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Abstract Records of subtropical climate on land from the early Paleogene offer insights into how the Earth
system responds to greenhouse climate conditions. Fluvial and floodplain deposits of the Tornillo Basin (Big
Bend National Park, Texas, USA) preserve a record of environmental and climatic change of the Paleocene
and the early Eocene. We report carbon, oxygen, and clumped isotopic compositions (δ13C, δ18O, and Δ47) of
paleosol carbonate nodules from this basin. Mineralogical, geochemical, and thermal modeling evidence
suggests that the measured isotopic values preserve primary environmental signals with a summer bias with
the exception of data from two nodules reset by local igneous intrusions. The unaltered nodules record Δ47

temperatures of 25 ± 4 and 32 ± 2 °C for the Paleocene and early Eocene nodules, respectively, showing an
increase in average summer temperatures of 7 ± 3 °C. Calculations of δ18O of soil water are�2.8 ± 0.7‰ and
�0.8 ± 0.4‰ (standard mean ocean water) for the early-mid-Paleocene and late Paleocene-early Eocene,
showing an increase of 2.0 ± 0.9‰. The increase in temperature and δ18O values likely relates to a rise in
atmospheric pCO2, although we cannot rule out that changes in paleosol texture and regional precipitation
patterns also influence the record. Comparison with Δ47 estimates of summer temperature from the Green
River and Bighorn Basins (WY) highlights that terrestrial surface temperatures are heterogeneous, and
latitudinal temperature gradients on land remain undetermined. Previously published paleoclimate models
predict summer temperatures that are 2 to 6 °C higher than our estimate; discrepancies between climate
models and proxy data persist at lower latitudes.

1. Introduction

Reconstructions of ancient greenhouse climates can help inform our understanding of future climates that
could be similarly forced by high concentrations of atmospheric CO2. Greenhouse climates of the early
Paleogene provide examples of Earth’s long-term sensitivity of climate to high CO2 (Haywood et al., 2011;
Lunt et al., 2012, 2013; Valdes, 2011); the early Paleogene contains peak global temperatures of the
Cenozoic during the early Eocene climatic optimum (EECO; ~52 to 50 Ma), and those maximum temperatures
correspond with high concentrations of atmospheric CO2 (Anagnostou et al., 2016; Beerling & Royer, 2011;
Hyland & Sheldon, 2013; Jagniecki et al., 2015; Lowenstein & Demicco, 2006; Pagani et al., 2005; Pearson
et al., 2007; Zachos et al., 2008). Continuous records of ocean temperature exist from the Paleogene
(Lauretano et al., 2015; Thomas et al., 2011; Zachos et al., 2001, 2008), but few terrestrial records span the
entirety of the Paleocene and the transition into the early Eocene. The need for proxy estimates of tempera-
ture on land during this past greenhouse period is highlighted by predictions that terrestrial warming can
outpace oceanic warming (Diffenbaugh & Field, 2013).

Fundamental questions about the nature and dynamics of early Paleogene climates remain unanswered. In
particular, latitudinal temperature gradients in the early Eocene are enigmatic because shallow gradients
estimated by proxies are challenging to reproduce with climate models (Bernard et al., 2017; Heinemann
et al., 2009; Ho & Laepple, 2016; Huber & Caballero, 2011; Lunt et al., 2012, 2016; Matthew & Sloan, 2001;
Roberts et al., 2009; Sagoo et al., 2013; Sewall & Sloan, 2006, 2001; Shellito et al., 2003, 2009; Sloan, 1994;
Sloan & Barron, 1990; Thrasher & Sloan, 2009; Tierney et al., 2017; Winguth et al., 2010). Both geochemical
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proxies and fossils generally predict early Paleogene high-latitude tem-
peratures that are much higher than modern, often by 20° or more
(Brinkhuis et al., 2006; Eberle et al., 2010; Eberle & Greenwood, 2012;
Greenwood & Wing, 1995; Hollis et al., 2009; Maxbauer et al., 2014; Pross
et al., 2012; Royer et al., 2002; Sluijs et al., 2008, 2009, 2006; Smith et al.,
2009; Spicer & Parrish, 1990; Weijers et al., 2007). Global climate models
have been able to reproduce this high latitude warmth with large radiative
forcing (Huber & Caballero, 2011; Lunt et al., 2012). However, these models
also predict extremely high temperatures at low latitudes that, in some
cases, exceed the physiological temperature limit for plant and animal sur-
vival (Huber, 2008; Sherwood & Huber, 2010). They are thus difficult to
reconcile with fossil records that suggest mild tropical climates and/or
abundant tropical life (Head et al., 2009; Spicer et al., 2014; Wheeler &
Lehman, 2005; S. Wing & Greenwood, 1993; S. L. Wing et al., 2005, 2009)
and disagree with some geochemical proxy reconstructions of mild tropi-
cal climates (Bijl et al., 2009; Evans et al., 2018; Keating-Bitonti et al., 2011).
However, other studies voice concerns about the accuracy and interpreta-
tion of some geochemical (δ18O and TEX86) proxy reconstructions of low-
latitude Paleogene climate due to problematic calibrations and/or sample
preservation (Aze et al., 2014; Frieling et al., 2017; Hollis et al., 2012; Kozdon
et al., 2011; Pearson et al., 2001, 2007). Furthermore, some fossil records
provide evidence for heat-stressed organisms and hot tropical tempera-
tures that are more consistent with model predictions (Frieling et al.,

2017; Harrington & Jaramillo, 2007; Head et al., 2009; Jaramillo et al., 2006). Additional quantitative proxy esti-
mates of subtropical temperatures on land during greenhouse periods such as the early Paleogene offer a
crucial opportunity to test model predictions and expand the representation of low-latitude temperatures
in proxy data sets.

Early Paleogene warming was also accompanied by global hydrologic changes that remain poorly under-
stood and likely varied with geography and with the temporal scale of interest (Anhäuser et al., 2018;
Carmichael et al., 2015, 2016, 2017; Foreman et al., 2012; Kraus et al., 2015; Kraus & Riggins, 2007;
McInerney & Wing, 2011; Schmitz & Pujalte, 2007; Smith et al., 2014). It has been hypothesized that increased
warming during greenhouse periods is associated with a more intense hydrologic cycle (e.g., Held & Soden,
2006), which could be manifested partly as increased summertime precipitation in North America (Huber &
Goldner, 2012; Schubert et al., 2012; Sewall & Sloan, 2006; Thrasher & Sloan, 2009). Improved understanding
of patterns of hydroclimate in the early Paleogene would offer potential to test this prediction and document
specific characteristics of the water cycle of greenhouse climates.

Here we expand our understanding of subtropical terrestrial temperatures and hydrology during the
Paleocene and the early Eocene by applying the carbonate clumped isotope paleothermometer (Δ47) to a
suite of paleosols in the Tornillo Basin in Big Bend National Park, Texas (Figure 1). The paleosol sequence
in the Tornillo Basin preserves a long, well-sampled record of environmental change from the early
Paleocene through early Eocene (Atchley et al., 2004; Bataille et al., 2016, 2018). Carbonate clumped isotopes
can provide information on both soil temperatures and meteoric waters at the time of carbonate growth,
which allows us to provide a quantitative estimate of terrestrial environmental changes across this important
greenhouse interval in the previously undersampled subtropics.

2. Materials and Methods
2.1. Paleogeographic, Geologic, and Environmental Setting

The paleosols studied in this work are from the Tornillo Basin in Big Bend National Park, Texas (USA), approxi-
mately 29°250N, 103°090W (Figure 1). The Tornillo Basin formed as the southernmost extent of the Laramide
orogeny (Lehman, 1991; Lehman & Busbey, 2007; Lehman et al., 2018; Schiebout et al., 1987; Turner et al.,
2011) and during the early Paleogene was likely at or near the same subtropical latitude as it is today
(van Hinsbergen et al., 2015). There is some evidence for syndepositional deformation in the studied

Figure 1. Location of the Tornillo Basin (Big Bend National Park), Texas, in
relation to other Laramide Basins, the proto-Gulf of Mexico, and modern
states. Map modified from Galloway et al. (2011).
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Paleocene and Eocene sediments (Lehman & Busbey, 2007). The basin was likely a distal foreland basin with
relatively low sediment accumulation rates (Schiebout et al., 1987). During the Paleogene, the basin was close
to the proto-Gulf of Mexico shoreline and thus preserves a record of a more coastal environment than exists
at modern Big Bend (e.g., Galloway et al., 2011; Sharman et al., 2017).

We focus on Paleocene to early Eocene sediments in the Black Peaks and Hannold Hill Formations (Figures 1
and S2 in the supporting information). These sediments consist of alternating channel deposits and over-
bank floodplain deposits with evidence of pedogenesis (Bataille et al., 2016; Lehman & Busbey, 2007;
White & Schiebout, 2008). Identifiable paleosols have been measured and described from these sections
(Figures 2 and S1), and some of the pedogenic horizons yield carbonate nodules. An age model for these
sediments was developed using carbon isotope stratigraphy, magnetostratigraphy, and sparse vertebrate
fossils (Bataille et al., 2016, 2018; Rapp et al., 1983; Schiebout et al., 1987) and agrees well with a paleomag-
netically constrained age model for a section with overlapping stratigraphic coverage that is exposed about
38 km to the west (Leslie et al., 2018).

2.2. Field Methods

Stratigraphic sections were measured in two adjacent locations exposing the target formations, at Tornillo
Flats and at Grapevine Hills (Figures 2, S1, and S2). Sections were correlated primarily via two distinct marker
beds: the Exhibit Ridge sandstone and the uppermost black paleosol of the Black Peaks Fm. Between these
marker beds, sections were correlated based on similar lithologies and thicknesses and measurements of dip
(Bataille et al., 2016; Figure S1). Paleosols were identified in the field based on pedogenic features such as
horizonation, coloring, root traces and burrowing, gleying, and/or the presence of carbonate nodules.

Figure 2. Stratigraphy, age model, and isotopic composition of carbonate nodules from the Tornillo Group (modified from Bataille et al., 2016, 2018). (a) Composite
stratigraphy from Tornillo Flats and Grapevine Hills. Magnetostratigraphic and biostratigraphic data are linked to the composite section (Rapp et al., 1983; Schiebout
et al., 1987). The gray shading in the magnetostratigraphic data is the unstudied intervals. (b–d) Symbols indicate sampling section (GH = Grapevine Hills,
TF = Tornillo Flats), and star and triangle symbols are either spar or diagenetically altered samples, as discussed in section 4.1. Errors for δ13C and δ18O are standard
deviation and are generally smaller than the symbols. Errors for Δ47 are standard error. Dashed lines are amoving average of the isotopic data, excluding the spar and
altered samples. (e) Timescale with geologic epochs and ages, global magnetic polarity zones, and North American Land Mammal Ages.
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Paleosols were trenched to enable accurate description, and samples were collected from at least 20 cm
below the modern outcrop surface to avoid modern contamination and exposure weathering. Carbonate
nodules were sampled from the middle of the Bk horizon. The depth to the Bk horizon ranged from 0.1 to
4 m below the approximate top of the paleosol horizon; however, there is significant uncertainty in this
estimate because the tops of most paleosols were either truncated or indistinct due to continual aggradation
and pedogenesis. The shallowest of these carbonates (~0.1 m) were collected from truncated paleosols and
the true formation depth is unknown. We collected bulk A and B horizon materials and pedogenic carbonate
nodules where present.

2.3. Carbonate Analysis Methods
2.3.1. Nodule Characterization and Sampling
Each carbonate nodule was cut open and polished for examination and selected carbonate nodules were
made into thin sections. The carbonate nodules from Tornillo Flats were prepared and described as part of
an MS thesis (Watford, 2015), and five of those nodules had thin sections that were examined with
transmitted light. We collected additional nodules from Grapevine Hills, and representative nodules from that
section were made into thin sections that were examined with both transmitted light and cathodolumines-
cent (CL) microscopy. The CL scope used is a Luminoscope ELM-3R and was operated at 5–10 kV, 0.5 mA, and
50–100 mTorr. Nodules were classified as homogeneous, heterogeneous, or radial, based on their internal
textures, where homogeneous nodules were dominated by homogeneous micritic carbonate, heteroge-
neous nodules showed appreciable brecciation, grainification, and/or phreatic sparry calcite cement, and
radial nodules exhibited a distinctive radial-fibrous fabric (example images in Watford, 2015, and Bataille
et al., 2016). With one exception, radial nodules were not analyzed for Δ47 given previous work suggesting
that they represented distinctive, groundwater-dominated growth environments characterized by unusual
isotopic values (Bataille et al., 2016; Schmidt, 2009). For all nodules, the target carbonate material was
sampled from the cut and polished nodule surface using a micromill, a mounted dental drill, or by hand with
a drill tool. One nodule was too small to be cut open (<0.5 cm in diameter), so the entire nodule was ground
and homogenized (PS3); this sampling method offers considerably more opportunity for unintentional
sampling of altered material.
2.3.2. δ18O, δ13C, and Δ47 Methods
Soil carbonates grow in near-equilibrium conditions (Quade, Garzione, et al., 2007; Quade et al., 2013) and
thus can provide a reliable record of growth temperature and isotopic composition of the source fluid and
gases. Carbonate clumped isotope thermometry uses the thermodynamic preference for an increase in the
abundance of 13C-18O bonds with decreasing temperature in order to measure the growth temperature of
a carbonate mineral (e.g., Affek, 2012; Eiler, 2007; Ghosh et al., 2006). Paired with the simultaneously mea-
sured oxygen isotope (δ18O) composition of carbonate, the TΔ47 also allows for the calculation of the δ18O
of the water in which the carbonate grew (here denoted δ18Ow; e.g., Eiler, 2011; Huntington & Lechler,
2015; Quade et al., 2013).

The δ18O, δ13C, and Δ47 compositions of the carbonate nodules were measured at the University of
Washington IsoLab in Seattle, WA. First, 6–10-mg carbonate-equivalent of sample powder was digested
in a common bath of phosphoric acid with a specific gravity of 1.904–1.970 g/cm3 held at 90 °C. We do
not observe a change in measured Δ47 in our carbonate standards across this range in specific gravity.
The evolved CO2 gas was then cryogenically purified using an offline, automated vacuum system. The
purified CO2 gas was measured on a Thermo MAT 253 mass spectrometer configured to measure m/z
44–49. Details of the purification and the measurements, including the pressure baseline, absolute refer-
ence frame, and 17O correction are described elsewhere (Burgener et al., 2016; Kelson et al., 2017;
Schauer et al., 2016). For every approx. four sample unknowns, a carbonate standard was run, which rotated
between a tropical Porites coral (Coral), two in-house reagent-grade synthetic carbonates (C64 and C2), and
four synthetic carbonates distributed by ETH Zurich (ETH1–4; Bernasconi et al., 2018; Meckler et al., 2014).
We regularly purified and measured heated gases (1,000 °C) and equilibrated gases (4 and 60 °C) to place
samples into the absolute reference frame (Dennis et al., 2011). The sample analyses span four reference
frames: a reference frame from February to October 2014, a reference frame from October 2014 to April
2015, a reference frame from October 2015 to December 2016, and a reference frame from December
2016 to April 2018.
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Δ47 was calculated using standard methods (Dennis et al., 2011; Huntington et al., 2009), with two exceptions:
we used the Brand et al. (2010) parameters to correct for 17O interference (Daëron et al., 2016; Schauer et al.,
2016), and we did not add an acid fractionation factor to our Δ47 values (values are presented in the 90 °C
reference frame). Each nodule was analyzed in replicate two to eight times (replication is defined as an indi-
vidual acid digestion of a subset of the sample powder). We calculated temperatures from Δ47 values (TΔ47)
with the calibration presented in Kelson et al. (2017, equation 2), which is similar to other recent clumped
isotope calibrations (e.g., Bonifacie et al., 2017), and was produced at IsoLab with the same methods (also
calculated with the Brand et al., 2010, parameters and used carbonates digested in 90 °C acid). We report
two estimates of error: (1) standard error (S.E.), which was calculated as the larger of either the standard devia-
tion of the sample Δ47 or our external error of 0.021‰ (estimated by the long-term standard deviation of our
zeros), divided by the square root of the number of replicates for that sample; and (2) the 95% confidence
interval (CI), which was calculated as the Student’s t value for the number of replicates multiplied by the S.
E. Although errors on individual samples can be quite large, robust estimates for temperature can be made
by using an error-weighted average of samples from similar time periods and reporting the 95% CI on those
means (Fernandez et al., 2017). The δ18O composition of the fluids from which the carbonates grew (δ18Ow)
was estimated using the TΔ47 and the calcite-water fractionation factors from Kim and O’Neil (1997). The error
in the TΔ47 measurement was propagated to estimate the error in the δ18Ow calculation.

3. Results
3.1. Carbonate Nodule Texture Observations

Most of the carbonate nodules (>70%) were characterized as homogenous, and micritic material from those
nodules was targeted for isotopic analysis. Examination of thin sections in plane light showed that some of
the homogenous nodules contained some secondary spar (>10 μm). The spar was isolated to veins or inclu-
sions and made up less than 10% of the total nodule, which enabled us to sample exclusively micrite for iso-
topic analysis. In two nodules (BB-TF2-14-036 and BB-TF3-14-003), we were able to isolate and sample the
spar material for isotopic analysis (Table S1). Thin section imagery revealed that the sparry calcite exhibited
red or orange luminescence that was distinct from the micritic material, which was uniformly nonlumines-
cent (Figure S3). The minor amount of spar, together with textural observations from CL, suggests that exam-
ination in plane light was likely sufficient to allow sampling for isotopic analyses that avoidedmost secondary
or diagenetic calcite material.

3.2. δ18Oc, δ13C, Δ47, and δ18Ow Results

Micritic carbonate samples have δ18Oc values that range from�3.6‰ to�10.1‰ (Vienna Pee Dee belemnite
(VPDB)) with an average S.E. of 0.04‰ and δ13C values that range from �8.9‰ to �11.8‰ (VPDB) with an
average S.E. of 0.09‰. Mean Δ47 values of themicritic carbonate nodules range from 0.456% to 0.646‰, with
S.E. that ranges from 0.009% to 0.029‰ (Table S1, Figure 2). This corresponds to TΔ47 values that range from
13 to 89 °C with 95% CI that ranges from 7 to 47 °C. Using the δ18Oc and TΔ47 from individual carbonate
nodules, we calculate a range in δ18Ow of �5.8‰ to 3.0‰ (Vienna standard mean ocean water (VSMOW))
with error ranging from 0.5‰ to 1.5‰ (Table S1 in the supporting information and Figures 4 and 5).

4. Discussion
4.1. Recognizing Diagenesis

Postdepositional alteration can destroy the primary climate signal in a pedogenic carbonate nodule.
Alteration can occur either through secondary precipitation of calcite or through solid-state reordering of
the 13C-18O bonds. Recrystallization or precipitation of secondary calcite can cause the Δ47, and conditionally
also the δ13C and δ18O, values of carbonate nodules to reflect the temperature and isotopic composition of
the secondary fluid. Solid-state reordering can occur if a carbonate mineral is held at temperatures of>100 °C
for an extended amount of time (>106 years), thus changing Δ47 but not δ

18O or δ13C of carbonate (Henkes
et al., 2014; Lloyd et al., 2017; Passey & Henkes, 2012; Stolper & Eiler, 2015). Here we discuss the possibility that
these two processes have altered the Big Bend carbonate nodules.
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4.1.1. Spar Indicates Localized Recrystallization
In Big Bend, fluids associated with late Eocene-early Oligocene magmatic intrusions could have recrystallized
the carbonate nodules. Thin sections of the nodules reveal distinct accumulations of luminescent spar
(Figure S3), which can be explained by increased concentrations in trace metals that are associated with sec-
ondary precipitation (e.g., Finnegan et al., 2011). Indeed, our twomeasured spar samples have TΔ47, δ

13C, and
δ18O compositions that are distinctly higher than those of micrite samples (Table S1). The range in bulk iso-
topic composition among these samples (~10‰ in both δ13C and δ18O) might be due to multiple phases of
recrystallization with fluids varying in composition. We carefully sampled carbonate nodules where possible
in order to avoid contamination from diagenetic spar material and believe that our isotopic analyses of
micrite are not significantly contaminated with recrystallized postburial phases.
4.1.2. Potential Solid-State Reordering of Micritic Samples Due to Heating From Burial and
Local Laccoliths
Solid-state reordering does not necessarily change the visible texture or bulk elemental structure of carbo-
nates, which makes it nearly impossible to observe from thin-section imagery alone. Here we use thermal
modeling to explore the possibility that our sample carbonate nodules could have experienced partial or
complete reordering.

It is unlikely that the sampled sediments reached burial temperatures higher than 100 °C because they were
never deeply buried (also assumed by Atchley et al., 2004; Nordt et al., 2011; heating due to local volcanic
deposits is considered later). The combined Black Peaks, Hannold Hill, and Canoe Formations are approxi-
mately 720–820-m thick (Turner et al., 2011). The Chisos Formation (~1,000 m thick) is time-correlative with
the Canoe Formation, but its distribution is limited to a local basin southwest of the stratigraphic sections
measured, and thus, it does not overlie the sediments of interest (Turner et al., 2011). No other potential
Paleogene overburden is mapped in this area. There are late Tertiary to Quaternary alluvial sediments in the
region, but their deposition is localized in fault-bounded basins, and any such alluvial accumulation in the
vicinity of Tornillo Flats and Grapevine Hills likely had an insignificant effect on burial temperatures of the study
formations (Turner et al., 2011). Therefore, the sediments of the Black Peaks and Hannold Hill Formations were
buried<1 km, and so a remarkably high geothermal gradient would have been required to heat the carbonates
studied here to >100 °C. Even if late Tertiary Basin and Range extension elevated the geothermal gradient in
the region to a high gradient like that of continental magmatic arc regions, ~40 to 50 °C/km (Rothstein &
Manning, 2003), the sediments would have been buried at maximum temperatures of 60–70 °C. Heating of
temperatures <100 °C could have promoted modest reordering (an increase in apparent temperature of
10 °C) if the carbonate samples resided at those elevated temperatures for hundreds of millions of years
(Stolper & Eiler, 2015), but these samples have a maximum depositional age of 70 Ma that rules out such a long
burial history. Thus, heating due to burial alone is unlikely to have significantly altered the clumped isotope
bonding in our carbonate nodules.

Several kilometer-scale laccoliths were emplaced in the region at ~32 Ma (Miggins et al., 2007) and could
have provided enough heat to locally enable solid-state reordering. The Grapevine Hills section is so-named
due to the Grapevine Laccolith that is as close as 0.8 km to our stratigraphic section (Figure S2). Geophysical
measurements of the Grapevine Laccolith suggest that it is about 3.5 km wide and 200 m thick and that the
laccolith does not extend laterally beyond its surface expression (Turner et al., 2011). Wemodel the heating of
the country rock using the 1D error function solution to the Fourier conduction equation (e.g., Turcotte &
Schubert, 2014). We model the laccolith as a body of basaltic composition that is 200 m thick with a starting
temperature of 1,400 °C (this starting temperature includes an adjustment for the latent heat of crystalliza-
tion; e.g., Philpotts, 1990) and a thermal diffusivity of 1e�6 m2/s. At a distance of 800 m from the laccolith
(our closest sampling location), the country rock reaches simulated temperatures of up to 113 °C for ~2 Ma
(Figures 3a and 3b). This estimate is inherently an overestimate of the heat at this sampling location because
we model heat conduction in only one dimension, and in reality, heat can diffuse into the country rock in
several directions. Also, the sample is located off of the edge of the laccolith, so the sample location would
experience lower maximum temperatures. The relatively low temperatures predicted by our thermal model-
ing are consistent with the absence of evidence for contact metamorphism in sediments and paleosols
surrounding the laccolith at Grapevine Hills (i.e., no color or textural changes). Given this thermal history,
the Passey and Henkes (2012) model for reordering of clumped isotopes in carbonate predicts an increase
in apparent clumped isotope temperature of <1 °C using the Arrhenius parameters from a brachiopod
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(WA-CB-13), a result which is not sensitive to the assumed starting TΔ47 (Figure 3c). This increase in
temperature is too small to resolve with current Δ47 precision. In conclusion, it is unlikely that the
Grapevine Laccolith provided enough heat to promote measurable solid-state reordering of the clumped
isotope bonds in our sampled carbonates.

The Rosillos Laccolith north of Tornillo Flats should also be considered as a heat source that could enable
solid state reordering in nearby samples. The Rosillos Laccolith is 600 m thick on its north end, thinning to
200 m on its south end (Turner et al., 2011). The two Cretaceous Javelina Formation samples collected in
northern Tornillo Flats are as close as 1 km to the south end of the laccolith (Figure S2). We model the
Rosillos Laccolith conservatively as 450 m thick, with the same temperature and thermal diffusivity as above.
Using the Passey and Henkes (2012) reordering model and a starting sample depositional temperature of
25 °C, we predict an apparent TΔ47 of 28 °C at a distance of 1.6 km, an apparent TΔ47 of 50 °C at a distance
of 1.3 km, and an apparent TΔ47 of 192 °C at a distance of 0.6 km (Figures 3d, 3e, and 3f). Note that these pre-
dicted temperatures imply that partial resetting could occur depending on the proximity to the intrusion; the
apparent temperature predicted is less than the maximum temperature the sample at that distance experi-
ences. Again, these are likely overestimates of the effect of heating because we have modeled the heat diffu-
sion in only one direction and the samples are at the edge of the laccolith where the heat is able to diffuse in
multiple directions. The carbonate nodules that are <1.3 km away from the Rosillos Laccolith have relatively
high measured TΔ47: BB-TF2-14-002 has a temperature of 49 ± 32 °C, and BB12–077 has a temperature of

Figure 3. Thermal history of the two sample locales, Grapevine Hills (a–c) and Tornillo Flats (d–f). (a) For a laccolith that is 200m thick, a 1D equation for heat diffusion
predicts that a location 0.8 km away from the laccolith edge would reach ~130 °C, then cool to temperatures less than 100 °C by<0.1 Ma. (b) An approximate thermal
history of the basin, where sediments start at 35 °C on the surface, are buried to 70 °C, are heated by a laccolith at 33 Ma to 113 °C for 2 Ma, are cooled to 70 °C,
and then are rapidly exhumed to the surface starting at 10 Ma. Apparent TΔ47 calculations are not sensitive to temperatures <100 °C, so details of the thermal
history below that temperature are not important. (c) The solid-state reordering model of Henkes et al. (2014) predicts an increase of<1 °C in the apparent TΔ47. The
black line is a 1:1 line. The blue line is the temperature path for the carbonate. The blue star indicates the final apparent temperature. (d) For a laccolith that is 450 m
thick, we show predictions for temperatures experienced at 600, 1,300, and 1600 m away from the laccolith. (e) Thermal histories for the sediments at those
distances from the laccolith, where sediments start at 25 °C on the surface, are buried to 70 °C, are heated by a laccolith at 33 Ma, are cooled to 70 °C, and then are
exhumed to the surface starting at 10 Ma. (f) Reordering calculations at distances of 600 and 1,600 m in green and purple, respectively (1,300 m omitted for clarity),
and the colored stars indicate the final apparent temperature.
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47 ± 11 °C. These measurements are consistent with modeled temperature effects, and so we interpret these
high temperatures as potentially indicating that these samples experienced solid-state reordering when the
Rosillos Laccolith was emplaced. Therefore, we exclude these two samples from our environmental interpre-
tations but maintain that all other measured samples are unlikely to have experienced solid-state reordering.
4.1.3. Problematic Carbonate Nodules
Carbonate nodule PS3 was too small (~2 mm in diameter) to make a thin section or microsample, so the
entire nodule was ground up and analyzed. If secondary carbonate phases were present in this nodule, they
would have been included in our clumped isotope sample and may have affected the resulting data. Indeed,
this nodule has a clumped isotope temperature that is hotter than plausible Earth surface temperatures
(T > 55 °C) but consistent with a mixture of spar and micrite. We exclude this carbonate nodule from our
paleoclimate reconstruction.

The only carbonate nodule sampled from a black paleosol (BB-TF2-14-030) exhibited a radial fabric and has a
relatively high clumped isotope temperature (48 ± 14 °C). Carbonate nodules from black paleosols in this for-
mation were previously excluded from δ13C chemostratigraphy because these paleosols indicate carbonate
growth in a water-saturated environment where the carbonates might incorporate a higher contribution of
carbon from respired soil CO2 compared to carbonate nodules from other soils in the section (Bataille et al.,
2016; Mintz et al., 2011). The carbonate growth process is poorly understood in Histosol-like soils such as the
black paleosols in the Black Peaks Formation and could involve disequilibrium processes, so we also exclude
this nodule from our climate reconstruction.

4.2. Increase in Temperatures From the Paleocene to the Eocene

The most robust conclusions about climate arise from averaging multiple Δ47 analyses of multiple carbonate
nodules; uncertainty in clumped isotope measurements prevents robust conclusions to be drawn from three
to five analyses of a single carbonate sample (e.g., Fernandez et al., 2017). Thus, we only interpret the average
temperatures of the multiple carbonate nodules that can be calculated by separating the record at the
Paleocene-Eocene boundary. We choose this boundary because it is known to be of geologic significance
(e.g., McInerney & Wing, 2011). Statistical evidence that supports treating the data as a constant piecewise
function with a breakpoint at ~56 Ma can be found in the supporting information Text (S1) and Figure S4.

Our measurements show that on average the Eocene clumped isotope temperatures are higher than those
from the Paleocene (32 ± 2 and 25 ± 3 °C, respectively; means are error weighted, and error is 95% CI of the
mean; mean of all data is 28 ± 1.5 °C; Figure 4). A t test using the mean TΔ47 of each nodule finds that the
Paleocene and Eocene have temperatures that are different by 7 ± 3 °C (p = 0.025). A t test using the indivi-
dual Δ47 replicates confirms a statistically significant difference between the Paleocene and Eocene Δ47

values (p = 0.0049).

Although the Paleocene samples are dominantly from Tornillo Flats, and the Eocene samples are dominantly
from Grapevine Hills, it is unlikely that the shift in temperatures between the Paleocene and Eocene could be
explained only by differences between these closely situated localities. Bias due to the change in section
sampled seems unlikely because the stratigraphy is similar between the two sections and they are less than
3 km apart. Furthermore, a t test suggests that there is no statistical difference between the Eocene-aged
nodules from Tornillo Flats versus the nodules from Grapevine Hills (p = 0.5027). Additionally, if the samples
from Grapevine Hills are removed and a t test for the Paleocene versus Eocene samples from Tornillo Flats is
performed, the difference in temperature between the two periods of time is confirmed (p = 0.0136).

To interpret the significance of the temperature difference between the Paleocene and the Eocene, we must
consider the seasonal bias of our proxy. Soil carbonate typically accumulates when an increase in soil tem-
perature promotes soil matrix drying, and soil water reaches supersaturation with respect to carbonate
(Breecker et al., 2009). This often occurs in summer months, and most studied modern soil carbonates with
Δ47 data thus far record summer-biased temperatures (Burgener et al., 2016; Hough et al., 2014; Passey
et al., 2010; Quade et al., 2013; Ringham et al., 2016). However, some soil carbonates record temperatures clo-
ser to mean annual temperature, likely due to differences in local precipitation and soil moisture regimes
(Burgener et al., 2016; Gallagher & Sheldon, 2016; Peters et al., 2013). Thus, it is possible to hypothesize that
the observed increase in temperature from the Paleocene to the Eocene could be related to an enhanced
summer bias in the Eocene soils rather than a global increase in air temperatures.
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Sedimentological observations do suggest differences in precipitation and soil texture between the
Paleocene and the early Eocene in Big Bend, but these factors are unlikely to lead to a shift in the seasonal
bias of pedogenic carbonate accumulation that would fully explain temperature differences between these
periods. The Paleocene environment in Big Bend was likely subtropical and humid with year-round precipita-
tion (Wheeler, 1991): dark purple Alfisols alternating with black, Histosol-like horizons (Lehman, 1990) sug-
gest the soils were relatively poorly drained. In these humid conditions, soil carbonate accumulation is
most likely to occur during the summer because higher temperatures would increase the amount of soil
water lost due to evaporation and uptake by plant roots. In the Eocene, climate models suggest precipitation
in the region may have been more seasonal with stronger summer monsoon rainfall than the Paleocene
(Carmichael et al., 2015; Sewall & Sloan, 2006; Thrasher & Sloan, 2009)—a shift that has also been inferred
from the sandstone sedimentology in Big Bend (Bataille et al., 2018) and in the Green River Basin (Krueger,
2017). Some soils in strongly seasonal rainfall regimes experience delayed drying and record mean annual
rather than summer temperatures (e.g., Peters et al., 2013). However, the Early Eocene soils at Big Bend were
well drained (Bataille et al., 2016; White & Schiebout, 2008) and likely dried shortly after summer rain events
(as observed by Breecker et al., 2009 and Ringham et al., 2016), resulting in a summer bias, as we infer for
Paleocene carbonate accumulation. Therefore, it is unlikely that a change in the seasonal bias of the soil car-
bonates can explain the temperature difference we observe in the Paleocene and the Eocene samples.

The shift in temperatures at the start of the Eocene more likely relates to a contemporaneous gradual rise in
the concentration of atmospheric pCO2 (Anagnostou et al., 2016; Beerling & Royer, 2011; Cui & Schubert,
2017; Hyland & Sheldon, 2013; Jagniecki et al., 2015; Maxbauer et al., 2014; D. L. Royer et al., 2014). The
increase in temperatures at Big Bend is also contemporaneous with an increase in δ18O of benthic foramini-
fera, which suggests an increase in deep ocean temperatures of about 5 °C from the mid-Paleocene to the
peak warming of the EECO (Zachos et al., 2008). Our measured temperature increase of 7 °C from the
Paleocene to the Eocene is larger than that observed in the deep ocean, although our uncertainty of ±3 °C
(95% CI from a t test) permits this terrestrial estimate to be closer to the oceanic estimate. It is not

Figure 4. Calculated TΔ47 and δ
18Ow values for the carbonate nodules that record primary environmental values. Error bars

on individual nodules in black are 1 standard error (the error normally reported for clumped isotope data). The vertical
dashed line marks the point in time that minimizes root mean square misfit whenmodeling the data as two periods of time
with a constant mean (56 Ma for TΔ47 and 59 Ma for δ18Ow). The gray rectangles are the 95% confidence interval centered
on the error-weighted mean of the carbonate nodules for the given time period. SMOW = standard mean ocean water.
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unreasonable for inland tropical temperatures to increase more than oceanic temperatures as a result of con-
tinentality (Rohling et al., 2012), an effect that has been noted in other terrestrial records from the Paleogene
(e.g., Hyland et al., 2017; McInerney & Wing, 2011) and in the modern (Diffenbaugh & Field, 2013).

4.3. Increase in δ18Ow From the Mid-Paleocene to the Late Paleocene/Early Eocene

We interpret the δ18Ow data by taking the mean of the δ18O values of several nodules from periods of time
that appear to be similar or near constant. For δ18Ow, we divide the record at ~59 Ma (between nodules with
ages of 59.7 and 58.4 Ma) because this breakpoint minimizes the misfit from the means (supporting
information Text S1 and Figure S5). This analysis suggests that an apparent increase in δ18Ow may have
occurred ~2–3 Ma before the apparent increase in temperatures in the same record (which occurs at
~ 56 Ma). However, dividing the δ18Ow record at 56 Ma only results in <1% increase in root mean
square error (if the analysis is performed with sample replicate data; Figure S5). Therefore, these data
are insufficient to justify speculation about lags between hydrologic and global temperature change.

We observe that the average δ18Ow is 2.1 ± 0.9‰ higher in the late Paleocene/early Eocene than in the early
to mid-Paleocene (�0.81 ± 0.35‰ and � 2.8 ± 0.74‰, respectively, p = 0.00004 from a t test; Figure 4). We
hypothesize that this increase in δ18Ow relates to the contemporaneous increase in surface temperatures
through one or more of the following processes: (1) increased evaporative enrichment in soil water, (2)
increased δ18Ow of the summertime rainfall, and/or (3) an increased proportion of summer rainfall recorded
in the Eocene carbonates.

Increased evaporation of soil water can cause an increase in δ18Ow. Evaporative effects can increase soil water
δ18Ow values relative to local rainfall by up to ~10‰ in extreme conditions such as the Atacama desert
(Quade, Rech, et al., 2007). As noted earlier, the Eocene soils in Big Bend are generally better drained than
those from the Paleocene, so it is likely that soil waters in the Eocene were more enriched in 18O due to
enhanced evaporation. This evaporative effect could be partially offset by the observation that Eocene carbo-
nates generally formed deeper in the soil than the Paleocene carbonates (Figure S1; also described in Bataille
et al., 2016), although these apparent depths are imprecise due to indistinct soil tops and truncation.
Increased evaporation likely contributes to the observed increase in δ18Ow between the Paleocene and
the Eocene.

It is also possible that the δ18O of rainfall at Big Bendwas higher during the Eocene than during the Paleocene
and could contribute to increased δ18O values of the soil water from which our carbonate samples precipi-
tated. Higher local temperatures are spatially and temporally correlated with higher δ18O values in the mod-
ern, although this relationship is relatively weak at low latitudes and in the summer when precipitation is
more convective (Rozanski et al., 1993; Vachon et al., 2010). All else equal, an increase in condensation tem-
perature of 10 °C would increase the δ18O of rainfall by on the order of 3‰ (Vachon et al., 2010)—roughly the
magnitude of the shift observed in both temperature and δ18Ow across the Paleocene-Eocene boundary in
our record. Additionally, an isotope-enabled general circulation model (GCM) predicts that the δ18O value
of the proto-Gulf of Mexico in the Eocene was about 1‰ higher than modern (after correcting for ice
volumes; Tindall et al., 2010). Although the difference in δ18Ow of the Gulf between the Paleocene and the
Eocene was likely smaller than predicted for the difference between Eocene and modern, it is possible that
a similar change in source water compositions could contribute to the enrichment in 18O recorded by the
soil carbonates.

Finally, the increase in reconstructed δ18Ow from the Paleocene to the Eocene could also relate to an increase
in the relative proportion of summertime rainfall recorded by those carbonates. Modern summer precipita-
tion in western Texas comes primarily from the Gulf of Mexico through a monsoon-like system and is more
enriched in 18O than winter precipitation that originates primarily from frontal systems forced by cool air
masses that have traveled overland from the Pacific (Licht et al., 2017; Nativ & Riggio, 1990; Vachon et al.,
2010; Vera et al., 2006) (Figure S7). Recent work shows that soils yield carbonates with calculated δ18Ow that
resembles the δ18O of rainfall during the months in which the carbonates grew (Gallagher & Sheldon, 2016;
Hough et al., 2014). Thus, assuming that these moisture source patterns were similar to modern throughout
the Paleogene (as Fricke et al., 2010, predict for the Cretaceous North America), an increase in δ18O of rainfall
in the Eocene could also be explained by preferential carbonate accumulation during summer rain events
from moisture derived from the proto-Gulf of Mexico. Thus, it might be possible that a slight difference in
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the timing of carbonate accumulation and/or timing of moisture traveling inland from the proto-Gulf could
also contribute to the difference in δ18Ow observed in the Eocene and Paleocene.

Although reconstructed soil water δ18Ow values increase from the Paleocene to the Eocene, the average
δ18Ow values for those time periods are both similar to the δ18O of modern summer rainfall in the region.
The isotopic composition of modern rainfall in south Texas has a strong seasonal cycle (range of ~6‰;
Figure S7; estimates from the Oxygen Isotopes in Precipitation Calculator, version 3.1, http://waterisotopes.
org; Bowen & Revenaugh, 2003). We find a mean Paleogene δ18Ow of �1.4‰, while modern rainfall in the
region is about �3‰ in June and 0‰ in July and August. The similarity between mean Paleogene δ18Ow

reconstructed from the Big Bend carbonates and the δ18O values of modern rainfall during summer months
is consistent with the hypothesis that Paleocene and Eocene moisture patterns were not dissimilar from
modern (Figure S7), given our interpretation of a summer bias of the clumped isotope proxy. The relatively
high δ18O of Paleogene Big Bend waters (�1.4‰) might suggest that the ancient North American summer
monsoon did not impart a strong amount effect (a depletion in 18O with intense rainfall) on the summer soil
waters of this area. Similarly, the amount effect is not observed in modern summer precipitation in the North
American monsoon (Eastoe & Dettman, 2016). These results suggest that the Paleocene/Eocene North
Americanmonsoon was not particularly more intense or more deeply convective than the modern monsoon,
despite modeling predictions to the contrary (Held & Soden, 2006; Huber & Goldner, 2012; Keery et al., 2018;
Licht et al., 2014).

Despite this result, it is possible that the predicted intense monsoons may have occurred during transient
periods of extreme Paleocene-Eocene warmth that are not recorded in our pedogenic carbonate data. It
has been hypothesized that hyperthermals during this period are represented in the stratigraphy as distinc-
tive sand bodies in the Tornillo Basin (Bataille et al., 2016, 2018). Indeed, the spacing and thickness of the
Tornillo Basin sandstones may be consistent with the hypothesis that intense seasonal precipitation during
hyperthermals caused an increase in erosion and flushing of sediment, as described in other Laramide basins
(Foreman, 2014; Foreman et al., 2012). If true, it is possible that the intense, convective hydrological cycle
predicted for the early Eocene occurred during hyperthermals, but due to the absence of nodules in the
sandstone units, our paleosol carbonate record in the Tornillo Basin is stratigraphically biased against
these events.

4.4. Comparison to Previous Clumped Isotope Records in North America From the Paleogene and
Modern Air Temperatures

Our clumped isotope data from the Tornillo Basin add to the existing sparse data available from terrestrial
North America in the Paleogene, and examining these data together can elucidate variability and temperature
differences with latitude. Here we compare our temperature results to temperature estimates produced from
14 late Paleocene and early Eocene carbonate nodules collected in the Bighorn Basin, WY (Snell et al., 2013)
and 14 Early Eocene carbonate nodules collected in the Green River Basin, WY (Hyland et al., 2018; Figure 5).

Direct comparison of our results to the Δ47 values and temperature estimates from the Bighorn Basin
reported by Snell et al. (2013) is complicated by recent developments in clumped isotope methods. The
Δ47 data in Snell et al. (2013) were produced at Caltech between 2006 and 2011 when standard practice
was to use the 17O correction parameters of Santrock et al. (1985) for calculations and present data in the
Ghosh or Caltech reference frame. Our Δ47 values are calculated using updated 17O correction parameters
(Brand et al., 2010) following recent recommendations (Daëron et al., 2016; Schauer et al., 2016) and are
normalized to the absolute reference frame (Dennis et al., 2011), which is now standard practice.
Unfortunately, the data do not exist to recalculate the earlier Snell et al. (2013) Δ47 values to make them
quantitatively comparable to the Δ47 values presented here. Comparing the temperatures calculated from
the Δ47 values in the two studies is actually more appropriate, because each study used the Δ47-temperature
calibration based on empirical data generated in the same laboratory and calculated using the same
methods as their sample data. However, analytical differences make it inappropriate to use the same Δ47-
temperature calibration for both data sets, so this temperature comparison likely introduces unquantified
error on the order of a couple of degrees.

The average clumped isotope temperature from the 14 Bighorn Basin carbonate nodules is 36 ± 3 °C (Snell
et al., 2013). Snell et al. (2013) adjusted their clumped isotope soil temperature to account for radiative

10.1029/2018PA003391Paleoceanography and Paleoclimatology

KELSON ET AL. 11

http://waterisotopes.org
http://waterisotopes.org


heating of the soil surface: they subtracted 5 °C from the measured carbonate temperature, yielding an
estimate of 31 ± 3 °C for summer air temperature. We do not adjust our temperature estimates for
radiative heating because tree fossils indicate that the Tornillo Basin was forested (Lehman & Busbey,
2007; Wheeler, 1991; Wheeler & Lehman, 2005), and so it is unlikely that the soils experienced enough
heating from incident solar radiation to cause large differences in soil versus air temperatures as has been
observed for bare soils (Passey et al., 2010; Quade et al., 2013). The soils in the Bighorn Basin were likely
not bare either (Wing et al., 2005, references within), but for comparison purposes, we adopt the authors’
judgment with respect to the solar heating effect on their record (the average Bighorn Basin clumped
isotope temperature without this adjustment is plotted for reference in Figure 5).

Direct comparison between the Tornillo and Green River Basin data is considerably simpler because the
Green River Δ47 data were also produced at the University of Washington IsoLab, following the same proce-
dures, and during the same time period, thus removing the concern of interlaboratory discrepancies or tem-
perature calibration differences between these two data sets. The average clumped isotope values from the
14 carbonate nodules from the Green River Basin yield summer temperature estimates of 24 ± 3 °C including
the peak warming of the EECO and 19 ± 1 °C excluding the peak-EECO samples (Hyland et al., 2018); these
estimates are interpreted as summer temperatures by the authors (no correction for radiative heating). A sin-
gle nodule from the latest Eocene in Sage Creek, MT provides a clumped isotope temperature estimate of
20 ± 5 °C (Methner et al., 2016) (Figure 5), which is similar to the temperature estimate from Green River; how-
ever, the Sage Creek estimate is more error-prone because it comes from a single nodule and thus is not
discussed further.

Despite their similarity in latitude, the Bighorn Basin Δ47 data and the Green River Basin Δ47 data yield very
different temperatures (Figure 5). It is possible that the disparity in temperatures between these basins is
due to differences in paleo-elevation. Although many studies suggest that both basins were likely at
<1 km in elevation during the Eocene (Fan et al., 2011; Fricke, 2003; Morrill & Koch, 2002), some data suggest
surface uplift in the Cordillera in the earliest Eocene (Feng & Poulsen, 2016; Mix et al., 2011). The disparity
between the Bighorn and Green River data could also be due to differences in radiative heating due to local
topography or aspect, distance from bodies of water that could provide cooling, unaccounted for differences
in the intra-annual timing of accumulation of the soil carbonates, or unquantifiable differences due to
improvements in clumped isotope methods.

Figure 5. Clumped isotope temperatures (filled symbols) and modern June-July-August (JJA) average temperatures from
NCEP/NCAR reanalysis data (Kalnay et al., 1996; star/cross symbols and dashed lines) versus latitude for relevant locations in
North America. The error bars shown for the clumped isotope data are the 95% confidence interval of the mean of
several nodules. The Green River Basin data are from the early Eocene climatic optimum (EECO; Hyland et al., 2018), and the
Bighorn Basin data are from the late Paleocene and early Eocene (Snell et al., 2013), shown with and without the 5 °C
correction for radiative heating. The late Eocene Sage Creek single nodule is from Methner et al. (2016).
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The disparate temperatures from the midlatitude Bighorn and Green River
Basins imply very different latitudinal gradients for Eocene North America
when compared to our lower-latitude temperatures from the Tornillo
Basin. The Eocene summer temperature estimate from the Tornillo Basin
(32 ± 3 °C) is within error of the Bighorn Basin temperatures (31 ± 3 °C),
which would imply a flat latitudinal temperature gradient (Figure 5). In
contrast, the Tornillo Basin clumped isotope temperatures are hotter than
the Green River Basin temperatures by 8 ± 4 °C (difference and 95% CI from
a t test); this difference approximates the temperature difference that
exists in the modern between sites at those two latitudes (i.e., mean
June-July-August [JJA] temperatures in San Antonio and modern Green
River Basin are 10 °C different; Figure 5), which would imply a latitudinal
temperature gradient similar to modern.

The difficulty of reconstructing Paleogene latitudinal temperature gradi-
ents from local temperature reconstructions is not surprising given that
land temperatures and latitudinal temperature gradients are heteroge-
neous, which can be illustrated by considering modern reanalysis data
(Kalnay et al., 1996). While the modern latitudinal temperature gradient
at the longitude of San Antonio (97°W) conforms to the simple prediction
of decreasing temperatures with increasing latitude, the gradient at the
longitude of the Green River Basin (107°W) does not, due to the influence
of topography (Figure 5). Furthermore, modern JJA temperatures near Big
Bend, TX (from the west coast of North America to the west coast of the
Gulf of Mexico at latitudes of 29–30°N) range widely from 18–30 °C. Land
cover likely contributes to significant variability in Earth surface tempera-
tures (Thrasher & Sloan, 2010). These observations might explain why
our estimated summer temperature for the forested Paleocene environ-
ment is slightly cooler than JJA temperature for modern San Antonio
shrubland environment (Figure 5), even though the Paleogene was glob-
ally warmer than modern. San Antonio might also be cooler because it is
not the correct locality to compare to the Tornillo Basin: we use it here

due to similar latitude and distance to the coast, but the variability in local temperatures suggests that there
are other factors that control surface temperature. Given inherent variability in surface temperatures on land,
a more complete understanding of summer temperatures in the Eocene in North America could emerge with
refinement of paleotopography, paleovegetation, and additional clumped isotope data from basins over a
larger range in longitudes and latitudes.

4.5. Comparison to Predictions From Eocene General Circulation Models

The temperature record from the Tornillo Basin provides an opportunity to test model predictions for tem-
peratures on land at subtropical latitudes. While it is common to average several model grid cells centered
on the preferred proxy location (e.g., Snell et al., 2013), at Tornillo Basin, that method would involve including
cells that are different in temperature due to differing distance from the coast. The range in temperatures
predicted in grid cells surrounding Big Bend is larger than the range in temperatures predicted at a single cell
by various simulations of a general circulation model from the UK Met Office (HadCM3L, Figure S8). With this
caveat in mind, we compare our TΔ47 estimate from the Tornillo Basin to predictions from available Eocene
GCMs (most of which are described in Lunt et al., 2012) using JJA temperature from the grid cell that best
approximates the paleolocation of the Tornillo Basin (Figure S8).

Most of the Eocene GCMs presented here predict summer temperatures that are hotter than our estimate
from clumped isotopes (Figure 6). Only three of 13 simulations predict temperatures that are within error
of our clumped isotope temperatures: HadCM3L-1 (Lunt et al., 2010) for the ×4 CO2 forcing scenario,
HadCM3L-2 (Loptson et al., 2014) for the ×4 CO2 forcing scenario with homogeneous shrubs, and CCSM-W
(Winguth et al., 2010) for the ×4 CO2 forcing scenario (Figure 6). The HadCM3L simulations that predict
temperatures higher than our maximum proxy estimate are run at higher pCO2 forcings (×6 CO2;

Figure 6. June-July-August (JJA) average temperature at Big Bend for
Eocene general circulation model simulations with atmospheric CO2 con-
centrations of 1 to 16× preindustrial CO2. The horizontal dashed line is the
Eocene clumped isotope temperature estimate from Big Bend, with the 95%
confidence interval in light gray shading. The dark gray rectangle is the
atmospheric CO2 concentrations from Anagnostou et al. (2016). Model cita-
tions are as follows: CCSM-H, Huber and Caballero (2011); CCSM-K, Kiehl and
Shields (2013); CCSM-W, Winguth et al. (2010); HadCM3L-1, Lunt et al. (2010);
HadCM3L-2, Loptson et al. (2014); and HadCM3L-3, Lunt et al. (2016), Inglis
et al. (2017), and Valdes et al. (2017).
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HadCM3L-1, Lunt et al., 2010), with dynamic vegetation (HadcM3L-2, Loptson et al., 2014) or with varied
paleogeography (HadCM3L-3; Inglis et al., 2017; Valdes et al., 2017). The CCSM-H and CCSM-W simulations
(Huber & Caballero, 2011; Winguth et al., 2010) overestimate our proxy-derived summer temperatures at
Tornillo Basin by 2–4 °C. The CCSM-K simulations (Kiehl & Shields, 2013) overestimate the Tornillo Basin
temperatures by 2–6 °C with lower CO2 forcing; those simulations have modified aerosol parameters that
change cloud condensation properties to reduce discrepancies with high-latitude proxy data.

In summary, some simulations predict summer temperatures that are within error of our estimates (Figure 6),
but most simulations predict summer temperatures that are higher than the low-latitude terrestrial tempera-
tures estimated here. These temperature discrepancies of 2–7 °C are similar in size to those reported between
low-latitude sea surface temperature proxies and models (Evans et al., 2018). The simulations that predict
warmer temperatures than our low-latitude terrestrial proxy estimates and the low-latitude sea surface tem-
perature estimates from Evans et al. (2018) are the same simulations that have been interpreted as generally
agreeing with proxy data from high latitudes or with proxy-based marine latitudinal temperature gradients
(see Huber & Caballero, 2011; Kiehl & Shields, 2013; Loptson et al., 2014). Thus, our data provide additional
evidence that in order to match the proxy latitudinal temperature gradients and/or high-latitude tempera-
tures predicted by proxies, models tend to overheat lower latitude temperatures (Evans et al., 2018;
Keating-Bitonti et al., 2011; Kozdon et al., 2011; Pearson et al., 2001; Spicer et al., 2014; Tripati et al., 2003).
Our results imply that the summer surface temperatures of >36 °C predicted by models are unlikely for this
coastal environment and that temperatures lower than the thermal threshold for survival of organisms
occurred at least locally during greenhouse climates. Our results suggest that coastal, subtropical climates
remained relatively mild throughout background greenhouse climates and thus proxy-model discrepancy
persists at low latitudes.

5. Conclusions

We measure the δ13C, δ18O, and Δ47 composition of paleosol carbonate nodules from the Paleocene to the
early Eocene from the Tornillo Basin in Big Bend National Park, Texas (USA). These analyses provide insight
into a subtropical, near-coastal environment during a greenhouse climate regime. We find that most of our
measured carbonate nodules record primary environmental signals and two of our nodules have been reset
by thermal heating from an adjacent laccolith. We estimate an average TΔ47 of 25 ± 3 °C through the
Paleocene and a statistically significant increase to 32 ± 2 °C in the early Eocene. The increase in temperature
recorded across this interval also corresponds to an increase in the calculated δ18O of soil water from
�2.8 ± 0.74 to�0.81 ± 0.35‰ (standard mean ocean water) that occurs at ~59 Ma. The shift in temperatures
and water compositions is likely correlated with increasing atmospheric CO2 (Anagnostou et al., 2016;
Beerling & Royer, 2011).

Our data provide quantitative constraints on subtropical temperatures during the Paleocene and early
Eocene that can inform our understanding of greenhouse climates. A comparison between the summer tem-
perature estimate from the Tornillo Basin Δ47 data and similar data from the Bighorn Basin and the Green
River Basin demonstrates the complexity and heterogeneity of terrestrial temperature records. Reliable esti-
mates of latitudinal temperature gradients on land likely await more data. While some Eocene GCM simula-
tions agree within error of our estimate of summer temperature in the Tornillo Basin, most simulations
overestimate summer temperature at this locality. The simulations that overestimate summer temperature
are the simulations that have previously been interpreted as improvements to modeling Eocene climate
because they show general agreement with other proxy estimates of latitudinal temperature gradients or
temperatures from high latitudes. The tendency of these models to overestimate terrestrial subtropical
paleotemperatures from Tornillo Basin mimics their tendency to overestimate low-latitude sea surface tem-
peratures. Our results suggest that discrepancies remain between Eocene climate models and proxy data at
low latitudes.
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