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ABSTRACT

The Himalayan syntaxes are exception-
ally dynamic landscapes characterized by 
high-relief topography and some of the 
most rapid and focused crustal exhumation 
on Earth. In the eastern Himalayan syn-
taxis, it has been hypothesized that thermo- 
mechanical feedbacks between erosion by 
the Yarlung River and growth of a crustal-
scale antiform may have locally sustained ex-
humation rates exceeding 5 km/m.y. during 
the late Pliocene and Pleistocene. However, 
young (younger than 3 Ma) cooling histories 
from syntaxial bedrock samples restrict in-
terpretations of the timing and mechanism 
initiating feedback development. To extend 
this record of landscape evolution, we re-
constructed an exhumation history since the 
late Miocene from analysis of detrital min-
erals in Himalayan foreland basin deposits. 
We combined magnetostratigraphy, detri-
tal white mica 40Ar/39Ar thermochronology, 
and coupled zircon U-Pb and fission-track 
geothermochronology from a 4.6-km-thick 
stratigraphic section proximal to the eastern 
syntaxis. We used a simple thermal model 
to interpret the combined provenance and 
lag-time data set, concluding that rock ex-
humation rates in the core of the syntaxis 
increased by a factor of 5–10 in the late Mio-
cene and have sustained extremely rapid 
exhumation rates (>5 km/m.y.) since 5 Ma. 
This onset significantly postdates the first 
appearance of Tibetan detritus in the Hi-
malayan foreland, suggesting that thermo-
mechanical feedbacks sustaining rapid ex-
humation are unrelated to river integration. 
Instead, such feedbacks may develop where 

large, antecedent rivers sustain elevated 
erosion rates across a region of enhanced 
rock uplift. Compilation of similar data sets 
across the Himalaya demonstrates extraor-
dinary syntaxial exhumation histories, po-
tentially resulting from peculiar geodynam-
ics at these orogenic margins.

INTRODUCTION

The evolution of mountain landscapes 
reflects complex relationships between tectonic 
processes transferring mass within Earth’s inte-
rior and erosional processes redistributing mass 
across Earth’s surface (e.g., Davis et al., 1983; 
Koons, 1990; Beaumont et al., 1992). Numeri-
cal (e.g., Willet, 1999; Beaumont et al., 2000), 
analog (e.g., Mugnier et al., 1997; Marques and 
Cobbold, 2002; Hoth et al., 2006), and analyti-
cal (e.g., Whipple and Meade, 2004; Simpson, 
2006) experiments document the dynamic influ-
ence of erosion and deposition on crustal defor-
mation from local to orogenic scales. Erosion 
may influence crustal deformation patterns by 
locally reducing lithospheric stress (Simpson, 
2004) to locally promote crustal-scale folding 
(Burg and Podladchikov, 2000) and thrust fault-
ing (Burg and Schmalholz, 2008). The result-
ing rock uplift steepens topographic features, 
including river channels (Whipple and Tucker, 
1999), elevating erosion rates to exhume crustal 
material (Ring et al., 1999). When rapid crustal 
exhumation remains focused for a prolonged 
period, elevation of the geothermal gradient 
(Koons et al., 2002) may be sufficient to initi-
ate a thermo-mechanical feedback that sustains 
steep topography perched above hot, actively 
deforming crust (Zeitler et al., 2001; Koons et 
al., 2013).

A concomitance of steep topography (Bur-
bank et al., 1996; Larsen and Montgomery, 
2012), elevated geothermal gradients (Winslow 
et al., 1994; Craw et al., 2005), and active crustal-
scale structures (Burg et al., 1998; Schneider et 
al., 1999a) is locally observed at both ends of 
the Himalayan orogen. In these regions, margin-
normal motion of the Indian-Eurasian plate 
collision transitions to strike-slip motion, warp-
ing terranes southward to form broad syntaxes 
(Fig. 1A; Wadia, 1931; Gansser, 1966; Treloar 
and Coward, 1991). Rivers flowing parallel to 
the orogen in southern Tibet cross the Himalaya 
through these syntaxes, dramatically steepen-
ing (Finlayson et al., 2002) as they bisect young 
metamorphic massifs (Zeitler et al., 1982; Burg 
et al., 1998). Bedrock thermochronology from 
both regions indicates rapid cooling of these 
massifs during the late Pliocene and Pleistocene 
(e.g., Zeitler et al., 1993; Winslow et al., 1996; 
Burg et al., 1998; Malloy, 2004; Zeitler et al., 
2014), and bedrock geochronology further sug-
gests that localized anatexis related to massif 
decompression has been ongoing since the late 
Miocene (e.g., Schneider et al., 1999b; Booth et 
al., 2004). However, detailed exhumation his-
tories of these regions are difficult to interpret 
from rapidly exhumed bedrock samples alone. 
Instead, detrital cooling ages from proximal 
foreland basin units are useful for documenting 
earlier Neogene exhumation and have been suc-
cessfully applied in the western syntaxis (e.g., 
Cerveny et al., 1988; Najman et al., 2003; also 
see Bernet and Garver, 2005; Ruiz and Seward, 
2006), yet comparable analyses from the eastern 
Himalaya are lacking.

Some detrital cooling ages are available from 
eastern Himalayan foreland basin units (Chir-
ouze et al., 2012a, 2013); however, the distal 
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position of these samples complicates an oth-
erwise straightforward interpretation of their 
provenance. Chirouze et al. (2013) collected 
samples from exposures along the Kameng 
River, an eastern Himalayan tributary to the 
Brahmaputra ~300 km downstream from its 
range-front confluence. In this section, Nd and 
Hf isotope measurements indicate a sedimentary 
provenance similar to the modern Brahmaputra 
River between 7 and 3 Ma. At this stratigraphic 
interval, Chirouze et al. interpreted 1.9–4.0 m.y. 
thermochronologic lag times to reflect source-
region exhumation rates ranging between ~1 
and 4 km/m.y. These data may indicate that the 
young cooling ages presently observed in syn-
taxial bedrock were not present in the syntaxis 
prior to ca. 4 Ma. Alternatively, the absence of 
young cooling ages may be explained as dilu-
tion of young syntaxial zircons by older zircons 
from transverse rivers (e.g., the Subansiri or 
Kameng) upstream of the sampling location, a 
phenomenon previously observed in the Brah-
maputra system by Cina et al. (2009) and Zhang 
et al. (2012).

In this study, we build on the important work 
of Chirouze et al. (2013) using new analyses of 
foreland basin units more proximal to the east-
ern syntaxis. Specifically, we present new mag-
netostratigraphy and detrital zircon fission-track 
and white mica 40Ar/39Ar thermochronology 
from a stratigraphic section located upstream 
of the transverse Subansiri and Kameng River 
drainages in Arunachal Pradesh, India. Our 
 fission-track analyses were conducted on zir-
cons for which previously published U-Pb data 
are available (Lang and Huntington, 2014), 
permitting a source-specific analysis of low-
temperature mineral cooling. Complementary 
40Ar/39Ar analyses of white mica from the same 
stratigraphic horizons bolster our interpretations 
with independent data from a different target 
mineral that integrates cooling information over 
longer time scales. We used a one-dimensional 
thermal model to quantitatively constrain the 
timing and magnitude of an increase in eastern 
syntaxial exhumation rate by comparing pre-
dicted cooling ages with calculated lag times.

Our results indicate that rapid exhumation 
has been ongoing within the eastern syntaxis 
since ca. 5 Ma, following a 5–10-fold increase 
in the late Miocene exhumation rate. We 
interpret ~5 m.y. of sustained rapid exhuma-
tion as possible evidence for the hypothesized 
emergence of thermo-mechanical feedbacks 
(Zeitler et al., 2001). However, this emergence 
significantly postdates the middle or early 
Miocene integration of the Yarlung River with 
the Himalayan foreland (Lang and Hunting-
ton, 2014; Bracciali et al., 2015), suggesting 
that feedbacks did not develop in response to 

Figure 1. (A) Map of the study area showing the Indus-Yarlung suture zone 
(IYSZ; dashed line) and rivers surrounding the eastern Himalayan syntaxis. The 
Yarlung River turns southward around the Namche Barwa massif (NB, 7782 m 
peak elevation), to join the Brahmaputra River in the Himalayan foreland basin 
(yellow area). (B) The Tsangpo Gorge (red line) bisects the Namche Barwa mas-
sif (purple area from Zeitler et al., 2014), a source of anomalously young cooling 
ages (pink area encompasses zircon fission-track ages younger than 3 Ma and 
biotite 40Ar/39Ar ages younger than 10 Ma (see text for data references). Black 
squares indicate sample locations for modern detrital white mica from the Siang 
River (A, B, C) and Himalayan tributaries (X, Y, Z). Red boxes outline sections 
studied by us (see Figs. 2 and 3) and by Chirouze et al. (2012a). Basin depth 
contours are from Verma and Mukhopadhyay (1977). Structure abbreviations: 
MCT—Main Central thrust; MFT—Main Frontal thrust; MBT—Main Bound-
ary thrust; STD—South Tibetan detachment; TPT—Tipi thrust; NT—Naga 
thrust; MT—Mishmi thrust. Contacts are compiled from Armijo et al. (1989); 
Agarwal et al. (1991); Baruah et al. (1992); Pan et al. (2004); Acharyya (2007); 
Misra (2009); Yin et al. (2010); and Zeitler et al. (2014).
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the proposed capture of the Yarlung River by 
a smaller Himalayan tributary (Koons, 1995; 
Brookfield, 1998; Zeitler et al., 2001; Clark 
et al., 2004). Instead, we suggest that thermo-
mechanical feedbacks may ultimately emerge 
in areas where large rivers maintain a low- 
elevation base level and an efficient fluvial 
system across an area of enhanced rock uplift. 
Broader comparison of our results with simi-
lar studies across the Himalaya demonstrates 
extraordinary exhumation histories in both 
syntaxes, potentially resulting from peculiar 
geodynamics at these orogenic margins.

BACKGROUND

Tectonic and Geomorphic Setting of  
the Eastern Himalayan Syntaxis

Following the early Eocene end of Tethyan 
ocean basin subduction, collision between the 
Indian and Eurasian tectonic plates deformed 
and uplifted the northern margin of the Indian 
plate to form the Himalayan orogen (e.g., 
Gansser, 1964; Searle et al., 1987). Portions 
of this subducted oceanic lithosphere mark the 
formal suture zone (called the Indus-Yarlung 
suture zone) between Transhimalayan intru-
sive units within Eurasian plate terranes and 
orogenic units in the Himalaya. The Himala-
yan orogen is defined along strike by thrust 
faults that subdivide a sequence of tectono- 
stratigraphic units. The Main Central thrust 
places deeply exhumed crystalline rocks of 
the Greater Himalaya above lower-grade met-
amorphic rocks of the Lesser Himalaya, the 
Main Boundary thrust places Lesser Himala-
yan rocks above sedimentary rocks of the Sub-
Himalaya, and the Main Frontal thrust places 
Sub-Himalayan rocks over modern foreland 
basin alluvium. Greater Himalayan rocks are 
separated from folded and faulted sedimen-
tary rocks of the Tethyan margin by the South 
Tibetan detachment system (Fig. 1B; e.g., 
LeFort, 1975; Yin and Harrison, 2000).

At the eastern margin of the orogen, tran-
sition from margin-normal convergence to 
dextral strike-slip movement warps the suture 
zone, Himalayan, and Transhimalayan units 
southward to form the eastern Himalayan syn-
taxis (e.g., Peltzer and Tapponnier, 1988; Holt 
et al., 1991; Koons, 1995). Surface topogra-
phy (Hallet and Molnar, 2001) and geodetic 
measurements (Sol et al., 2007) illustrate the 
pattern of lithospheric strain around the mar-
gin of the Indian plate indentor (Tapponnier 
et al., 1990), where the effective lithospheric 
normal stress is reduced and minor deviations 
may result in enhanced lithospheric strain 
(Enlow and Koons, 1998), priming the region 

for dynamic modification by surface processes 
(Simpson, 2004).

Within the eastern syntaxis, an active crustal-
scale antiform (Burg et al., 1998) or pop-up 
structure (Ding et al., 2001) called the Namche 
Barwa metamorphic massif is deeply incised 
along a rapidly eroding reach of the Yarlung 
River. After flowing >1000 km along the suture 
zone in southeastern Tibet, the Yarlung River 
drops over 2 km through a narrow (Montgom-
ery, 2004) bedrock gorge often referred to as 
the “Tsangpo Gorge.” Within the gorge, erosion 
rates (Stewart et al., 2008; Enkelmann et al., 
2011), proxies for fluvial incision (Finlayson et 
al., 2002; Finnegan et al., 2008), and local topo-
graphic relief (Larsen and Montgomery, 2012; 
Korup et al., 2010) dramatically increase to 
define one of the most dynamic landscapes on 
Earth (Zeitler et al., 2001).

Extensive bedrock thermochronology docu-
ments rapid late Pliocene and Pleistocene exhu-
mation rates (5–10 km/m.y.) focused around 
the massif. Zircon fission-track data, which 
reflect cooling from shallow crustal tempera-
tures of ~230 °C (Brandon and Vance, 1992), 
are younger than 3.5 Ma within the massif, 
and younger than 1 Ma within the Tsangpo 
Gorge specifically (Burg et al., 1998; Seward 
and Burg, 2008; Zeitler et al., 2014). Biotite 
40Ar/39Ar cooling ages, which reflect cooling 
from higher temperatures (>300 °C for such 
rapid cooling rates; Dodson, 1973; McDougall 
and Harrison, 1999), also are less than 1 Ma in 
samples collected along the Tsangpo Gorge but 
rapidly increase with distance from the core of 
the massif (Fig. 1B; data from Ding et al., 2001; 
Malloy, 2004; Geng et al., 2006; Zeitler et al., 
2014). Zircon U-Pb geochronology from bed-
rock samples within the gorge further indicates 
that local anatexis was associated with rapid 
rock exhumation in the Pliocene, and potentially 
the late Miocene (Ding et al., 2001; Booth et al., 
2004, 2009). Recent modeling of this extensive 
suite of bedrock cooling ages predicts a pulse of 
rapid exhumation in the late Miocene between 
5 and 10 Ma (Zeitler et al., 2014). We test this 
prediction with additional analysis of detrital 
minerals preserved in the proximal sedimen-
tary record.

We predict that the appearance of young 
(relative to depositional age) detrital cooling 
ages in proximal foreland basin units may be 
evidence for earlier exhumation of the Namche 
Barwa massif, provided a complementary 
diagnosis of sediment provenance. Erosion of 
the Namche Barwa massif presently enriches 
downstream river sediment in rapidly cooled 
minerals from massif bedrock, adding a char-
acteristic young cooling age component to 
detrital zircon ages that represents as much 

as 45% of zircons entering the Himalayan 
foreland basin (e.g., Pik et al., 2005; Stewart 
et al., 2008; Enkelmann et al., 2011; Lang et 
al., 2013). Foreland basin units proximal to the 
eastern syntaxis contain evidence of a drain-
age system encompassing both Himalayan 
and Tibetan source terranes throughout their 
depositional history (e.g., Cina et al., 2009; 
Lang and Huntington, 2014), and an integrated 
Yarlung-Siang-Brahmaputra river system may 
have similarly carried rapidly cooled minerals 
into the foreland basin once rapid exhumation 
of the massif began. The presence of Himala-
yan and Tibetan detritus in proximal foreland 
basin units further indicates that if the Yarlung 
River integrated with the Siang- Brahmaputra 
system by river capture, this event must have 
occurred prior to foreland basin deposition. 
Thus, evidence for earlier massif exhumation 
emerging within these units postdates river 
integration and may not be directly related to 
a capture event.

Easternmost Himalayan Foreland Basin

The Himalayan foreland basin is peripheral to 
the mountain front and nearly continuous along 
the Himalayan arc (Beaumont, 1981; Najman, 
2006). Near its eastern limit, the basin is less 
than 100 km wide, narrowly confined between 
active thrust faults: the Main Frontal thrust to 
the northwest, Mishmi thrust to the northeast, 
and Naga thrust to the southeast. The total 
thickness of Cenozoic sedimentary units within 
the basin may be as much as 7 km (Mathur and 
Evans, 1964; Karunakaran and Ranga Rao, 
1976), and basin thickness increases toward the 
Himalayan mountain front (Verma and Mukho-
padhyay, 1977). Neogene units are uplifted by 
the Tipi thrust and Main Frontal thrust to form 
steep foothills at the mountain front. These units 
are locally offset by smaller crosscutting faults 
(e.g., Agarwal et al., 1991; Yin et al., 2010; Bur-
gess et al., 2012) but remain traceable along 
strike of the mountain front from the eastern 
syntaxis westward into Bhutan (Fig. 1B; Ranga 
Rao, 1983; Kumar, 1997).

Sedimentary rocks exposed in these foothills 
are traditionally divided into three lithologically 
distinct units (e.g., Karunakaran and Ranga Rao, 
1976; Bhareli and Ratnam, 1978; Yin, 2006) 
and correlated with the more extensively stud-
ied Siwalik Group in the central and western 
Himalaya (e.g., Kumar, 1997; Chirouze et al., 
2012a,b). Although these units are locally called 
the Kimin, Subansiri, and Dafla formations 
(Kumar, 1997), we adopt the corresponding 
Upper, Middle, and Lower Siwalik  Formation 
nomenclature for consistency with the well-
established, broader Himalayan literature (e.g., 
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Pilgrim, 1913) and previous work from the 
same location (Lang and Huntington, 2014). 
In this study, we specifically focus on detailed 
observations along the Siji River near the vil-
lage of Likabali, including locations previously 
sampled by Lang and Huntington (2014).

Regionally, these units comprise an upward-
coarsening clastic sedimentary sequence rest-
ing unconformably on metasedimentary units 
of the Gondwana formation. The Lower Siwa-
lik Formation is characterized by compact 
interbedded sandstone and shale; the Middle 
Siwalik Formation is a softer and coarser mica-
ceous, concretionary sandstone; and the Upper 
Siwalik Formation is characterized by inter-
bedded conglomerate, sandstone, and mud-
stone (e.g., Ranga Rao, 1983; Kumar, 1997; 
Chirouze et al., 2012a). A gradational contact 
between the Upper and Middle Siwaliks is pre-
served in many Siwalik sections (e.g., Jain et 
al., 1974; Chirouze et al., 2012a), whereas the 
Lower Siwalik is commonly placed structur-
ally above these units on the Tipi thrust (e.g., 
Agarwal et al., 1991; Yin et al., 2010; Burgess 
et al., 2012).

Constraints on Depositional Age
Depositional ages of eastern Siwalik units 

are poorly constrained. Biostratigraphic con-
straint comes from a single mammalian fos-
sil specimen (Bos sp.) from a conglomeratic 
bed of the Upper Siwalik (Singh, 1975, 1976). 
This solitary observation corroborates an infor-
mal description of a similar fossil by Maclaren 
(1904) observed north of the Subansiri River to 
loosely indicate a Pleistocene depositional age 
for the Upper Siwalik. Arenaceous foramin-
ifera (specifically Trocommina sp.; Ranga Rao, 
1983), megafloral assemblages including Zizy-
phus sp. and Sigigium sp. (Singh and Prakash, 
1980), and palynofossil suites (Dutta, 1980) 
observed in the Lower Siwalik suggest an early 
or middle Miocene depositional age for this unit 
(Singh and Tripathi, 1989; Singh, 1999).

The most robust depositional age constraints 
for these units come from a combination of 
detrital thermochronology and magnetostratig-
raphy (Chirouze et al., 2012a). This work brack-
ets the depositional age for the Upper-Middle 
Siwalik contact between 2 and 3 Ma and the 
Middle-Lower Siwalik contact between 11 and 
13.5 Ma in a section along the Kameng River 
near Bhalukpong. Chirouze et al. estimated that 
the average sediment accumulation rate varies 
in this location between 420 and 440 m/m.y., 
which is higher than correlated sections from 
the central and western Himalaya (e.g., Johnson 
et al., 1985; Gautam and Fujiwara, 2000; Ojha 
et al., 2009).

Constraints on Sedimentary Provenance
Siwalik units across the Himalayan foreland 

are broadly interpreted to be synorogenic depos-
its of Himalayan detritus eroded during peri-
ods of late Cenozoic thrusting (e.g., Heim and 
Gansser, 1939; DeCelles et al., 1998; Najman, 
2006). Paleocurrent indicators from easternmost 
exposures of Middle and Upper Siwalik Forma-
tions show that flow direction varied (Chirouze 
et al., 2013) but was dominantly to the south or 
southwest from a northern source region (e.g., 
Jain et al., 1974; Cina et al., 2009; Kesari, 2010; 
Chirouze et al., 2012a) with no indication of 
flow reversal during deposition of the sequence.

Modal analyses are consistent with a north-
ern source in both Himalayan and Tibetan ter-
ranes. Framework grains (e.g., Gogoi, 1989; 
Baruah, 2001) are characteristic of a recycled 
orogenic provenance, and heavy mineral suites 
indicate contributions from plutonic and meta-
morphic sources. Specifically, tourmaline, epi-
dote, zircon, rutile, hornblende, garnet, stauro-
lite, and kyanite metamorphic index minerals 
are found in all units, with andalusite and sil-
limanite appearing in the Upper Siwalik For-
mation (Singh, 1976; Singh et al., 1982; Ranga 
Rao, 1983).

Detrital zircon U-Pb geochronology from 
five sections in eastern Siwalik units (Cina et 
al., 2009; Lang and Huntington, 2014) indicates 
a mixed Tibetan and Himalayan provenance. 
Specifically, the presence of Gangdese-age 
zircons (Stewart et al., 2008; Cina et al., 2009; 
Zhang et al., 2012) in all Siwalik samples north 
of Bhalukpong (see Fig. 1B) demonstrates 
that Tibetan source areas presently west of the 
Namche Barwa massif were included in the 
contributing area to the foreland basin. This 
observation was interpreted by Lang and Hun-
tington (2014) to represent a fluvial connection 
maintained through the eastern syntaxis since 
at least the middle and possibly early Miocene. 
Bulk eNd

 and e
Hf

 isotopic analyses indicate that 
the absence of Gangdese-derived detritus in 
the Lower Siwalik near Bhalukpong may be 
explained by local deposition from a transverse 
Himalayan river like the Kameng River (Chir-
ouze et al., 2013).

METHODS

Mapping and Stratigraphic Surveying

To identify faulting and other potential 
complications in our interpretation of Siwa-
lik stratigraphy, we mapped the Siji River 
area with a focus on Upper and Middle Siwa-
lik exposures. Accessibility in the area is 
severely restricted, and exposure is limited 
to river channels at low-flow conditions, road 

cuts, and landslide scars. Because of inacces-
sibility, mapping and stratigraphic surveying 
focused on traverses along the Siji River and 
adjacent tributaries. Bedding measurements 
and unit contacts were plotted in the field on 
1:12,000 scale satellite images, and contacts 
were extrapolated away from the direct obser-
vations along strike of topographic dip slopes 
measured using Google Earth.

Stratigraphic surveying of the Upper and 
Middle Siwalik Formations using a 1.5 m 
Jacob’s staff and Abney level progressed up 
section along the Siji River from the mountain 
front near Likabali to the Tipi thrust near Siji 
village. Surveying included observations of bed 
thickness, grain size, sedimentary structures, 
and clast lithology in channel lag deposits and 
conglomerate beds.

Magnetic Susceptibility and 
Magnetostratigraphy

We collected one to three oriented block 
samples for analysis of paleomagnetic polarity 
every 20 m in the lower 1.6 km of the Middle 
Siwalik. Every 100 m, we collected 3–6 sam-
ples for replicate analysis from single bedding 
horizons. Block samples were cored, cut into 
specimens, and analyzed at the Pacific North-
west Paleomagnetism Laboratory at Western 
Washington University. All subsequent pro-
cessing was conducted in a magnetic field–free 
room. The specimens were first analyzed using 
an AGICO KLY3-S Magnetic Susceptibility 
Bridge to determine their anisotropy of mag-
netic susceptibility. In clastic sediments, the 
plane of maximum susceptibility is commonly 
tilted from horizontal due to imbrication of 
grains in the rock, and this imbrication is a use-
ful supplement to field measurement of paleo-
current direction (e.g., Novak et al., 2014). To 
determine paleomagnetic polarity, we measured 
the remanent magnetization of 126 specimens 
from 79 sites spanning the lower 1.6 km of 
the Middle Siwalik. Measurements were made 
using a 2-G Enterprises 755 superconducting 
rock magnetometer with 0.001 mA/m sensitiv-
ity. Thermal demagnetization in an ASC Model 
TD48 oven began with closely spaced tempera-
ture steps on a subset of specimens to determine 
optimal step spacing. This was followed for the 
rest of the specimens by demagnetization in 
seven 70 °C to 100 °C temperature steps from 
~180 °C to 580 °C. Magnetic susceptibility was 
measured on a Bartington MS2 susceptometer 
after specific temperatures to monitor changes 
in magnetic mineralogy. Standard analytical 
methods were used to identify, quantify, and 
analyze remanent magnetization components 
and interpret original polarity.
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Detrital Thermochronology

To interpret changes in source exhumation 
rates, we analyzed detrital mineral cooling ages 
from sampled stratigraphic horizons and from 
the modern Siang River and adjoining Himala-
yan tributaries. We collected five samples from 
the Upper and Middle Siwalik Formations in 
the Tipi thrust footwall for zircon fission-track 
and white mica 40Ar/39Ar thermochronology. 
Fission-track analyses of modern sediments 
from the Siang River and adjoining Himala-
yan tributaries have been previously published 
(Stewart et al., 2008; Enkelmann et al., 2011), 
and we collected an additional six samples of 
modern sediment from the same locations for 
white mica 40Ar/39Ar analyses (sample locations 
in Fig. 1B). Combining multiple thermochro-
nological data sets from the same stratigraphic 
horizons permits a robust interpretation of exhu-
mation rate changes that may identify potential 
biases in cooling age distributions from mineral 
heterogeneity in the source region (e.g., Avdeev 
et al., 2011).

Preparation of sediment and sedimentary 
rock samples started with manual disaggrega-
tion in a dilute (<3%) HCl solution. Result-
ing grains were wet-sieved to isolate the 63– 
250 mm, 250–500 mm, and 500–1000 mm 
grain-size fractions. For both zircon and white 
mica samples, we analyzed at least 50 grains 
per sample (a total of 1084 grains distributed 
among 11 sample locations) to be at least 95% 
confident that our analyses did not miss an age 
component greater than 10% of the true age dis-
tribution (Vermeesch, 2004).

White Mica 40Ar/39Ar Analysis
Optically pure (inclusion-free) grains of 

white mica were hand selected from the 500– 
1000 mm grain-size fraction (also the 250– 
500 mm fraction for the Kapu sample to evalu-
ate potential size-age bias), cleaned in acetone, 
methanol, and deionized water, placed in alu-
minum foil packages and shielded with Cd for 
fast neutron irradiation. The packages were 
irradiated for 0.5 and 6.1 h in the 5C core and 
medium-flux positions at the McMaster Univer-
sity nuclear reactor in Hamilton, Ontario, Can-
ada. Biotite age standard HD-B1 (24.18 Ma; 
Schwarz and Trieloff, 2007) was used to moni-
tor the neutron flux gradient along with Kalsilite 
(KAlSiO

4
) and CaF

2
 salts to determine interfer-

ing nuclear production ratios.
Single-grain, total fusion 40Ar/39Ar analy-

ses were conducted at the Arizona State Uni-
versity Noble Gas Geochronology and Geo-
chemistry laboratory using a high-sensitivity 
Nu Instruments Noblesse multicollector mass 
spectrometer with Nier-type source and zoom 

optics, coupled to a 60 W IPG Photonics  
970 nm diode laser with Photon Machine optics 
linked to a Newport controller. Age standard 
and unknown single-grain samples were kept 
at 120 °C in an ultrahigh-vacuum chamber for 
1 d and then turbo pumped for 1 d to remove 
adsorbed atmospheric argon from the samples 
and chamber walls.

Total grain fusion was accomplished by firing 
the laser at 15 W for 120 s with a 0.6 mm beam 
diameter; the beam was moved to completely 
fuse each grain. Gases released by laser heating 
were cleaned in SAES NP10 getter pumps at 
400 °C and room temperature to remove active 
gases. Ar isotopes were measured on one Fara-
day detector fitted with a 1011 Ohm resistor and 
one ETP ion-counting multiplier detector cali-
brated with air pipette shots. Automation of the 
analytical system was controlled by the Mass 
Spec software program.

Ages were calculated from isotopic ratios and 
J values using the Isoplot software plug-in for 
Microsoft Excel and the decay constant, branch-
ing ratio, and atmospheric Ar ratios from Steiger 
and Jäger (1977).

Zircon Fission-Track Analysis
Fission tracks were analyzed at Apatite to 

Zircon, Inc., using the laser ablation– inductively 
coupled plasma–mass spectrometry (LA-ICP-
MS) methods of Donelick et al. (2005) and 
Chew and Donelick (2012). Zircons used for 
fission-track analysis were originally separated 
for U-Pb analysis by Lang and Huntington 
(2014) from the 63–250 mm grain-size frac-
tion with standard magnetic and density separa-
tion techniques. Prior to analysis, zircons from 
each sample were mounted in Teflon, polished 
to expose internal grain surfaces, and imaged 
with cathodoluminescence and high-resolution 
electron backscattering (see Lang and Hunting-
ton, 2014).

For fission-track analysis, one grain mount 
per sample was etched in a NaOH-KOH eutec-
tic melt at ~230 °C for a single duration last-
ing 24–72 h. Etching time varied to ensure an 
adequate number of suitably etched grains on a 
single mount. Fission tracks were counted from 
within each ~30-mm-diameter laser ablation pit 
at 1562.5× dry magnification in unpolarized, 
transmitted, and reflected light on a Nikon Opti-
phot 2 microscope. The LA-ICP-MS approach 
uses a modified zeta calibration (Hurford and 
Green, 1983; Hasebe et al., 2004) in which zeta 
calibration standards from Fish Canyon Tuff 
were updated during each LA-ICP-MS ses-
sion and smoothed using a load-specific run-
ning median. U, Th, and Sm abundances were 
determined by LA-ICP-MS using an Agilent 
7700x quadrupole mass spectrometer coupled 

to a Resolnetics RESOlution M-50 193 nm 
excimer laser.

RESULTS

Stratigraphy of the Siji River Region

We focused stratigraphic surveying and sam-
pling across the gradational Upper and Middle 
Siwalik contact exposed in the footwall of the 
Tipi thrust (Fig. 2). Exposures of the Lower 
Siwalik are faulted out of stratigraphic position 
and internally deformed (Jain et al., 1974; Agar-
wal et al., 1991). Determination of stratigraphic 
position within the Lower Siwalik would have 
required extensive additional magnetostratigra-
phy, which was impractical due to the severely 
restricted exposure. In contrast, the Upper and 
Middle Siwaliks are complete and well exposed 
in the Siji River and adjoining tributaries. In this 
region, coarse sandstones of the Middle Siwalik 
grade up section into interbedded siltstone and 
conglomerate of the Upper Siwalik. For correla-
tion of this contact with other Siwalik sections, 
we defined the base of the Upper Siwalik to be 
where the abundance of siltstone beds abruptly 
increases (Fig. 3).

Middle Siwalik
The Middle Siwalik is at least 3.2 km thick 

in the Siji River region (Fig. 3). Resistant beds 
support relatively high topography with steep 
slopes commonly following bedding planes. 
This unit is defined by thin to very thick beds 
of monotonous sandstone that coarsen upward 
from fine- to very coarse-grained sand with 
interbedded gravel and cobble conglomerate.

The lower 1.7 km of the unit are distinguished 
by the down-section reduction and eventual 
absence of quartzite, metamorphic and volca-
nic clasts in channel deposits; and reductions 
in grain size, characteristic bed-form scale, 
and concentration of large, visible mica grains. 
This lower portion of the unit contains thin to 
thick beds of very fine- to medium-grained 
sandstone with rare beds of matrix-supported 
conglomerate. Sandstone beds exhibit a variety 
of stratification at centimeter to meter scales, 
including climbing ripples, planar bedding, 
and trough cross-bedding. Many beds exhibit 
truncated fining-upward sequences. Sand 
grains are angular to subangular and range 
from poorly to well sorted. In the lowest hori-
zons, interbedded matrix-supported conglom-
erate contains angular to subangular clasts of 
hard red or gray siltstone, mudstone, and coal. 
Decimeter- to meter-scale round and tabular 
concretions are concentrated along bedding 
planes and surround coal fragments. Detrital 
coal fragments are ubiquitous, and whole logs 
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and stumps are observed throughout this por-
tion of the unit.

The upper 1.5 km of the unit are distin-
guished by very thickly bedded, coarse- to very 
coarse-grained sandstone, less common matrix 
and clast-supported conglomerate, and rare silt-
stone and mudstone beds. Sandstones coarsen 
upward from coarse to very coarse grained in 
the uppermost 800 m of the unit. Sandstones are 
generally massive or exhibit faint cross-bedding 
at meter scales or larger; some contain pebble-
gravel channel deposits with increasing abun-
dance in the upper portion of the unit. Grains 
are angular to subangular and poorly to mod-
erately sorted. Sandstones are micaceous, with 
large micas observed in very coarse-grained 
horizons. Channel deposits first appear as dis-
continuous stringers but progressively thicken 
up section into thick lenticular beds of matrix 
and clast-supported conglomerate. These depos-
its contain clasts of siltstone, coal, variously 
colored quartzite, vein quartz, volcanic breccia, 
amygdular and vesicular basalt, orthogneiss, 
and schist. These clast lithologies are character-
istic of Lesser Himalayan units exposed in the 
Siang valley. Volcanic rocks are rarely observed 
in Lesser Himalayan units and may be sourced 
specifically from the Abor volcanics, which 
are exposed within the immediate vicinity of 
the Siang River (Jain and Thakur, 1978; Ali 
et al., 2012). This part of the Middle Siwalik 
also contains centimeter- to meter-scale round 
and tabular concretions, commonly distributed 
along bedding planes. Coal logs, stumps, and 
large coal fragments are observed throughout 
this portion of the section, as well as thick beds 
of laminated gray siltstone. Green-brown clay-
stone is rarely observed.

Upper Siwalik
The Upper Siwalik is at least 1.5 km thick 

in the Siji River region. Relative to the Middle 
and Lower Siwalik Formations, the unit is reces-
sive and forms more subdued topography. The 
angular path of the Siji River may result from 
exploitation of easily eroded silt beds in the 
lower portion of the unit before the river crosses 
the Middle Siwalik to enter the Brahmaputra 
braid plain.

The lower 900 m of the Upper Siwalik are 
characterized by discontinuous sequences of 
thickly to very thickly interbedded conglom-
erate, sandstone, and siltstone. Gravel-cobble 
conglomerate is clast supported and typically 
massive or crudely cross-bedded. Conglomer-
ate clasts are moderately sorted, subangular 
to subrounded, and contain similar lithologies 
as observed in channel deposits of the Middle 
Siwalik. Siltstone clasts are commonly angu-
lar and may have been scoured from silt beds 
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within the unit. Sandstones are medium to 
very coarse grained and exhibit decimeter- to 
meter-scale cross-bedding, parallel bedding, or 
no bed forms. Siltstone and very fine-grained 
sandstone beds exhibit parallel lamination, 
cross lamination, and postdepositional dewa-
tering and soft sediment deformation struc-
tures (e.g., dish structures, convolute lamina-
tion). Beds of both sandstone and siltstone are 
micaceous, and some contain very coarse mica 
grains. Large stumps and logs occur in this por-
tion of the unit.

In the upper 600 m of the unit, the proportion 
of conglomerate beds increases at the expense 
of medium- and coarse-grained sandstone and 
siltstone beds, which are reduced to discontin-
uous lenses within conglomerate beds. Clast-
supported conglomerates are strongly oxidized 
and loosely consolidated in this portion of the 
section. Clasts are moderately to well sorted, 
subangular to subrounded, and subtly coarsen 
upward from cobbles to boulders. Beds are 
typically massive, but some are crudely cross-
bedded. Clasts also are crudely imbricated, 
reflecting a dominantly south-southeastern 
flow direction (consistent with observations 
of Jain et al., 1974) or showing no preferen-
tial flow direction. Clasts are dominated by 
red, green, white, and gray quartzite with some 
basalt, gneissic metamorphic rocks, dolomite, 
and rare coal fragments. We note that the dip 
of the uppermost conglomerate beds decreases 
with proximity to the Tipi thrust, indicating 
that these strata may have been deposited dur-
ing tilting of underlying units (i.e., growth 
strata). Growth strata also have been observed 
in the uppermost Upper Siwalik near Bhaluk-
pong (Burgess et al., 2012).

Interpretation of Depositional Environment
Our observations are consistent with previous 

interpretations of primarily alluvial deposition 
for Upper and Middle Siwalik Formations in 
this region (e.g., Karunakaran and Ranga Rao, 
1976; Ranga Rao, 1983; Kumar, 1997; Chir-
ouze et al., 2012a). Specifically, the abundance 
of large-scale characteristic fluvial bed forms 
in the Middle Siwalik indicates deposition by a 
large, braided sand-bed river (Bristow and Best, 
1993; Miall, 1996). Overlapping channel depos-
its with truncated fining-upward sequences 
indicate a vertically stacked fluvial architecture 
(Walker and Cant, 1984) characteristic of axial 
deposition in a basin similar to the present Brah-
maputra River.

Considering this interpretation of the depo-
sitional environment, the up-section increase 
in grain size and characteristic bed-form scale 
within the Middle Siwalik may indicate increas-
ing flow velocity (Middleton and Southard, 

1984; van Rijn, 1984) and depth (Yalin, 1972), 
or sediment discharge (Gilbert, 1914; Karim and 
Kennedy, 1990), rather than additional input of 
coarse sediment from transverse Himalayan riv-
ers at the axial river margin. Unfortunately, trun-
cation of existing bed forms in this portion of 
the section complicates a detailed interpretation 
of paleocurrent direction in the field. However, 
analysis of magnetic susceptibility anisotropy is 
consistent with a southwest paleocurrent direc-
tion (see details in Magnetostratigraphy section 
of Results).

We interpret the increased proportion of 
gravel-cobble conglomerate and siltstone beds 
across the Upper-Middle Siwalik contact to 
mark increased contribution from transverse 
Himalayan rivers. This interpretation is con-
sistent with the bulk isotopic measurements of 
Chirouze et al. (2013), which indicate a local 
Himalayan provenance in the Upper Siwalik 
near Bhalukpong. Moreover, movement of 
the Tipi thrust since ca. 1 Ma (Chirouze et 
al., 2013) may explain the decreasing dip of 
depositional surfaces in the uppermost portion 
of the Upper Siwalik as growth strata were 
deposited concurrently with tilting of under-
lying Siwalik units. Importantly, evidence of 
growth strata is only observed directly within 
the uppermost Upper Siwalik. This indicates 
that recycling of detrital minerals with older 
cooling ages from lower Siwalik units may 
have been a potential source for the Upper 
Siwalik sample (DTC3), but not also for the 
Middle Siwalik samples.

The increased contribution of gravel and 
cobble conglomerate in the Upper Siwalik has 
been explained as a consequence of erosional 
unroofing of the Himalaya during the onset 
of glaciation in the late Cenozoic (Burbank, 
1992). Although the eastern Himalayan fore-
land is more narrowly confined than the cen-
tral and western portions of the foreland, we 
consider that this hypothesis may be equally 
valid to explain the abrupt change in grain size 
between the Middle and Upper Siwalik For-
mations. Glaciation may have also changed the 
characteristic grain-size distribution of eroded 
Himalayan detritus (Goldthwait, 1971), sup-
plying both more silt and more gravel to the 
foreland. Previous researchers have proposed 
that glaciation of the eastern Himalayan syn-
taxis resulted in episodic damming and out-
burst flooding (e.g., Montgomery et al., 2004; 
Lang et al., 2013), which we suggest may have 
also influenced Upper Siwalik sedimentation. 
We speculate that thick siltstones and fine 
sandstones interbedded with conglomerate in 
the lower portion of the Upper Siwalik may 
represent deposition from episodic glacial 
outburst floods debouching into the foreland 

basin. Many siltstone and fine sandstone beds 
cap fining-upward sequences that include 
characteristic dewatering structures indica-
tive of rapid deposition of hyperconcentrated 
floodwaters (Benvenuti and Martini, 2002). 
More detailed analyses of the detrital prov-
enance of these specific beds would test this 
speculative interpretation and potentially pro-
vide new insight into the impact of such rare 
yet geomorphically significant events (Lang et 
al., 2013).

Structure of the Siji River Region

We mapped the Siji River area at a larger 
scale than previously published maps (e.g., Jain 
et al., 1974; Agarwal et al., 1991) to determine 
the best location for stratigraphic surveying 
(Fig. 2). Near the northern margin of the study 
area, the Main Boundary thrust places Paleozoic 
units including the Permian Gondwana units 
structurally above the Lower Siwalik, form-
ing a distinctive topographic break. The Lower 
Siwalik is internally deformed, with potentially 
antithetic reverse faulting observed in outcrops 
along the Likabali-Garu road. This internal 
deformation combined with poor exposure pro-
hibits accurate assessment of Lower Siwalik 
thickness, which has been previously estimated 
to be ~2 km in this location (Jain et al., 1974). 
The Tipi thrust places the Lower Siwalik struc-
turally above the Upper Siwalik. This relation-
ship is directly observed in the Siji River near 
Siji village and may be traced in the topography 
due to the contrasting unit competence. A com-
plete section of Upper and Middle Siwalik units 
most appropriate for measurement is observed 
along the mountain front where the Main Fron-
tal thrust places these units structurally above 
Quaternary alluvium.

The gradational Upper-Middle Siwalik con-
tact is locally displaced in a left-lateral sense 
by several west-northwest– to east-southeast–
striking faults. These faults may also extend 
southeastward to the trace of the Main Fron-
tal thrust at the mountain front, where Misra 
and Srivastava (2009) have suggested that 
young fluvial terraces near Likabali may result 
from recent fault activity. The northwestern 
tips of the faults do not obviously cut the Tipi 
thrust but may be buried by growth strata in 
the uppermost portion of the unit. Left-lateral 
displacement on these west-southwest– to 
east-southeast–striking faults may be consis-
tent with reverse-sense slip, but without more 
detailed observations, it is difficult to  quantify 
the total amount and orientation of slip. 
Regardless, these structures do not exhibit suf-
ficient displacement to confound stratigraphic 
or magnetostratigraphic interpretations.
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Magnetostratigraphy

We measured the characteristic remanent mag-
netization of 126 specimens from 79 samples col-
lected through the lower 1.7 km of our surveyed 
transect (Fig. 4). The characteristic remanent 
magnetization of a sample specimen is interpreted 
to represent original polarity of the magnetic field 
during deposition of detrital minerals, although 
subsequent magnetic overprints may compli-
cate this interpretation. Characteristic remanent 
magnetization is defined during step-wise ther-
mal demagnetization as the natural remanent 
magnetization component is removed over the 
 highest-temperature demagnetization steps. 
Above ~500 °C, demagnetization paths clearly 
trend toward the origin, and it is possible to dis-
tinguish between the higher-temperature charac-
teristic components and lower-temperature over-
prints. Figure 4A shows examples of specimens 
with clearly distinguishable normal and reversed 
polarity demagnetization paths corrected for bed 
tilt plotted on orthogonal diagrams. Distinguish-
ing between original and overprint components, 
however, is difficult in samples for which the nat-
ural remanent magnetization is less well defined 
at high temperatures.

For many of our specimens, characteris-
tic remanent magnetizations were difficult to 
clearly resolve. Those specimens displayed 
erratic changes in magnetization strength and 
direction and a marked increase in magnetic sus-
ceptibility above 250 °C. This behavior is con-
sistent with the growth of magnetite, a phenom-
enon previously observed in eastern Himalayan 
Siwalik samples (Chirouze et al., 2012a). Instru-
ment noise is not a confounding factor, because 
it was at least an order of magnitude less than 
the specimens’ magnetic moments prior to onset 
of erratic behavior, nor was the behavior due to 
physical disintegration of samples, as only a few 
of the coarsest-grained specimens disintegrated 
before the onset of erratic behavior.

Traditionally, classification of magnetic polar-
ity zones used for a polarity time-scale correlation 
is based on distribution of virtual geomagnetic 
poles (VGP). However, VGPs could not be cal-
culated for most specimens because their charac-
teristic remanence could not be fit well to a vector 
component. We instead classified polarity zones 
by individually evaluating the trend of demagne-
tization paths on orthogonal and equal-area plots 
to determine the polarity tendency. Polarity ten-
dency is defined as the angle between a normal 
polarity reference direction (359.5° declination 
and 46.7° inclination) and directions from least 
squares free-line regressions to low-, medium-, 
and high-temperature measurements. A tendency 
of the demagnetization path toward a normal 
direction would decrease this angle, whereas a 

Figure 4. (A) Examples of demagnetization paths for normal (54a1) and reversed (29a2) 
polarity specimens. Plots are horizontal (map view) and vertical plane (section view) 
orthogonal projections. Respective temperature steps are labeled (in °C) for each natu-
ral remanent magnetism (nrm) position plotted. The highest-temperature segments are 
interpreted to be original magnetizations (thick dashed line through origin). (B). Mag-
netostratigraphy of the lower Middle Siwalik unit (grain size classified as in Fig. 3). We 
analyzed 79 sites, determining polarity to be normal, reverse, or uncertain by individual 
inspection of demagnetization paths and calculation of polarity tendency. See text for 
discussion of data quality and precision. N—number of specimen measurements per 
sample; and MAD—maximum angular deviation (Kirschvink, 1980). For sites with mul-
tiple samples, averages for N and MAD are indicted with tick marks.
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tendency of the demagnetization path toward a 
reversed direction would increase this angle. We 
estimated the precision of polarity tendency as the 
maximum angular deviation of each regression 
(Kirschvink, 1980).

Low- and medium-temperature measure-
ments have a mean declination of 1.7° and 
inclination of 43.8° (with a 3.3° 95% confi-
dence interval). This direction is statistically 
indistinguishable from the present axial dipole 
field (0° declination and 43.6° inclination), indi-
cating that the low-temperature overprints were 
acquired after tilting of the strata.

We classified higher-temperature measure-
ments, which varied in data quality, into three 
groups. First-quality data have distinct normal 
or reverse polarity tendency (i.e., demagne-
tization paths trend clearly toward normal or 
reverse reference directions). Second-quality 
data are more ambiguous due to short or noisy 
demagnetization paths. Third-quality data are 
most ambiguous because higher-temperature 
measurements were not clearly differentiable 
from a posttilting overprint. All measurements, 
interpretation, and polarity determination are 
reported in the Data Repository.1

Correlation to Geomagnetic Polarity Time Scale
We used specimen polarity tendency mea-

surements to delineate 20 zones with normal or 
reversed polarity and zones where polarity was 
uncertain (Fig. 4B). We assume that all polarity 
zones may be correlated to chrons younger than 
the long-duration normal C5n.2n chron between 
9.9 and 11.0 Ma (Gradstein et al., 2012) because 
our observations did not indicate any evidence 
for normal polarity or potentially normal polar-
ity zones thicker than ~100 m. The long normal 
C5n.2n chron should constitute a >370-m-thick 
region, provided accumulation rates typical of 
the central and eastern Himalaya (Ojha et al., 
2000, 2009; Chirouze et al., 2012a), and thus it 
is apparently missing from this section.

We correlated our polarity zone sequence 
from our section to the 2012 Geomagnetic 
Polarity Timescale (Gradstein et al., 2012) 
using Cupydon, an iterative method based on 
the Dynamic Time Warping algorithm (Lal-
lier et al., 2013). This method iteratively com-
pares permutations of our polarity sequence to 
this time-scale reference ranging from C1n to 
C5n.1, ranking correlations by fit. Correlation 
fit is determined by minimizing the local vari-

1GSA Data Repository item 2016103, thermo-
chronologic and magnetostratigraphic sample data, 
and parameters for thermal model, is available at 
http://www.geosociety.org/pubs/ft2016.htm or by 
request to editing@geosociety.org.

ability in accumulation rate, such that the best-
fit correlation has the lowest local variability. 
The algorithm further allows for chrons to be 
skipped over a five-zone range in the polarity 
zone sequence. Results illustrate a best-fit cor-
relation between the C2Ar chron at 3.5 Ma and 
C4n.1r chron at 7.6 Ma (Fig. 5A). This correla-
tion indicates an average accumulation rate of 
403 m/m.y. (Fig. 5B), which is slightly less than 
rates previously reported in the central and east-
ern Himalaya (Ojha et al., 2009; Chirouze et al., 
2012b). Chirouze et al. (2012a) independently 
made a similar correlation in a Middle Siwalik 
section from the Tipi thrust footwall along the 
Kameng River, also lacking the long normal 
C5n.2n chron and contained similar trends in 
grain size and bed thickness (Fig. 5A).

We estimated the depositional ages of Mid-
dle Siwalik horizons sampled for detrital ther-
mochronology by linear interpolation between 
matched chrons. The depositional age for the 
single Upper Siwalik sample (DTC3) was not 
constrained by magnetostratigraphy, and we 
tentatively estimate the depositional age for this 
sample between ca. 1 and 2 Ma based on its 
stratigraphic position beneath the appearance of 
growth strata related to movement along local 
faults since ca. 1 Ma (Chirouze et al., 2013).

Estimation of Paleocurrent Direction
In clastic sediments, tilt of the plane of maxi-

mum and intermediate magnetic susceptibil-
ity commonly reflects imbrication of magnetic 
grains during deposition (Taira, 1989; Novak 
et al., 2014). The near-horizontal orientation of 
susceptibility maxima in all specimens is consis-
tent with deposition of elongate mineral grains 
as rollers oriented perpendicular to the current 
direction (Tauxe, 1998; Fig. 6A). Susceptibility 
minima are slightly offset to the north to east-
northeast from vertical, indicating a primary 
south to west-southwest paleocurrent direction, 
consistent with observations from more conven-
tional methods (e.g., Jain et al., 1974; Cina et 
al., 2009; Kesari, 2010; Chirouze et al., 2012a). 
Similar to observations by Cina et al. (2009), 
paleocurrents switch from west-southwest in the 
lower third of Middle Siwalik samples to south-
southwest in the upper two thirds of the sampled 
subsection (Fig. 6B).

Detrital Thermochronology

Detailed analytical results and calculated 
cooling ages for all new analyses are reported 
with 2σ errors in the GSA Data Repository 
(see footnote 1). Zircon fission-track analyses 
of river sediment samples discussed here were 
originally reported in Stewart et al. (2008) and 
Enkelmann et al. (2011).

Analyses of River Sediment Samples
White mica 40Ar/39Ar analyses from Hima-

layan tributaries. Detrital white mica 40Ar/39Ar 
analyses from three Himalayan tributary sam-
ples produce older (>10 Ma) cooling ages with 
narrow age ranges recording the exhumation of 
the specific tectono-stratigraphic units within 
the respective drainage area of each sample 
(Fig. 7). Specifically, the Yamne (sample Z) 
and Yang Sang (sample Y) rivers both contain 
a 29 Ma cooling age component that must have 
originated from a mica-bearing tectonic unit 
drained by both rivers. This source is likely a 
suite of crystalline metamorphic rocks (Pari 
Mountain formation of Singh, 1993) previously 
interpreted as Greater Himalayan Crystalline 
correlatives (Acharyya, 2007) east of the Siang 
River, but could alternatively be leucogranites 
within interpreted ophiolitic assemblages along 
the interpreted eastern continuation of the Indus-
Yarlung suture zone (Misra, 2009). If the source 
is in fact crystalline metamorphic rocks east of 
the Siang River, then these units may have a tec-
tonic history distinct from Greater Himalayan 
Crystallines west of the Siang River with which 
they have been correlated.

The Yang Sang River also drains Transhima-
layan intrusive and metamorphic units north of 
the suture zone (Acharyya, 2007; Misra, 2009), 
which may explain the additional, smaller com-
ponent of older ages around 43 Ma (see discus-
sion in subsequent section). The Siyom River 
has a clearly defined 16 Ma age component 
sourced from Greater Himalayan Crystalline 
rocks within the drainage area. This age com-
ponent is consistent with previous estimates 
of an early Miocene period of exhumation of 
Greater Himalayan Crystalline units along the 
Main Central thrust (e.g., Yin et al., 2010; Uddin 
et al., 2010; Mathew et al., 2013; Warren et al., 
2014), exposed within the Siyom River drainage 
(Acharyya, 2007).

White mica 40Ar/39Ar analyses from the 
Siang River. White mica 40Ar/39Ar analyses 
of river sediment samples collected from three 
different locations along the main channel of 
the Siang River (samples A, B, and C) all have 
wider ranges of cooling ages than are observed 
in Himalayan tributaries (Fig. 7). Since we did 
not quantitatively determine the mineralogy 
of each mineral grain prior to analysis, it is 
possible that some age dispersion may result 
from the misattribution of incorrect diffusion 
kinetics during total fusion experiments (e.g., 
applying diffusion kinetics for muscovite to a 
phengite grain). However, we prefer to inter-
pret cooling age variability in these samples to 
instead reflect the addition of mineral grains 
derived from new source areas in a larger 
drainage basin.
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Figure 5. (A) Correlation of polarity zone 
sequence to the 2012 Geomagnetic Polarity 
Timescale (GPTS; Gradstein et al., 2012) 
and comparison to a Siwalik section along 
the Kameng River near Bhalukpong (Chir-
ouze et al., 2012a). We evaluated the best 
correlation by iterative comparison of se-
quence permutations to the GPTS. The best 
correlation minimized local variability in 
the accumulation rate (grain size classified 
as in Fig. 3). (B) Comparison of accumula-
tion curves and accumulation rates. Our 
correlation shared several polarity zone–
chron matches with the work of Chirouze et 
al. (2012a), and neither section contains evi-
dence for a long normal polarity zone (i.e., 
that might correspond to the C5n.2n), indi-
cating the entire sequence is younger than 
9.9 Ma. Both sections also exhibit similar 
trends in grain size and bed thickness.
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Cooling ages from Siang River samples 
include older ages similar to those observed 
in Himalayan tributaries with the addition of 
younger ages clustering around, and younger 
than, 9 Ma. We interpret these young micas in 

Siang River sediments to be derived from the 
Namche Barwa massif. This interpretation is 
consistent with previous interpretations of young 
zircon cooling ages in Siang River samples (Pik 
et al., 2005; Stewart et al., 2008; Enkelmann et 

al., 2011) and with bedrock thermochronologic 
data from the massif itself. Extremely young 
40Ar/39Ar ages are observed in bedrock biotites 
from Namche Barwa (5 Ma and younger than 
1 Ma; Zeitler et al., 2014); considering that 
white mica has a slightly higher closure tem-
perature than biotite (McDougall and Harrison, 
1999; Harrison et al., 2009), erosion of bedrock 
contributing the extremely young biotites could 
produce the slightly older (younger than 9 Ma) 
white mica ages we observed. Furthermore, no 
alternative sources of similarly young 40Ar/39Ar 
cooling ages have been reported within the 
immediate eastern syntaxial region. Biotite and 
K-feldspar 40Ar/39Ar cooling ages from igneous 
bedrock upstream of the massif are older than 
8–10 Ma (e.g., Maluski et al., 1982; Coulon et 
al., 1986; Copeland et al., 1987, 1995; Cope-
land and Harrison, 1990; Harrison et al., 2000; 
Zeitler et al., 2014) and may be the source of the 
older ages observed in Siang River samples but 
not also observed in Himalayan tributaries.

Mica analyses producing extremely young 
apparent cooling ages (e.g., <4 Ma) often also 
exhibit a reduced percentage of radiogenic 
40Ar. A reduced percentage of radiogenic 40Ar 
may result from the addition of nonradiogenic, 
possibly atmospheric 40Ar to a truly young 
mica grain (McDougall and Harrison, 1999). 
We note, however, that no grains with appar-
ently young (younger than 9 Ma) cooling ages 
also have anomalous 36Ar measurements (a 
proxy for an atmospheric source of nonradio-
genic 40Ar) exceeding two standard deviations 
from the mean of 500–1000 mm analyses. 
Consequently, we do not attribute the reduced 
percentage of radiogenic 40Ar in grains with 
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apparently young cooling ages to anomalous 
nonradiogenic 40Ar contamination from an 
atmospheric source, and we interpret all cool-
ing ages as thermochronologically significant. 
We recommend that additional step-heating 
experiments in future analyses might provide 
valuable insight to evaluate alternative mecha-
nisms to reduce the percentages of radiogenic 
40Ar in Siang River minerals.

Analyses of Siwalik Samples
Coupled zircon fission-track and U-Pb 

analyses. By coupling new fission-track ther-
mochronology with previously published U-Pb 
geochronology, we can discriminate between 
cooling histories from multiple source terranes. 
Detrital zircon U-Pb geochronology is a well-
established indicator of detrital provenance in 

Figure 6. Lower-hemisphere projected equal-
area plots of mean magnetic susceptibility 
orientations (corrected for bed tilt) for (A) all 
specimens and (B) each third of the sampled 
Middle Siwalik subsection. Specimens in-
dicate a south- to west-southwest–directed 
paleocurrent consistent with a northern 
source region within the eastern Himalayan 
syntaxis. Ovals represent the 95% confidence 
region estimated from a parametric boot-
strap analysis, where replacement data are 
perturbed by normal variation consistent 
with their or the population’s statistical pa-
rameters (Tauxe et al., 1991; Tauxe, 1998).

the eastern Himalaya (e.g., Stewart et al., 2008; 
Cina et al., 2009; Lang and Huntington, 2014). 
Zircons with crystallization ages younger than 
300 Ma are predominantly derived from Tran-
shimalayan intrusive units in Tibet (Zhang et 
al., 2012; Lang and Huntington, 2014), whereas 
zircons from the Namche Barwa massif are 
typically older than 300 Ma with the important 
exception of anatectic units younger than 30 Ma 
(Booth et al., 2004; Lang et al., 2013). To con-
strain exhumation of the massif specifically, we 
filtered fission-track analyses using the crystal-
lization age of the same grain, only considering 

Figure 7. Detrital white mica 40Ar/39Ar 
cooling ages from modern river sediment 
samples (see Fig. 1 for sample locations). 
Cooling ages from Himalayan tributaries 
contain narrowly defined age populations 
characteristic of cooling histories for units 
within each drainage area. Cooling ages 
from three Siang River samples span a 
wider range that includes very young cool-
ing ages younger than 9 Ma. The total num-
ber of single-grain analyses (nall) is listed for 
each sample, although a few cooling ages 
older than 55 Ma were considered precur-
sory to the Himalayan orogeny and were 
not included in data plots. Plots include area 
normalized, summed probability density 
functions (PDF, thin black lines), and kernel 
density estimates (KDE, thick gray lines). 
Kernel density estimation was determined 
using the DensityPlotter application of Ver-
meesch (2012).

zircons with U-Pb ages exceeding 300 Ma, or 
less than 30 Ma if the U/Th ratio exceeded 10 
(i.e., Th/U < 0.1), indicating a metamorphic ori-
gin (Hoskin and Schaltegger, 2003).

To interpret fission-track data, we decon-
volved cooling age populations into constituent 
age components, or “peaks,” using the Density-
Plotter application of Vermeesch (2012). Over-
lapping analytical error on single-grain analyses 
reduces the interpretability of individual grain 
analyses, so we focus interpretation on the mini-
mum distinguishable age component. Results 
including decomposed age components are pre-
sented in Figure 8 and detailed in the GSA Data 
Repository (see footnote 1).

The Upper Siwalik sample (DTC3) is domi-
nated by young zircon fission-track cooling ages 
with two discernible age components at 1.8 and 
4.1 Ma. These young ages are similar to young 
cooling ages previously observed in samples 
from the Siang River (Stewart et al., 2008; 
Enkelmann et al., 2011). This previously pub-
lished work attributes two young cooling age 
components at 0.9 and 3.5 Ma observed in Siang 
River samples to recent exhumation of the mas-
sif, and slightly older age components at ca. 7 
and ca. 11 Ma to an earlier pulse of exhumation 
in the late Miocene (Enkelmann et al., 2011). 
Similarly, we attribute the young cooling ages 
of sample DTC3 to a rapidly exhumed source 
within the Namche Barwa massif.

Middle Siwalik samples have a wider range 
of zircon ages, with a young age component 
that decreases up section. The lowest sample 
is dominated by Tibetan zircons, with Himala-
yan zircons defining only a single component 
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at 16.7 Ma. Samples 25c, 50b, and 75b are 
defined by three components, the youngest of 
which systematically decreases from 11.4 Ma to 
6.0 Ma to 4.3 Ma in each sample, respectively. 
Older age components may originate in igneous 
sources in Tibet, as zircons with crystalliza-
tion ages indicative of a Tibetan igneous source 
have relatively old (12 Ma and 26 Ma) cooling 
ages, or reflect an early pulse of massif exhuma-
tion preserved in older cooling ages around the 
massif perimeter. Previously, Enkelmann et al. 
(2011) attributed detrital age components older 
than ca. 18 Ma to either Transhimalayan or 
Lesser Himalayan units exposed in local Hima-
layan tributaries.

Figure 8. Detrital zircon fission-track cooling 
ages from Upper and Middle Siwalik samples 
compared to ages from modern Siang River 
samples (Enkelmann et al., 2011). U-Pb dat-
ing of the same Upper and Middle Siwalik 
zircons permits differentiation of cooling 
ages by source region. Pie charts indicate the 
percentages of Himalayan zircons with crys-
tallization ages older than 300 Ma and Tran-
shimalayan zircons younger than 300 Ma. 
Only Himalayan zircons are illustrated in 
line plots. Young cooling age components at-
tributed to the Namche Barwa massif (En-
kelmann et al., 2011) persist in young lag 
times of Upper and Middle Siwalik samples 
until 25c and 5b. Sample 5b is dominated 
by zircons with a Transhimalayan U-Pb age 
provenance, which may reflect erosion of the 
suture zone and Transhimalaya intrusive 
units prior to exhumation of the Namche 
Barwa massif. Fission-track age components 
(white boxes) were determined with the Den-
sityPlotter application of Vermeesch (2012). 
The total number of analyses (n

all) and num-
ber of zircons with U-Pb ages older than 
300 Ma (n300) are reported. Plots include area 
normalized, summed probability density 
functions (PDF, thin black lines) , and kernel 
density estimates (KDE, thick gray lines).

White mica 40Ar/39Ar analyses. Compared to 
the zircon fission-track results, 40Ar/39Ar analy-
ses produce a wider range of cooling ages in 
Siwalik samples (Fig. 9). Irregular age spectra 
may reflect a heterogeneous distribution of the 
target mineral in source region bedrock (e.g., 
Clift et al., 2004) in addition to variability in 
source exhumation patterns. To avoid specula-
tion on such complications, we restrict inter-
pretations to the simple presence or absence 
of diagnostic young 40Ar/39Ar cooling ages in 
Siwalik samples. Whereas interpretations of 
detrital fission-track data rely on age compo-
nent decomposition to identify the youngest 
representative age signal, individual white mica 
grain ages can be interpreted with greater con-
fidence due to the high analytical precision of 
40Ar/39Ar analyses.

Analysis of the Upper Siwalik sample DTC3 
primarily produced older cooling ages matching 
observations from Himalayan tributaries, with 
the small addition of grains younger than 4 Ma 
originating from the Namche Barwa massif. The 
predominance of older Himalayan cooling ages 
in the Upper Siwalik may reflect recycling of 
older ages from Himalayan  tectono-stratigraphic 
units in a depositional area closer to the moun-
tain front but removed from the axial basin dep-

ocenter. Grains younger than 4 Ma observed in 
this sample may have been eroded from recently 
exhumed rocks of the massif or recycled from 
upper portions of the Middle Siwalik. Whereas 
the modern Siang River sample contained a sig-
nificant component of very young ages with a 
reduced percentage of radiogenic argon, only 
a few cooling ages with similarly reduced per-
centage of radiogenic argon were observed in 
sample DTC3, and none were observed in sam-
ples from lower stratigraphic samples.

The youngest single grain cooling ages 
in Middle Siwalik samples systematically 
decreased up section. The lowest sample, 5b, 
was dominated by older ages between 20 and 
35 Ma. Such ages were also observed in Hima-
layan tributaries draining portions of the suture 
zone, suggesting that this lowest sample may 
record early erosion of the suture zone prior 
to deep exhumation of the Namche Barwa 
massif. This interpretation may be further sup-
ported by a dearth of zircons with characteristic 
Himalayan crystallization ages in this sample. 
The youngest individual ages from the remain-
ing Middle Siwalik samples decreased from 
12.9 Ma to 8.1 Ma to 6.9 Ma up section for 
samples 25c, 50b, and 75b, respectively. The 
upward younging of minimum ages may reflect 
sustained, and potentially accelerating exhuma-
tion of the Namche Barwa massif.

DISCUSSION

Interpretation of Thermochronological  
Lag Time

We interpret the exhumation history of the 
source rocks contributing detritus to the Hima-
layan foreland based on calculation of detri-
tal thermochronological lag time (Bernet and 
Garver, 2005). Thermochronological lag time 
is the difference between a minimum detrital 
mineral cooling age (or age component) and 
the depositional age of the sampled sedimen-
tary horizon (Garver and Brandon, 1994). When 
the residence time of intermontane sediment 
storage is small relative to the time scale of 
mineral cooling (e.g., Garver et al., 1999; Ber-
net et al., 2004), and dynamic perturbations to 
the subsurface thermal field may be accounted 
for with thermal modeling (e.g., Braun et al., 
2006), lag time is indicative of source region 
paleo-exhumation rates. Systematic variation 
in lag time with depositional age may eluci-
date fundamental changes in the exhumation 
of source terranes. For example, an up-section 
lag time decrease (i.e., a decrease in lag time 
with decreasing depositional age) may indicate 
acceleration of source rock exhumation during 
a constructive phase of orogenesis (Bernet and 
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Garver, 2005). Constant lag time may indicate 
constant or steady-state exhumation (e.g., Wil-
lett and Brandon, 2002; Burbank et al., 2007).

We calculated thermochronologic lag time 
for minimum single-grain 40Ar/39Ar cooling 
ages and minimum fission-track age compo-
nents in Siwalik samples (Fig. 10). In both data 
sets, lag time decreases up section, approaching 
cooling ages observed in modern river sediment 
samples (i.e., younger than 2 Ma fission track 
ages—Stewart et al., 2008; Enkelmann et al., 
2011; younger than 4 Ma 40Ar/39Ar ages) by 
the stratigraphic horizon at sample 50b, mag-
netostratigraphically correlated between 5 and 
6 Ma. After this stratigraphic horizon, lag times 

remain consistently low. We interpret the lag 
time pattern prior to sample 50b to result from 
an increase in source region exhumation rates 
in the late Miocene, and the pattern after sam-
ple 50b to indicate rapid exhumation sustained 
since ca. 5 Ma. Because lag time decreases to 
within the range of modern bedrock cooling 
ages uniquely attributed to the Namche Barwa 
massif, and no alternative sources of similarly 
rapid exhumation have been reported within 
the syntaxial region, we attribute this exhuma-
tion rate increase specifically to unroofing of the 
Namche Barwa massif.

Thermal Modeling
To quantitatively constrain the timing and 

magnitude of an exhumation rate change in the 
source region, we used a simplified version of 
Pecube, a finite-element numerical code often 
used for predicting thermochronological data 
(Fig. 11A; Braun, 2003; Braun et al., 2012) to 
predict a time series of cooling ages resulting 
from a step change in the late Miocene exhu-
mation rate. Pecube accounts for heat advection 
in mineral cooling—an important influence in 
regions of such extreme rock exhumation rates 
(Braun et al., 2006). Our simple model assumes 
only vertical rock exhumation since both the 
crustal-scale folding (Burg et al., 1998) and 
pop-up structures (Ding et al., 2001) proposed 
as exhumation mechanisms for the Namche 

Figure 9. Detrital white mica 40Ar/39Ar 
cooling ages from Upper and Middle Siwa-
lik samples compared to modern samples 
from the Siang River and characteristic 
age ranges from Himalayan tributaries. We 
interpret the predominance of Himalayan 
ages in the Upper Siwalik sample to reflect 
Siwalik recycling and increased contribu-
tion from local Himalayan sources. Detrital 
samples contain young cooling ages relative 
to depositional age (young lag times) that 
disappear in lower samples 25c and 5b. 
The lowest sample, 5b, contains much older 
ages similar to those observed in tributaries 
draining Himalayan crystalline and suture 
zone units, possibly supporting the inter-
pretation from fission-track ages that this 
sample reflects contribution from the suture 
zone and Transhimalayan intrusive units 
prior to massif exhumation. The total num-
ber of single-grain analyses (n

all) is listed for 
each sample. Plots include area normalized, 
summed probability density functions (PDF, 
thin black lines), and kernel density esti-
mates (KDE, thick gray lines).

Barwa massif are dominated by vertical rock 
uplift. Similar to prior modeling by Zeitler et 
al. (2014) of the area surrounding Namche 
Barwa, our approach does not account for the 
potential effects of lateral heat transfer, which 
are assumed to be insignificant relative to the 
extreme vertical component of heat transport. 
Our model further neglects the influence of 
changing topographic relief, which is not inde-
pendently well constrained, as previous model-
ing of detrital cooling populations indicates that 
even large changes in topographic relief have 
only a secondary effect on the range of a detrital 
age distribution (Whipp et al., 2009) and do not 
significantly influence median ages (Ruhl and 
Hodges, 2005). Thermal parameters used in the 
model are comparable to previous thermal mod-
els of the eastern Himalaya (e.g., Robert et al., 
2011; Adlakha et al., 2013) and are detailed in 
the GSA Data Repository (see footnote 1).

Our simple approach predicts cooling ages 
from scenarios reflecting changes in three 
parameters: the time of a change in exhumation 
rate (between 1 and 15 Ma), a factor increase 
in the exhumation rate (1–20 fold), and the 
final exhumation rate, which was fixed between 
5 km/m.y. and 10 km/m.y., characteristic of rates 
interpreted from bedrock samples. For each 
model run, we used the root mean squared error 
to separately compare cooling age predictions 
to our observations for each thermochronom-
eter system. The composite root mean squared 
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error from all six sets of models is shown in 
Figure 11B.

While this modeling remains simple, it con-
sistently indicates that the observed change in 
lag time is best explained by a 5–10-fold increase 
in the source region exhumation rate between 5 
and 7 Ma. However, lacking additional obser-
vations from lowest Middle Siwalik or Lower 
Siwalik units older than 8 Ma, the maximum 
bound on the onset of rapid exhumation is not 
well constrained. Thermal modeling of bedrock 
cooling ages surrounding the Namche Barwa 
massif by Zeitler et al. (2014) instead indicates 
that rapid exhumation initiated at 10 Ma, and we 
anticipate that further analyses of Lower Siwa-
lik samples may constrain a lower bound on this 
onset time more precisely.

Emergence of Thermo-Mechanical 
Feedbacks

Our interpretation of extreme exhumation 
rates sustained since 5 Ma may reflect the 
emergence of the thermo-mechanical feed-
backs proposed by Zeitler et al. (2001). Zeitler 
et al. (2001) originally proposed that thermo-
mechanical feedbacks may have emerged in 
both Himalayan syntaxes following the cap-
ture of large, longitudinal river systems— 
specifically, capture of the Yarlung River in the 
eastern syntaxis by a Brahmaputra River tribu-
tary. Since observations of Tibetan detritus in 
foreland basin units (Cina et al., 2009; Lang and 
Huntington, 2014) and distal Bengal fan depos-
its (Bracciali et al., 2015) indicate that if such 
a capture event occurred, it must have predated 
deposition of these units in the middle or early 
Miocene, we consider that such a discrete ero-
sional event is unlikely to have directly resulted 
in increased rock exhumation rates after 5 Ma. 
Instead, increased exhumation rates between 
5 and 7 Ma, or even 10 Ma, may represent a 
period of incision into the southeastern margin 
of the Tibetan Plateau as the ancestral Yarlung 
River system adjusted to increased rock uplift 
while maintaining a low-elevation base level.

Recent documentation of >550 m of sediment 
aggradation along the Yarlung River upstream 
of the Tsangpo Gorge suggests that an ances-
tral Yarlung River system may have previously 
achieved a graded or near-graded longitudinal 
profile (Wang et al., 2014). Cosmogenic dat-
ing of buried sediment collected from a core 
~150 km upstream of the gorge provided a 
ca. 2–2.5 Ma minimum constraint on the tim-
ing of Yarlung aggradation, which Zeitler et 
al. (2015) extrapolated to 3–4 Ma based on 
the maximum estimated sedimentary thickness 
closer to the gorge. If increased rock uplift at 
the margin of the Tibetan Plateau steepened 
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Figure 11. Results of thermal modeling 
used to predict thermochronologic lag time.  
(A) We varied the factor change (xE) and 
timing (t) of a step-wise increase in exhuma-
tion rate, keeping the final exhumation rate 
(Ef) fixed between 5 and 10 km/m.y. to stay 
consistent with observations from bedrock 
data. (B) Contoured plots of root-mean-
squared (RMS) misfit between predicted 
and observed lag times. Both thermochro-
nologic data sets are best explained by a 
5–10-fold increase in exhumation rate be-
tween 5 and 7 Ma. Each gridded point rep-
resents an individual model scenario. RMS 
misfit is summed over six sets of model out-
put where the final exhumation rate (Ef) 
varied between 5 and 10 km/m.y.

the ancestral river profile beginning in the late 
Miocene, then reduction of the river’s gradient 
above the newly development knick zone, a cli-
matic reduction of river transport capacity, or 
both may explain aggradation in the Pliocene. 
Since 5 Ma, thermo-mechanical feedbacks may 
have sustained rapid exhumation in a steep 
knick zone at the plateau margin.

Lag Time Across the Himalaya

Geodynamic modeling of subduction in 
generalized syntaxial regions predicts locally 
elevated rock uplift as a consequence of a 
curved subducting plate geometry (Bendick 
and Ehlers, 2014). If a similar subducting plate 
geometry characterizes the eastern margin of 
the Himalayan orogen, enhanced rock uplift 
rates may have developed from stiffening of the 
subducting Indian crust. In response, thermo- 
mechanical feedbacks may have only developed 
where a large, antecedent river system crossing 
the syntaxis could sustain sufficiently high rates 
of crustal exhumation (Koons et al., 2013). To 
determine how our observations compare to 
transverse river drainages outside of syntaxial 
regions, we compared lag time data across the 
Himalayan orogen.

We compiled lag time data from eight loca-
tions across the orogen, including lag time cal-
culated from minimum zircon fission-track age 
components and minimum single-grain white 
mica 40Ar/39Ar analyses from six locations along 
the Himalayan front and both Himalayan syn-
taxes (Fig. 12A). To illustrate the general trend 
of lag time with depositional age, we fit lin-
ear regressions to each data set independently 
(Fig. 12B), and we observe that decreasing ther-
mochronologic lag time up stratigraphic section 
is only observed in foreland sequences proximal 
to the Himalayan syntaxes.

Along the Himalayan front, lag times calcu-
lated from minimum zircon fission-track age 
components have remained constant or increased 
since the middle Miocene. This trend has 
been previously interpreted to reflect constant 
Himalayan exhumation rates of ~1–2 km/m.y. 
across the central and eastern Himalaya since 
ca. 16–13 Ma (Bernet et al., 2006; Chirouze et 
al., 2013) or possibly reduced Miocene exhuma-
tion in eastern Nepal (Chirouze et al., 2012b). 
Lag times calculated from minimum single-
grain white mica 40Ar/39Ar ages have increased 
since the Early Miocene, and this is interpreted 
to represent a decrease in Greater Himalayan 
exhumation as thrusting propagated forward 
to Lower Himalayan sequences (White et al., 
2002; Szulc et al., 2006; Najman et al., 2009).

In contrast, lag times reported from the west-
ern Himalayan syntaxis have decreased since 
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the early Miocene. Lag times calculated from 
minimum zircon fission-track age components 
and single-grain white mica 40Ar/39Ar ages 
have been interpreted to represent a progres-
sive increase in source exhumation rate since 
ca. 18 Ma (Cerveny et al., 1988; see decompo-
sition from Ruiz and Seward, 2006; Najman et 

Figure 12. Compilation of lag time data from 
Siwalik Group across the Himalaya. (A) Lo-
cations of sections illustrated on a simplified 
map of tectonic and foreland basin units 
(CV—Chinji village area, J— Jogindernagar 
area, K—Karnali River, SK—Surai Khola, 
TK—Tinau Khola, MK—Muksar Khola, 
KA—Kameng River, SR—Siji River; modi-
fied from Critelli and Garzanti, 1994).  
(B) Linear regressions of lag time from Si-
walik sections proximal to the Himalayan 
syntaxes indicate an up-section lag time de-
crease in both thermochronologic systems. 
In contrast, regressions of lag time data from 
sections along the Himalayan front indicate 
an increase or constant lag time up section. 
Lag time is calculated from minimum zircon 
fission-track age components and minimum 
40Ar/39Ar white mica single-grain ages. See 
text for data references.
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al., 2003; Chirouze et al., 2015), broadly consis-
tent with the observations reported here for the 
eastern Himalayan syntaxis. If this emergence 
of very young lag times indicates the onset of 
thermo-mechanical feedbacks, then this obser-
vation suggests that syntaxial regions may be 
the only locations where thermo-mechanical 
feedbacks have developed in the Himalayan 
orogen, and potentially much earlier in the west-
ern syntaxis than the eastern syntaxis. New anal-
yses from additional locations and lower strati-
graphic levels will be useful to further compare 
exhumation histories across the Himalaya.

SUMMARY AND CONCLUSIONS

The Himalayan syntaxes host exceptional 
landscapes where efficient erosional systems 
have rapidly exhumed young metamorphic mas-
sifs at the eastern and western margins of the 
orogen. This study extends the record of crustal 
exhumation preserved in bedrock thermochro-
nological cooling ages of the eastern Himalayan 
syntaxis by reconstructing the exhumation his-
tory from detrital cooling ages in foreland basin 
units. We focused on a proximal 4.6-km-thick 
stratigraphic section for which sedimentary 
provenance had been studied previously using 
detrital zircon U-Pb geochronology. Detailed 
stratigraphic surveys, magnetostratigraphy, 
detrital white mica 40Ar/39Ar thermochronol-
ogy, and fission-track dating of detrital zircons 
for which previous U-Pb ages were available 
enabled us to measure thermochronologic lag 
time since the late Miocene.

Lag times for both thermochronometers 
decrease up section in the Middle Siwalik, best 
explained by a 5–10-fold increase in syntaxial 
exhumation rate between 7 and 5 Ma. Since 
5 Ma, extremely rapid exhumation rates have 
been sustained in the Namche Barwa region, 
an observation that may be consistent with the 
development of thermo-mechanical feedbacks 
in the eastern Himalayan syntaxis, and which 
suggests that the steep topographic gradients 
and rapid surface erosion presently exhuming 
the massif may be long-lived features of this 
landscape. Because a late Miocene increase 
in rapid exhumation significantly postdates a 
hypothesized river capture event in the early or 
middle Miocene, we conclude that integration 
of the river system did not initiate rapid exhu-
mation of the Namche Barwa massif. Instead, 
we suggest that exhumation rates increased in 
the late Miocene as an antecedent river system 
adjusted to tectonic uplift of its headwaters 
while maintaining a low-elevation base level.

Similar observations of accelerating rock 
exhumation are observed in lag time studies of 
Siwalik units proximal to the western Hima-

layan syntaxis, but not also in studies from 
across the main Himalayan front. Consider-
ing our observations within the context of this 
broader pattern, we emphasize the importance 
of antecedent river drainage in the development 
of localized thermo-mechanical feedbacks that 
may have sustained steep topography, rapid 
exhumation, and high sedimentary discharges 
at the Himalayan syntaxes for a considerable 
expanse of time.
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