The variations in precipitation method resulted in carbonates with a range in δ^{13} C values of -25.7 to 1.5 ‰ (VPDB) and a range in δ^{18} O values of -20.7 to -6.5 ‰ (VPDB). Precipitation methods that involved bubbling CO₂ that was relatively depleted in ¹³C into solution resulted in carbonates that were also depleted in ¹³C (carbonate δ^{13} C values ranging from -25.7 to -6.2 % VPDB). Carbonates that were precipitated without CO₂ bubbling have δ^{13} C values that range from -2.0 to 1.5 % VPDB.

Table 1. CO₂-H₂O equilibration and heated gas line regression coefficients from the two reference frames (fermented corn, 'FC', and fossil fuel, 'FF') reduced via the Santrock method and Brand ¹⁷O correction methods

Reference frame	T (°C)	n	Slope	Intercept	r ²	ETF	r ²
FC ^a	5	20	-0.0012	0.084	0.818	Δ_{47} -ARF = 1.0528 * Δ_{47} -WG + 0.9352	0.999
	60	20		-0.146	0.436	17 17	
	1000	36		-0.867	0.512		
FF ^a	5	8	-0.0012	0.021	0.392	Δ_{47} -ARF = 1.0562 * Δ_{47} -WG + 0.9954	0.999
	60	6		-0.196	0.903		
	1000	17		-0.922	0.713		
FC ^b	5	20	-0.0002	0.083	0.210	$\Delta_{47}\text{-}ARF = 1.0542 * \Delta_{47}\text{-}WG + 0.9354$	0.999
	60	20		-0.146	-0.042		
	1000	36		-0.866	0.024		
FF ^b	5	8	-0.0002	0.076	0.032	$\Delta_{47}\text{-}ARF = 1.0571 * \Delta_{47}\text{-}WG + 0.9375$	0.999
	60	6		-0.142	0.255		
	1000	17		-0.867	0.006		

ETF is Empirical Transfer Function and ARF is Absolute Reference Frame, both after Dennis *et al.*^[9] ^aSantrock ¹⁷O correction method.

^bBrand ¹⁷O correction method.

RESULTS

All the isotopic data have been archived at the University of Washington, IsoLab data repository.^[29] The data processing scripts are also given as Supporting Information (Schauer_RCM_17OCorrectionClumped_Matlab Scripts.docx).

Two absolute reference frames

The FC and FF reference frames resulted in equilibrated and heated CO₂ gases with a δ^{47} value range of approximately 80 ‰. Figure 1(a) shows the two reference frames created with the FC CO₂ and the FF CO₂ using the Santrock method while Fig. 1(b) shows the same data using the Brand method. The slopes and intercepts for these two reference frames under

Figure 1. Δ_{47} vs δ^{47} reference frames created with CO₂-H₂O equilibrations. The CO₂ originated from fermented corn (FC, circles) and from fossil fuels (FF, triangles). The H₂O originated from a South Pole ice core, local Seattle tap water, and evaporatively enriched water. Equilibrations were conducted at 5 ° C (cyan), 60 °C (magenta) and 1000°C (yellow). Data compiled with (a) the Santrock ¹⁷O correction method and (b) the Brand ¹⁷O correction method. The shaded regions indicate 95% confidence intervals. Table 1 shows regression coefficients and Table 2 shows statistical test results comparing FC and FF for each temperature and for both the Santrock and the Brand methods. Note FC and FF become indistinguishable using the Brand method.

both ¹⁷O correction methods are given in Table 1. Statistical tests (Table 2) show that the FC and FF reference frames have indistinguishable slopes, but their intercepts are significantly different. [Note the 5°C FF dataset shows more scatter than data at the other temperatures (Fig. 1(a) confidence interval) but remains statistically distinct from the 5°C FC set (Table 2).] The mean Δ_{47} offset among identical equilibration-temperature intercepts when the Santrock method is used is approximately 0.056 ‰ – more than five times analytical error. The offset is reduced to 0.001 ‰ when the Brand method is used (Table 1). The Santrock method slopes of both the FC and the FF reference frames are an order of magnitude steeper than those from the Brand method FC and FF reference frames.

23°C CO₂-H₂O equilibrations

Figure 2 shows Δ_{47} data for samples generated from CO₂ cylinder gas and acid-digested carbonates across a 50 % range of δ^{13} C values (128 % range of δ^{47} values) that were all equilibrated at 23°C and reduced using the Santrock method (Fig. 2(a)) and the Brand method (Fig. 2(b)). The data processed with the Santrock method projected into the FC reference frame or the FF reference frame produce mean Δ_{47} values with a 0.102 % range (temperature estimates with a 20°C range) that are dependent on the $\delta^{13}C$ values (least-squares linear model for FC: slope = +0.0021, intercept =0.964, R^2 = 0.960, p < 0.001; least-squares linear model for FF: slope = +0.0021, intercept =1.024, R^2 = 0.960, p < 0.001). The Brand method, however, shows no distinguishable difference between the Δ_{47} values and the calculated Δ_{47} value associated with a 23°C equilibration temperature (0.935 ‰) for the full range of $\delta^{13}C$ values (least-squares linear model for FC:

slope = -0.0002, intercept =0.941, R² = 0.119, *p* = 0.449; least-squares linear model for FF: slope = -0.0002, intercept =0.943, R² = 0.192, *p* = 0.325).

Carbonate reference materials

Table 3 shows the influence of the choice of reference gas δ^{13} C values and choice of 17 O correction method on the Δ_{47} values for seven carbonate reference materials. Under the Santrock method, the difference between the FC and FF reference frames across all seven carbonates is approximately 0.06 ‰, which can correspond to 15–65°C discrepancies in temperature estimates depending on the absolute value of Δ_{47} . The Brand method, however, yields a negligible difference in Δ_{47} . ETH 1 and 2 are considered to have a formation temperature of 600°C,^[28] and the Brand method produces Δ_{47} results for these two materials that are indistinguishable from each other. The calculated Δ_{47} values for ETH 1 and 2 are not in agreement if the Santrock method is used.

Synthetic calcites

When the synthetic calcite data are compiled using the Santrock method, samples relatively depleted in ¹³C have lower growth temperature Δ_{47} values than samples that were relatively enriched in ¹³C (Fig. 3(a)). When the data are compiled using the Brand method, as shown by Kelson *et al.*,^[14] samples grown at the same temperature with widely differing ¹³C compositions have Δ_{47} values that are within measurement error of each other (Fig. 3(b)). Table 4 shows the regression coefficients for each of the calcite growth experiments. The slopes and intercepts among the different experiments become more similar to each other when the data

Table 2. Companson of termented cont (FC) and tossif fuer (FT) reference many regressions by gas equilibration emperature										
Gas	Slope	t	t crit	df	р	Intercept	t	t crit	df	р
Santrock										
FC 5 vs FF 5	-0.00129 -0.00137	0.155	3.745	24	0.878	0.08437 0.01761	4.705	3.745	24	< 0.0001
FC 60 vs FF 60	-0.00099 -0.00129	0.730	3.792	22	0.473	-0.14635 -0.19831	4.173	3.792	22	0.0004
FC 1000 vs FF 1000	-0.00114 -0.00112	0.073	3.500	49	0.942	-0.86745 -0.91935	7.106	3.500	49	< 0.0001
Brand										
FC 5 vs FF 5	-0.00033 -0.00034	0.029	3.745	24	0.977	0.08416 0.07251	0.820	3.745	24	0.420
FC 60 vs FF 60	-0.00001 -0.00026	0.596	3.792	22	0.557	-0.14644 -0.14355	0.648	3.792	22	0.524
FC 1000 vs FF 1000	-0.00018 -0.00010	0.308	3.500	49	0.759	-0.86650 -0.86391	0.129	3.500	49	0.898

Table 2 Comparison of fermented corn (EC) and fossil fuel (EE) reference frame regressions by gas equilibration temport

The test statistic (t), critical value (t crit), degrees of freedom (df), and probability (p) of rejecting the null hypothesis when it should have been accepted. The null hypotheses being tested are that the slopes are equal or that the intercepts are equal. This table shows that the FC and FF reference gases exhibit equal slopes but different intercepts for all temperatures when the Santrock method is used. The FC and FF gases exhibit equal slopes and intercepts under the Brand method. Note that for a given reference frame (FC or FF) the formal calculation of a reference frame slope^[9] takes into account all the gases at all temperatures (n = 76 for the FC reference frame, and n = 31 for the FF reference frame to calculate a single slope). Here, for the purposes of this statistical test, we have taken a more conservative approach and used only single temperature gases to calculate the slope.

Figure 2. Mean Δ_{47} values for gases equilibrated at 23°C across a range of ¹³C compositions: data compiled with (a) the Santrock ¹⁷O correction method and (b) the Brand ¹⁷O correction method. Green circles are data projected into the FC reference frame while blue triangles are data projected into the FF reference frame. Error bars are standard error of the mean. The horizontal gray bar shows the calculated Δ_{47} value for 23°C (0.935 ‰) with a thickness of the largest standard error (0.013 ‰). Arrows in (a) indicate the samples that have identical ¹³C composition to that of the CO₂ used to build the reference frame. Furthermore, those arrowed samples are indistinguishable from the expected 23°C value of 0.935 ‰.

Table 3. In-house and inter-laboratory carbonate reference materials calibrated under four regimes: the fermented corn reference frame (FC) using Santrock, the fossil fuel reference frame (FF) using Santrock, and then both FC and FF using the Brand ¹⁷O correction method

Carbonate Reference Material	n	Δ ₄₇ 1σ (‰)	Δ_{47} Mean FC Santrock (‰)	Δ_{47} Mean FF Santrock (‰)	Δ_{47} Mean FC Brand (‰)	Δ_{47} Mean FF Brand (‰)
Coral	11	0.017	0.721	0.780	0.703	0.704
C64	16	0.019	0.624	0.683	0.606	0.607
C2	7	0.017	0.514	0.572	0.598	0.602
ETH 1	8	0.017	0.314	0.372	0.287	0.287
ETH 2	12	0.017	0.280	0.338	0.280	0.281
ETH 3	6	0.021	0.719	0.779	0.694	0.694
ETH 4	7	0.015	0.533	0.592	0.533	0.535

The reference frame details and ETF for each of these four reference frames are provided in Table 1. The standard deviation (1σ) is shown and is identical to the fourth decimal place among all regimes, respective to the specific carbonate material. All samples were digested in 90°C acid, and the data have been corrected to 25°C acid digestions using an acid fractionation factor of 0.082 %.^[32]

are calculated using the Brand method. Note that when the Brand method is used, the slope increases for all experiments compared with the Santrock method.

DISCUSSION

The choice of ¹⁷O correction can significantly affect the accuracy of Δ_{47} estimates by IRMS. A basic property of clumped isotope geochemistry is that samples with the same

state of ordering have the same Δ_i value, independent of bulk isotopic composition over the range of natural abundances of rare isotopes.^[26] Thus, the CO₂ gases equilibrated at the same temperature in this study have nominally the same Δ_{47} value, independent of the δ^{47} , δ^{18} O or δ^{13} C values of the CO₂. However, when the ¹⁷O correction scheme traditionally used for Δ_{47} data reduction is used (Santrock method), we observe that CO₂ gases equilibrated at the same temperature but with δ^{13} C values across a 50 ‰ range produce calculated Δ_{47} values that differ by >0.1 ‰, corresponding to a 20°C apparent

Figure 3. Synthetic calcites grown using a suite of methods and across a range of temperatures by Kelson *et al*.^[14] and reprocessed using the Santrock method (a) and presented as published with the Brand method (b). Note that all precipitation methods collapse onto a single calibration when the Brand method is used.

difference in equilibration temperature. This discrepancy practically disappears when the more recent ¹⁷O correction scheme is used (Brand method).

When the sample gas ¹³C composition is similar to that of the reference frame gas, the difference between the Santrock and Brand methods is negligible. Figure 2(a) shows the same 23°C CO₂-H₂O equilibration samples projected, independently, into both the FC and the FF reference frames. Note that the correct Δ_{47} value reflecting 23°C is obtained when the sample ¹³C composition is most similar to that of the reference frame gas (i.e. a sample equilibrated at 23°C with FF cylinder CO₂ yields a Δ_{47} value corresponding to 23°C equilibration only when projected into the FF reference frame). Similarly, the lack of sensitivity of Δ_{47} values to the choice of ¹⁷O-correction parameters found by Affek and Eiler^[7] (variation of ± 0.002 ‰ when λ varies from 0.5 to 0.528) might be explained by the sample gas having a bulk isotopic composition similar to that of the mass spectrometer working gas. Figure 4 shows the difference between the Santrock and

Brand methods for the 23°C CO₂-H₂O equilibration samples expressed against the difference from the mass spectrometer working gas. While it is unclear exactly what the sample and working gases were in Affek and Eiler^[7] to calculate the $\pm 0.002 \%$, Fig. 4 also shows two possible scenarios: (1) the sample and reference gas are identical (zero-enrichment), or (2) the sample is that of the example calculation in appendix B of the said paper. When the mass spectrometer working gas and reference frame gas are considered, Affek and Eiler^[7] and this study are in agreement.

Another example showing how the choice of ¹⁷O correction, the choice of reference frame gas, and the choice of mass spectrometer working gas can all produce inter-laboratory inconsistencies is illustrated by our FC and FF hypothetical inter-laboratory comparison (Table 3). The two hypothetical labs constructed distinct reference frames (Fig. 1 and Table 2). Use of the traditional Santrock ¹⁷O correction elicits a difference between the two hypothetical labs when they constructed reference frames with FC or FF gases while the

Table 4. Regression coeffi	cients for the synthetic ca	alcite experiments			
Regression	Slope ± 1 SE	Intercept ±1 SE	r^2	T Range (°C)	n
<i>Santrock</i> ¹⁷ O correction actively degassed passively degassed mixed solution	0.0367 ± 0.0039 0.0403 ± 0.0026 0.0421 ± 0.0012	0.169 ± 0.040 0.133 ± 0.028 0.156 ± 0.024	0.888 0.937 0.963	6 to 80 6 to 80 6 to 85	13 18 18
<i>Brand</i> ¹⁷ <i>O correction</i> actively degassed passively degassed mixed solution	$\begin{array}{c} 0.0369 \pm 0.0035 \\ 0.0412 \pm 0.0018 \\ 0.0429 \pm 0.0020 \end{array}$	$\begin{array}{c} 0.155 \pm 0.035 \\ 0.139 \pm 0.019 \\ 0.132 \pm 0.021 \end{array}$	0.921 0.970 0.967	6 to 80 6 to 80 6 to 85	13 18 18

The acid digestion temperature was 90 °C and no acid fractionation factor has been used. The p-value for every regression regardless of data compilation method is <0.001. Data are from Kelson *et al.*^[14] and descriptions of the precipitation methods can be found therein.

Figure 4. 23°C CO₂-H₂O equilibration data (FC reference frame) from Figs. 2(a) and 2(b) recast (green diamonds) as the Δ_{47} difference between the Santrock and Brand ^{17}O correction methods on the y-axis and the $\delta^{13}C$ difference of those samples from the mass spectrometer working gas on the x-axis. Error bars are a typical/nominal 0.015 ‰ standard deviation on Δ_{47} . Note the Brand and Santrock methods do not differ from each other when the sample gas is similar to the mass spectrometer working gas. Affek and $\mathrm{Eiler}^{[7]}$ state a variation of ±0.002 ‰ in Δ_{47} across a range in λ from 0.5 to 0.528. We do not know what sample was used to make this estimate and as such we have plotted this variation under two scenarios: (1) the Affek and Eiler^[7] example calculation from Appendix B uses a sample with a δ^{13} C value of -9.801 ‰ VPDB with a working gas of δ^{13} C value of -3.698 ‰ VPDB, and (2) assuming a zeroenrichment, the working gas measured against itself.

more recently proposed Brand ¹⁷O correction provides indistinguishable results for carbonate reference materials. Even if all laboratories constructed the reference frame using identical methods, inaccurate Δ_{47} values that depend on sample ¹³C composition could still result from the traditional Santrock ¹⁷O correction. Similarly, for a single laboratory using equilibrated CO₂ with differing ¹³C compositions, the traditional ¹⁷O correction could lead to reference frame scatter, change in slope or departures from a linear δ^{47} - Δ_{47} relationship, systematic scale compression, or all the above.

In light of these observations, we echo the recommendation of Brand et al.^[18] that all researchers measuring CO₂ via IRMS use a λ value of 0.528 and K value of 0.01022461 to correct for ^{17}O interference on measurements of $\delta^{13}\text{C}$ values unless ^{17}O has been measured and/or alternative λ and K values are warranted. While we have shown a higher level of Δ_{47} accuracy with the Brand method, it is likely that further improvements will come with measurement of ¹⁷O for each $\dot{CO_2}$ analyzed. The ¹⁷O composition of equilibration waters should also be considered as it may have an effect.^[30] Here we use waters with very different Δ^{17} O values but see no evidence of a detectable influence on the Δ_{47} values (Fig. 5). It is unclear if future improvements will arise when one controls for the ¹⁷O composition of equilibration waters. A good physical basis exists^[18] and the empirical observations presented here support use of the Brand method now.

Our synthetic carbonate data comparison showcases the effect of ¹⁷O correction method on carbonate Δ_{47} -temperature calibrations. Using the traditional ¹⁷O correction scheme, data for synthetic carbonates^[14] precipitated using a suite of

Figure 5. Mean Δ_{47} values for gases equilibrated at 23°C grouped by the equilibration waters (evaporatively enriched, local deionized tap water, and South Pole ice core water) compiled with the Brand ¹⁷O correction method. Green circles are data projected into the FC reference frame while blue triangles are data projected into the FF reference frame. Error bars are standard deviation. The horizontal gray bar is as in Fig. 2.

methods, including those used in previous calibration studies (e.g., ^[12,31]), define Δ_{47} -temperature calibrations that differ significantly from one another. The systematic offset in calibration lines could be interpreted as a function of CO₂ degassing rate during carbonate precipitation, with more slowly degassed 'mixed solution' carbonates showing the highest Δ_{47} values. However, this apparent relationship is an artifact of the difference in δ^{13} C values for carbonates synthesized with and without CO₂ bubbling through the precipitating solution. Using the proposed ¹⁷O correction coefficients of Brand *et al.*,^[18] all the synthetic carbonate data collapse onto a single calibration curve. A full reevaluation of previously published calibration data is beyond the scope of this study, particularly given that the ¹³C compositions of synthetic carbonates are rarely reported, not to mention the bulk isotopic compositions of the reference frame gases and mass spectrometer working gases. Furthermore, if ever completed, a reevaluation of some previously published data might yield no difference given the early result of Affek and Eiler^[7] showing no sensitivity to the choice of λ . Nevertheless, our results show that the traditional ¹⁷O correction method potentially leads to inaccurate Δ_{47} values, including systematic errors for different carbonate precipitation methods and reference frames. We suggest the ¹⁷O correction coefficients may be partially responsible for discrepancies among previously published Δ_{47} -T calibrations.

CONCLUSIONS

The data presented in this study, along with those previously presented^[15] and associated new work,^[30] clearly demonstrate the potential for a dependence of calculated Δ_{47} values on the choice of ¹⁷O correction. The ¹⁷O correction scheme originally proposed for Δ_{47} data reduction can result in inter-laboratory discrepancies and inaccurate calculated Δ_{47} values. Examples highlighted here include systematic, δ^{13} C-dependent errors in the calculated Δ_{47} of CO₂ gases equilibrated at the same temperature; equilibrated CO₂ reference frame gases; ETH and intra-laboratory carbonate reference materials; and synthetic calcites precipitated using different methods. The more recently proposed ¹⁷O correction scheme of Brand *et al.*^[18] eliminates the discrepancy among Δ_{47} values for CO₂ gases equilibrated at the same temperature and provides consistent results for carbonate reference materials formed at the same temperature, regardless of the sample or reference frame gas ¹³C composition.

Our results imply that discrepancies among previous carbonate clumped isotope thermometer calibrations might have been caused by the choice of ¹⁷O correction methods and associated artifacts that result from differences among sample, reference frame, and/or working gas bulk isotopic compositions. The potential magnitude of such effects is illustrated by both the hypothetical inter-laboratory comparison exhibiting better agreement and the Kelson et al.[14] synthetic carbonate dataset showing that disparate precipitation methods collapse onto a single calibration curve when Brand et al.^[18] values are used. Lack of discrepancies among clumped isotope thermometers spanning a large range in ¹³C composition is also possible as recently suggested by Daëron *et al.*^[30] Our results suggest that it is the choice of ¹⁷O correction, the ¹³C composition of the reference frame gas, and the ¹³C composition of the mass spectrometer working gas that might contribute to a discrepancy.

Ideally, we would measure the ¹⁷O composition of all materials and provide sample- and standard-specific λ values to correct for ¹⁷O mass interference. However, until such measurements are practical, our conclusion is aligned with that of Brand *et al.*,^[18] who proposed that researchers measuring CO₂ via IRMS should use a λ value of 0.528 and K value of 0.01022461 because these are the most reasonable values for a species such as CO₂ whose oxygen composition is largely determined by water. We recommend that the CO₂ and carbonate clumped isotope community begin to critically consider the choice of λ and K and its impact on the accuracy of Δ_{47} values. To evaluate the potential ¹⁷O correction sensitivity of previously published works, researchers should consider the data processing method (Santrock, Brand, or other) as well as the isotopic difference among sample gas, reference frame gas, and mass spectrometer working gas, where larger differences among these gases coupled with the Santrock 17 O correction might make for larger discrepancies in Δ_{47} values. While it seems impractical to reevaluate the entire body of CO₂ clumped isotope data, perhaps a first step could be to reevaluate all Δ_{47} -T calibrations as this dataset is used most heavily. Furthermore, until improved λ and K values are available and ¹⁷O measurement in CO₂ samples is routine for clumped isotopes, we advocate using those values reasoned by Brand et al.^[18]

Acknowledgements

This paper includes work we presented at the 5th International Clumped Isotope Workshop in January 2016 at University of Florida, St. Petersburg, FL. We thank the meeting organizers (Peter Swart and Brad Rosenheim). The authors also wish to thank Albert Colman and Gerry Olack (University of Chicago) for discussions and insights. The paper benefitted from the comments of three anonymous reviewers. This work has been funded by the U.S. National Science Foundation (EAR-1156134 and EAR-1252064 to KWH; NSF Graduate Research Fellowship to JRK as Grant No. DGE-1256082 (NSF GRFP)).

REFERENCES

- [1] P. Ghosh, J. Adkins, H. Affek, B. Balta, W. Guo, E. A. Schauble, D. Schrag, J. M. Eiler. 13C–18O bonds in carbonate minerals: A new kind of paleothermometer. *Geochim. Cosmochim. Acta* 2006, 70, 1439.
- [2] J. M. Eiler. "Clumped-isotope" geochemistry—The study of naturally-occurring, multiply-substituted isotopologues. *Earth Planet. Sci. Lett.* 2007, 262, 309.
- [3] J. M. Eiler. Paleoclimate reconstruction using carbonate clumped isotope thermometry. *Quat. Sci. Rev.* 2011, *30*, 3575.
- [4] J. M. Eiler. The Isotopic Anatomies of Molecules and Minerals. Annu. Rev. Earth Planet. Sci. 2013, 41, 411.
- [5] H. P. Affek. Clumped isotope paleothermometry: principles, applications, and challenges. *Paleontol. Soc. Pap.* 2012, 18, 101.
- [6] K. W. Huntington, A. R. Lechler. Carbonate clumped isotope thermometry in continental tectonics. *Tectonophysics* 2015, 647-648, 1.
- [7] H. P. Affek, J. M. Eiler. Abundance of mass 47 CO₂ in urban air, car exhaust, and human breath. *Geochim. Cosmochim. Acta* 2006, 70, 1.
- [8] K. W. Huntington, J. M. Eiler, H. P. Affek, W. Guo, M. Bonifacie, L. Y. Yeung, N. Thiagarajan, B. Passey, A. Tripati, M. Daëron, R. Came. Methods and limitations of "clumped" CO₂ isotope (Δ₄₇) analysis by gas-source isotope ratio mass spectrometry. J. Mass Spectrom. 2009, 44, 1318.
- [9] K. J. Dennis, H. P. Affek, B. H. Passey, D. P. Schrag, J. M. Eiler. Defining an absolute reference frame for "clumped" isotope studies of CO₂. *Geochim. Cosmochim. Acta* 2011, 75, 7117.
- [10] B. He, G. A. Olack, A. S. Colman. Pressure baseline correction and high-precision CO₂ clumped-isotope (Δ₄₇) measurements in bellows and micro-volume modes. *Rapid Commun. Mass Spectrom.* **2012**, *26*, 2837.
- [11] B. Hu, J. Radke, H.-J. Schlüter, F. T. Heine, L. Zhou, S. M. Bernasconi. A modified procedure for gas-source isotope ratio mass spectrometry: the long-integration dualinlet (LIDI) methodology and implications for clumped isotope measurements. *Rapid Commun. Mass Spectrom.* 2014, 28, 1413.
- [12] S. Zaarur, H. P. Affek, M. T. Brandon. A revised calibration of the clumped isotope thermometer. *Earth Planet. Sci. Lett.* 2013, 382, 47.
- [13] T. Kluge, C. M. John, A.-L. Jourdan, S. Davis, J. Crawshaw. Laboratory calibration of the calcium carbonate clumped isotope thermometer in the 25–250°C temperature range. *Geochim. Cosmochim. Acta* 2015, 157, 213.
- [14] J. Kelson, K. W. Huntington, A. Schauer, C. Saenger, A. R. Lechler. Towards a universal carbonate clumped isotope calibration: Diverse synthesis and preparatory methods suggest a single temperature relationship. *Geochim. Cosmochim. Acta* 2016, submitted.

- [15] A. Colman. δ^{17} O and Δ_{47} —The Heavens can Wait. *AGU Fall Meet.* **2015** 2015, PP21A-2207.
- [16] H. Craig. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. *Geochim. Cosmochim. Acta* 1957, 12, 133.
- [17] J. Santrock, S. A. Studley, J. M. Hayes. Isotopic analyses based on the mass spectra of carbon dioxide. *Anal. Chem.* 1985, 57, 1444.
- [18] W. A. Brand, S. S. Assonov, T. B. Coplen. Correction for the ¹⁷O interference in δ(¹³C) measurements when analyzing CO₂ with stable isotope mass spectrometry (IUPAC Technical Report). *Pure Appl. Chem.* **2010**, *82*, DOI 10.1351/ PAC-REP-09-01-05.
- [19] R. Gonfiantini, W. Stichler, K. Rozanski. Reference and intercomparison materials for stable isotopes of light elements. 1995.
- [20] Y. Matsuhisa, J. R. Goldsmith, R. N. Clayton. Mechanisms of hydrothermal crystallization of quartz at 250°C and 15 kbar. *Geochim. Cosmochim. Acta* 1978, 42, 173.
- [21] A. O. Nier. A Redetermination of the Relative Abundances of the Isotopes of Carbon, Nitrogen, Oxygen, Argon, and Potassium. *Phys. Rev.* **1950**, 77, 789.
- [22] A. J. Schauer, J. Kelson, C. Saenger, K. W. Huntington. Is the absolute reference frame absolute? An apparent dependency of Δ_{47} on δ^{13} C in CO₂. *5th Int. Clumped Isotope Workshop*, St Petersburg, FL, USA Jan 6–9, **2016**.
- [23] L. Burgener, K. W. Huntington, G. D. Hoke, A. Schauer, M. C. Ringham, C. Latorre, F. P. Díaz. Variations in soil carbonate formation and seasonal bias over >4 km of relief in the western Andes (30°S) revealed by clumped isotope thermometry. *Earth Planet. Sci. Lett.* **2016**, 441, 188.
- [24] S. M. Bernasconi, B. Hu, U. Wacker, J. Fiebig, S. F. M. Breitenbach, T. Rutz. Background effects on Faraday collectors in gas-source mass spectrometry and implications for clumped isotope measurements. *Rapid Commun. Mass Spectrom.* 2013, 27, 603.

- [25] S. W. Schoenemann, A. J. Schauer, E. J. Steig. Measurement of SLAP2 and GISP δ^{17} O and proposed VSMOW-SLAP normalization for δ^{17} O and 17 Oexcess. *Rapid Commun. Mass Spectrom.* **2013**, *27*, 582.
- [26] Z. Wang, E. A. Schauble, J. M. Eiler. Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases. *Geochim. Cosmochim. Acta* 2004, 68, 4779.
- [27] C. Saenger, H. P. Affek, T. Felis, N. Thiagarajan, J. M. Lough, M. Holcomb. Carbonate clumped isotope variability in shallow water corals: Temperature dependence and growth-related vital effects. *Geochim. Cosmochim. Acta* 2012, 99, 224.
- [28] A. N. Meckler, M. Ziegler, M. I. Millán, S. F. M. Breitenbach, S. M. Bernasconi. Long-term performance of the Kiel carbonate device with a new correction scheme for clumped isotope measurements: Performance and correction of Kiel clumped isotope measurements. *Rapid Commun. Mass Spectrom.* 2014, 28, 1705.
- [29] Available: http://isolab.ess.washington.edu/isolab/data/ Schauer_RCM2016_17OCorrectionClumped_Data.csv.
- [30] M. Daëron, D. Blamart, M. Peral, H. P. Affek. Absolute isotopic abundance ratios and the accuracy of Δ47 measurements. *Chem. Geol.* 2016, 442, 83.
- [31] K. J. Dennis, D. P. Schrag. Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration. *Geochim. Cosmochim. Acta* 2010, 74, 4110.
- [32] W. F. Defliese, M. T. Hren, K. C. Lohmann. Compositional and temperature effects of phosphoric acid fractionation on Δ_{47} analysis and implications for discrepant calibrations. *Chem. Geol.* **2015**, *396*, 51.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article at the publisher's website.