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Abstract

This paper examines how two geographically separated ports compete for
a market consisting of manufacturing firms located between the two ports.
There is a firm in each port, and these two firms, taking the infrastructure
provided by their governments as given, compete in a Bertrand sense. The
governments, however, can also compete in terms of investment in infrastruc-
ture. This paper shows that there are cases in which both the firm and the
government in the port that has a longer history in the market may have the
first mover advantage. In particular, the government can provide a credible
threat by overinvesting in infrastructure.
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1 Introduction

This paper presents a model of rivalry between two cities that are distribution
centres for goods produced in a long narrow region connecting the two cities.
Rivalry between cities is a common feature of economic life. An example

that comes immediately to mind is the potential rivalry between Hong Kong
and Shanghai. There are many other examples in the world that fit the
present description. For example, in the United States, San Francisco and
Los Angeles, and Seattle and Tacoma have long histories of competition.
In Australia, Sydney and Melbourne have been known to be rivals for a
long time, both in the commercial and in the cultural spheres. In Canada,
Montreal and Toronto used to be (almost) equal competitors. In Germany,
Dresden and Leipzig have a long history of rivalry. Hong Kong and Singapore
are possible contenders for being the principal financial centre for East and
Southeast Asia (not including Japan.)
When cities compete, the respective city governments may have an in-

centive to interfere, possibly to help locally based firms. This may reflect the
desire of each city to maximize a conventional social (or, rather, city-based)
welfare function. Alternatively, one may adopt the political-economy view
that city officials want to be reelected, and their campaign funds can be in-
creased if they help local businesses (possibly at the expenses of local tax
payers.)
Our paper is an attempt to model the commercial rivalry between two

cities. We abstract from considerations such as population size, agglomera-
tion effects, labor market externalities, or diversification of business activi-
ties1. Our main focus is on the investment in city infrastructure, such as the
road system, the law enforcement and regulatory system (e.g., how effective
is the body that regulates the activities of the city stock exchange in Hong
Kong, as compared with Singapore?). We model the rivalry between the two
cities as follows. We assume that in each city there is a single distributor
(or a cartel of distributors). The two distributors compete in service prices
that they offer to manufacturing firms that are located in a long, narrow re-
gion joining the two cities. Each distributor’s cost of supplying distribution
services depends on the quality of the city’s infrastructure, the provision of
which is the responsibility of the city’s government. The two governments
compete against each other, because each wants its city to be the most pros-
perous centre of commerce.
In the model considered in the present paper, there are two levels of

1For models that deal with these issues, see, for example, North (1955), Thisse (1987),
Glaeser et al. (1992), Fujita and Thisse (1996), Long and Soubeyran (1998), and Fujita,
Krugman and Venebles (1999).
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competition, which take place consecutively. First, the governments of the
cities compete in terms of investment in infrastructure. Then, taking the
government investments as given, the two distributors compete. On the
firm level, we examine both a Bertrand-Nash equilibrium and a Stackelberg
leader-follower equilibrium between the two distributors. The latter equilib-
rium is the one the distributor that develops earlier wants to achieve, but
its successful achievement of this equilibrium depends on certain restrictive
assumptions. On the government level, a Nash equilibrium is possible if the
cities are symmetric. However, if a city is developed earlier, it has the first
mover advantage so that when a rival city tries to emerge with possible jumps
in infrastructure investments, it has an incentive to increase its investment
with the purpose of discouraging the investment by its rival. Such a preemp-
tive investment by the first mover could be credible because investment that
was made earlier is not reversible.
In section 2 we present the basic model and determine the equilibrium

when one of the ports is the only supplier of the distribution services to the
production firms. In section 3, we characterize the Nash-Bertrand equilib-
rium between two distributors, one located in each city. Section 4 analyzes
the case in which one distributor has the first mover advantage, that is, this
is a Stackelberg game between the two distributors. Section 5 studies the
optimal unilateral intervention from the point of view of one city, under the
assumption that the two distributors play a Nash-Bertrand game. In sec-
tion 6, we deal with a simultaneous-move game between the two cities, while
section 7 discusses the Stackelberg game between the two cities. In both of
these sections, we maintain the assumption that the two distributors play a
Nash-Bertrand game. The last section offers some concluding remarks.

2 The Model

The two cities are denoted by N and S (North and South), respectively.2 The
distance between them is normalized at unity. S is located at point 0 and N
is located at point 1. There are two types of firms: production firms, and
distribution firms. Production firms form a continuum, and are uniformly
distributed between S and N. A production firm is indexed by x, where x is
its distance from S and 1−x is its distance from N. These firms produce the

2Our convention of naming the two cities comes from the fact that in many of the
examples cited earlier, the two cities are roughly in a North-South positions; for example,
Hong Kong-Shanghai, Seattle-Tacoma, and San Francisco-Los Angeles.
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same good.3

For simplicity, assume that each production firm produces either one unit
of output, or nothing. The cost of producing the output is a given constant,
which is normalized as zero. The cost to firm x of shipping its output from
location x to S is bx2/2, and the cost of shipping the output from location x
to N is (b/2)(1− x)2.4
In city S, there is a single distribution firm labeled distributor S (or,

equivalently, a cartel of distributors) that provides the service of sending
(and marketing) the goods to a foreign market. The cost of providing this
service is CS per unit of good sold, which is taken as given by the distributor.
The cost CS depends on the quality of the city’s infrastructure, IS, (such as
the quality of the road network, and of the law enforcement system), as
described by the following function,

CS = CS(IS),

where C 0S(IS) < 0 and C
00
S(IS) > 0.

5 It should be noted that IS is labeled as
investment for simplicity, but it is in fact the accumulated investment in the
past less depreciation. It is therefore a stock, not a flow.
Distributor charges a price θS ≥ CS, the same for all production firms,

for its distribution service.6 The world price of the good is P , assumed to be
given exogenously.
In city N, there is a rival distributor labeled distributor N, with unit cost

of distribution CN given by

CN = CN(IN),

where C 0N(IN) < 0, C
00
N(IN) > 0.

3 Monopoly Distributor

We begin by focusing on one distributor. Suppose that initially the cost of
the rival distributor in N is so high that it cannot compete with distributor
S, e.g., the quality level IN is so low that CN(IN) > P. Then the southern
distributor is a monopolist.

3Many features of this model are borrowed from the spatial competition model of
Hotelling (1927).

4Our assumption that the transport cost is quadratic in distance is in line with
d’Aspremont et al. (1979).

5This means that an increase in the quality of the city’s infrastructure will lower the
cost of the distribution service, but the rate of change in CS with respect to IS increases
with the latter.

6Charging the same price to all production firms implies no price discrimination by
each distribution firm.
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3.1 Optimal Production of Distributor S

The objective of distributor S is to maximize its profit by choosing a service
price θS and a cut off point xm ≤ 1 such that all firms with distance x > xm
will be excluded. For firms that are not excluded, the participation constraint
is that they should earn non-negative profit. Formally, the distributor seeks
to

max
θS ,xm

πS =
Z xm

0
(θS − CS)dx = (θS − CS)xm, (1)

subject to

P − θS − b
2
x2 ≥ 0, ∀x ∈ [0, xm], (2)

and
0 ≤ xm ≤ 1. (3)

It is convenient to define the mark-up on distribution cost as z,

z = θS − CS. (4)

It is clear that problem (1) is equivalent to

max
z,xm

πS = zx
m, (5)

subject to (3) and

P − CS − z − b
2
(xm)2 ≥ 0. (6)

To analyze problem (5), we make use of Figure 1. In the (x, z) space, we
first construct various iso-profit contours, each of which corresponds to the
same profit. Each iso-profit contour, such as XZ, has a slope of

∂z

∂x

¯̄̄̄
¯
XZ

= −z
x
< 0, (7)

and is convex to the origin. Condition (6) is the area bounded from above
by curve PC, which has a slope of

∂z

∂x

¯̄̄̄
¯
PC

= −bx < 0, (8)

and is concave to the origin. Constraint (3) refers to the region bounded
by the vertical axis and the vertical line x = 1. The problem of the firm
is to choose (x, z) that reaches the highest iso-profit contour subject to the
constraints (6) and (3). Depending on the nature of the solution, two cases
can be distinguished.
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The Whole Market Case (Corner Solution) – This case, in which
distributor S serves all the production firms, is defined by the following con-
dition:

P − CS ≥ 3b
2
. (9)

To see why there is a corner solution, note that at xm = 1, conditions (9)
and (6) (the latter with an equality) imply that at (1, P − CS − b)

∂z

∂x

¯̄̄̄
¯
PC

≥ ∂z

∂x

¯̄̄̄
¯
XZ

, (10)

or that contour XZ is at least as steep as curve PC. This is the case shown
in Figure 1 (with a strict inequality in condition (10)). The optimal point
with the highest possible profit is E.
At this point, condition (6) implies that the optimal price of the good is

θ∗S = P − b/2, giving a profit to the firm of

πSM = π∗SC(CS) = P − CS −
b

2
. (11)

The Partial Market Case (Interior Solution) – This case, in which
distributor S serves some of the production firms closer to itself, is defined
by the following condition:

P − CS < 3b

2
. (12)

Let us suppose that starting from point E there is a drop in the price P,
or a rise in the cost CS, or both, so that curve PC shifts down to, say, P̃C̃,
satisfying condition (12). This produces a point of tangency, Ẽ, between
P̃C̃ and iso-profit contour X̃Z̃, it is optimal for distributor S to serve all
the production firms within the interval (0, x̃). Using (7) and (8), with (6)
holding as an equality, we get the solution to the profit-maximizing problem:
z∗ = 2(P − CS)/3, and

xm∗ =
q
2(P − CS)/(3b) (13)

θ∗S =
2P + CS

3
. (14)

Firm S is able to get a profit of
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πSM = π∗SI(CS) =
1√
b

"
2(P − CS)

3

#3/2
, (15)

which is what contour X̃Z̃ represents. Note that in these two cases with all
production firms as price takers distributor S will set the service price θS so
that the production firm being served and farthest away from port S earns a
zero profit.

3.2 Optimal Investment by Government S

The government of port S is to choose the optimal investment in infras-
tructure, IS, which determines the cost of distribution firm S takes as given.
The government chooses IS to maximize the welfare function VS of the port
defined as

VS = πSM − (1 + β)IS, (16)

where β is the marginal cost of public finance7, and πSM is the profit of the
distribution firm as a monopolist, defined by either (11) or (15) depending
on whether an interior solution exists. Problem (16) yields the first order
condition

π0SM(CS)C
0
S(IS) = (1 + β). (17)

In condition (17), π0SM(CS) = −1 and π00SM(CS) = 0 in the Whole Market
case, or π0SM(CS) = −

q
2(P − CS)/(3b) and π00SM(CS) = [2/(3b)]1/2[P −

CS]
−1/2 in the Partial Market case.
When given the market price of the good, condition (17) is illustrated by

schedule ABFDE in Figure 2. This schedule has two components. Segment
ABFD is a vertical line, corresponding to the Whole Market case (CS <
P−3b/2), in which (17) reduces to an equation with one unknown, IS. Denote
the unique solution by I0S. Curve DE corresponds to the Partial Market case
(CS > P − 3b/2). Condition (17) is differentiated to give the slope of curve
DE:

dCS
dIS

¯̄̄̄
¯
DE

= −π0SMC
00
S

C 0Sπ
00
SM

< 0. (18)

Also illustrated in Figure 2 is schedule CI, which represents CS = CS(IS),
which, by assumption, is downward sloping and convex to the origin. The
intersection between schedules ABFDE and CI gives the optimal infrastruc-
ture investment. At the initial market price, the optimal point occurs at F in

7It measures the deadweight loss caused by raising an extra dollar of tax.
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the figure, with an infrastructure investment of I0S, leading to a service cost
of C∗S. Distributor S chooses to serve the whole market.

8

Suppose now that there is a significant decrease in P to, say, P̃ . As a
result, the curve that represents condition (17) shifts to ABF̃G, with its
portion BF̃G corresponds to the case in which distributor S serves only part
of the market. With the slope in (18) sufficiently large in magnitude, BF̃G
cuts schedule CI at point F̃, leading to an optimal infrastructure investment
of Ĩ0S and a corresponding service cost of C̃

∗
S.
9 Making use of Figure 2 and

the previous analysis, the following proposition can easily be established, the
proof of which is given in the appendix:

Proposition 1: (a) If currently CS ≤ P − 3b/2, a small rise in P will not
affect the government’s infrastructure investment while distributor S contin-
ues to serve the whole market. The service price charged by distributor S
increases by the same amount. (b) If currently CS > P −3b/2, a small rise in
P will lead to an increase in the government’s infrastructure investment and
a fall in the service cost, while distributor S serves more firms. The change in
the service price charged by distributor S is determined by condition (14).10

4 Duopoly in Distribution

Now consider the duopoly case, in which both distributors S and N may
provide services to the production firms. These two distributors set service
prices, θS and θN , respectively. To simplify the analysis, we assume that the

8As an example, one may take the special functional form

CS(IS) =
γS
IS
,

where γS is a positive parameter. Assumingt that the market price is high enough so that
firm S serves the whole market, we obtain the optimal investment condition

IS =

·
γS
1 + β

¸1/2
.

9To satisfy the second-order condition, schedule GB is steeper than schedule CI, as
shown in Figure 2. See the appendix for a proof.
10Note that for simplicity we have not explicitly imposed the condition that investment

is irreversible, i.e., IS ≥ 0. Under irreversibility, there is an asymmetry between an
increase in P and a decrease in P. While a government may be interested in increasing
its investment in response to an increase in P, it does not destroy some of its previous
investment in the case of a drop in P.
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market price is high enough so that if one distributor serves the market, it
serves the whole market (the Whole Market case).11

Production firms take the service prices θN and θS as given, and choose
the distributor with the lower distribution cost. Denote xc as the firm indif-
ferent between dealing with N or S, satisfying

θS +
bx2c
2
= θN +

b(1− xc)2
2

,

or
xc =

1

2
+
1

b
(θN − θS) . (19)

Given that xc ∈ [0, 1], three cases can be distinguished:12

• Case S: θN − θS ≥ b/2. From (19), xc = 1, with all production firms
served by distributor S.

• Case N: θS − θN ≥ b/2, implying that xc = 0, with all production
firms served by distributor N .

• Case B: |θN − θS| < b/2. In this case, 0 < xc < 1, with distributor
S serving firms located at (0, xc) while distributor N serving those at
(xc, 1).

4.1 Reaction Functions of the Distributors

Define y ≡ θN − θS, and φ(y) ≡ xc. Let us first consider distributor S, which
maximizes its profit, taking θN as given:

πS =
Z φ(y)

0
(θS − CS)dx = (θS − CS)φ(y), (20)

subject to
P − θS − b[φ(y)]2/2 ≥ 0. (21)

Condition (21), which makes sure that all production firms served by the
distributor do not have negative profits, is assumed to be not binding. The
reaction curve of distributor S is derived as follows and is illustrated in Figure
3:

Case N (region A): In this region, φ(y) = 0, and is bounded below by
the line XKL, θS = θN + (b/2), with distributor S serving no firm.

11This simplifies the analysis and guarantees interactions between the two distributors.
12In all these cases, the market price is assumed to be high enough so that no production

firms concerned make a loss.
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Case S (region B): In this region, φ(y) = 1 and is bounded above by the
line, YJGH, θS = θN − (b/2), with distributor S capturing the whole market.
Note that θS = P − b/2, the monopolistic service price, when θN ≥ P.

Case B (region D): In this region, φ(y) ∈ (0, 1), and is bounded by
lines XKL and YJGH. The reaction function in this region is obtained from
the solution to problem (20) and is given by

θS = RS(θN) =
b

4
+
1

2
[CS + θN ] . (22)

In the diagram, the line represented by (22) cuts YJGH at point G, where
θN = CS+(3/2)b. Combining the above results, we conclude that the reaction
curve of distributor is given by schedule EFGHI in Figure 3. We now have
the following interesting result:

Proposition 2 (Limit Pricing): Assume that condition (9) holds. If
distributor N charges θN so that P > θN > CS + (3/2)b, then distributor
S will charge a service price that captures the whole market for itself. This
service price is below the monopoly price.

Note that in Proposition 2, condition (9) implies that distributor S as a
monopolist will capture the whole market. If P > θN > CS + (3/2)b, the
distributor’s reaction curve is given by GH in Figure 3. The corresponding
service price charged by S is less than the monopolist price, P − b/2, but
S captures the whole market with distributor N serving no production firm.
This case is interesting as the presence of distributor N poses as a threat to
distributor S, who chooses to set a price lower than the monopolist price.
On the other hand, distributor S sets a price low enough to deter N from
entering the market.
The reaction function for distributor N can be constructed in a similar

way. If it has a segment in the interior of region D, then that segment satisfies
the following equation

θN =
b

4
+
1

2
[CN + θS] (23)

We now derive the equilibrium. We assume that both distributors take the
infrastructure in each city (and thus its service cost and that of its competi-
tor) as given, and compete in a Bertrand fashion so that they simultaneously
choose a service price. The Nash equilibrium is described by the following
proposition:

Proposition 3 (Nash equilibrium): Assume that condition (9) holds. (a)
If CN ≥ CS+(3/2)b, distributor S captures the whole market. In the subcase

9



in which CN < P, distributor S charges a service price of

θS = CN − b
2
. (24)

If CN ≥ P, distributor S will charge the monopoly price θS = P − (b/2).
(b) If CN < CS + (3/2)b, and CS < CN + (3/2)b, or more concisely,

|CN − CS| < (3/2)b, then we have an interior Nash equilibrium, satisfying
both conditions (22) and (23), and the equilibrium charges are

θ∗S =
b

2
+
1

3
(2CS + CN) , (25)

and

θ∗N =
b

2
+
1

3
(2CN + CS) , (26)

provided that P is sufficiently great so that the indifferent production firm
xc earns non-negative profit.13

(c) If CS ≥ CN +(3/2)b, distributor N captures the whole market . In the
subcase in which CS < P, distributor N charges a service price of

θN = CS − b
2
. (27)

If CS ≥ P, distributor N will charge the monopoly price θN = P − (b/2).

Remarks: The above proposition indicates that (i) distributor S will use
the limit pricing strategy if CN is below P but is sufficiently greater than
CS (precisely, CN ≥ CS + (3/2)b). If CN falls, then the limit price θS,
given by (24) will also be adjusted downwards, and (ii) in the case where
both distributors have positive market shares, a fall in CN will cause both
equilibrium charges to fall, but θS falls by less than θN .

4.2 Services Costs and Nash Equilibrium

Construct a diagram (Figure 4) in the (CN , CS) space, for a given P, which
we assume to be greater than (3/2)b. We first examine how Case S is
affected by the distributors’ service costs. In region WS, which is defined by
CN > P > CS+(3/2)b, firm S is the monopoly that serves the whole market,
and its profit is

πSM = P − CS − (b/2) = πSM(CS), (28)

13This condition requires that P ≥ θ∗S + (b/2)x2c where xc = (1/2) + (1/3)b(CN − CS)
and where θ∗S is as given above.
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where the subscript M indicates that the distributor is in effect a full mo-
nopolist. In triangle TN, which is defined by (3/2)b < CN < P , 0 < CS <
P − (3/2)b, and CS < CN − 3b/2, both distributors offer a service price less
than P , but distributor S captures the whole market by setting the limit
price θSL = CN − (b/2), thus earning the profit

πSL = θSL − CS = CN − CS − (b/2), (29)

where the subscript L indicates that the distributor is charging a limit price.
We now turn to case N. In region WN defined by CS > P > CN + (3/2)b,
firm N is the monopoly that serves the whole market, and its profit is

πNM = P − CS − (b/2) = πNM(CS). (30)

Similarly, in triangle TS defined by (3/2)b < CS < P , 0 < CN < P − (3/2)b,
and CN < CS − 3b/2, both distributors offer a service price less than P , but
distributor N captures the whole market by setting the limit price θNL =
CS − (b/2), thus earning the profit

πNL = θNL − CN = CS − CN − (b/2) > b. (31)

Finally, for case B, if the cost configuration (CN , CS) is in the region X
defined by the square {(CN , CS) : 0 ≤ CN ≤ P , 0 ≤ CS ≤ P} excluding the
two triangles TN and TS and a small region Q in the north-east corner of
this square,14 then we have a unique and interior Nash equilibrium, i.e., both
distributors have positive market shares. The market share of distributor S
at this equilibrium is

xS =
1

2
+
1

3b
[CN − CS] ,

and its Nash equilibrium profit is

πnashSI = [θS − CS]xS = 1

b

"
b

2
+
1

3
(CN − CS)

#2
, (32)

where the subscript I indicates that the equilibrium is an interior one.

14In the small region Q, the costs of both distributors are so close to P that some subset
of production firms are not served by either distributor. The lower boundary of Q is given
by the condition that the marginal production firm earns zero profit and is indifferent
between the two distributors.
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5 Stackelberg Leadership by A Distributor

In the preceding sections, it was assumed that the two distributors play a
Nash-Bertrand game, choosing their service prices simultaneously. There are,
however, some cases in which one of them can play as a Stackelberg leader.
One possible case is now described.
To describe such a possibility, let us first investigate more properties of

the distributors’ reaction curves. Consider Figure 5, which is obtained from
Figure 3, with some added details. Distributor S’s reaction function in Figure
3 is reproduced in Figure 5, and is labelled JNKH, where K is the kink. The
co-ordinates of points J, K and H are respectively (0, CS/2+b/4), (CS+3b/2,
CS+b) and (P , P−b/2). In the region in which both distributors serve some
production firms (region D in Figure 3), the profit of distributor S is given
by

πS = [θS − CS]xc = [θS − CS]
·
1

2
+
1

b
(θN − θS)

¸
. (33)

The loci of (θN , θS) that give the same profit of distributor S, which can be
called an iso-profit contour, has the slope

∂θS
∂θN

= −∂πS/∂θN
∂πS/∂θS

=
1

1− k , (34)

where

k =
b+ 2 (θN − θS)

2 [θS − CS] .

Note that the slope of an iso-profit contour at a point on line JK, part
of the distributor’s reaction curve, is infinity, implying that k = 1. This
further implies that the slope of the contour is positive (negative) above
(below) JK. In Figure 5, a Stackelberg equilibrium is depicted at point S,
where distributor N’s reaction curve LNM is tangent to distributor S’s iso-
profit curve πsS, which is higher that what distributor S can get at a Nash
equilibrium. Since the slope of distributor N’s reaction curve NM is equal to
2, k = 1/2 at point S.
Now suppose that currently the infrastructure investments by government

N is very low, making the service cost of distributor N very high, so that
distributor N chooses not to serve any production firms. So distributor S
is a monopolist and charges a service price of θmS = P − b/2. Suppose now
that government invests significantly in infrastructures, lowering distributor
N’s service cost so that its reaction curve is now represented by LNSM in
Figure 5. If both distributors play Bertrand, the equilibrium is at point N.
Distributor S will observe a considerable drop in its service price (to θnS) and
profit.
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Suppose now that, shortly before the entry of distributor N, distributor
S lowers its service price to θsS, which is lower than θmS but higher than θnS.
If distributor N is convinced that this is what distributor S is committed to,
it will choose the Stackelberg point S.
There is, however, another possible case which is less intuitive. Suppose

that the service cost faced by distributor N is in fact higher so that its
reaction curve is L̃M̃ in Figure 5. With this reaction curve, the Stackelberg
equilibrium shifts to a point like S̃. In the case shown in the diagram, point S̃
is above the horizontal line at P−b/2,meaning that anticipating the entrance
of a rival distributor S raises its service price.
Such a case might seem counter-intuitive, but can be explained intuitively.

In the present model, while distributor S captures only part of the market
after the entrance of distributor N, when it raises its service price it antici-
pates that distributor N will react with a price at a level high enough so that
distributor S will not lose a big market share. This case can also be explained
in an alternative way. When a distributor is in a monopoly situation, there
is a trade-off between profit per unit of service sold, and the number of units
of service sold. When it has a rival as a follower, the trade-off is still there,
but it is somewhat altered: under monopoly, when a firm changes its price,
it is moving along a given demand curve described by x = [(2/b)(P −θS)]

1/2,
but with the existence of a follower, when distributor S changes its price, it
is moving along a quite different demand curve: xc = (1/2)+ (1/b)[θN − θS],
where θN = θN(θS).
Of course, the Stackelberg equilibrium depends on the assumption that

distributor N is convinced that θsS is irreversible. This would be the case
if distributor S chooses a service price and spends resources on fixing and
announcing it. The more resources distributor S spends on fixing the price,
the more costly it is to change it later, and the more convincing the pricing
policy is.15 Usually the existing firm is in a better position in choosing the
service price first, meaning that distributor S, being the first in business, is
more likely to have the first mover advantage. If, however, distributor N
believes that distributor S’s chosen service price is reversible at low costs,
the more likely equilibrium is the Nash equilibrium.

A Numerical Example: This numerical example shows the possibility
that distributor S charges more in the duopoly case than in the monopoly
case. Let P = 2, CS = 0.5, CN = 1.2, and b = 1. The monopoly price
for distributor S is 1.5. At that price, it serves the whole market, and its
monopoly profit is 1. Now, consider the entry of distributor N. If S maintains

15Of course, the cost of the resources on fixing the price will come from the distributor’s
profit.
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the previous monopoly service price θS = 1.5, then N will charge θN = 1.6,
and S’s market share will fall to 0.6, and its profit will be πS = 0.6. Clearly,
S can do better by maximizing (33) where θN = θN(θS) as given by (23).
This yields θS = 1.60, and θN = 1.65, resulting in a smaller market share for
S, xc = 0.55 and a higher profit, πS = 0.605.

6 Optimal Unilateral Intervention

Assume that initially the costs are C0S and C
0
N , and the equilibrium is an

interior one, i.e., both distributors serve some production firms. Suppose
that the government of city S wants to maximize the welfare function VS by
choosing investment level IS, taking as given the amount IN . We assume
that government S first chooses a new (possibly higher) investment level,
with government N remaining passive. Both distributors take the investment
levels as given and compete in a Bertrand fashion.
Let us assume that by spending IS > 0, the cost CS will fall to a level

below C0S. This fall is represented by a function FS(IS), where FS(0) = 0,
F 0S(.) < 0, and F

00
S (.) > 0, and CS = C

0
S − FS(IS).16 The government of city

S maximizes

VS =
1

b

"
b

2
+
1

3
(CN − CS)

#2
− (1 + β)IS. (35)

The first-order condition is
dVS
dIS

= −ω(IN , I∗S)F 0S(I∗S)− (1 + β) ≤ 0, = 0 if I∗S > 0, (36)

where
ω(IN , I

∗
S) =

1

3
+
1

9b

³
C0N − FS(IN)− C0S + FS(I∗S)

´
> 0, (37)

and at an interior Nash equilibrium |CN − CS| < (3/2)b. It follows that
condition (36) is satisfied at some I∗S > 0 if |F 0(0)| > (1 + β)/ω(I 0N , 0), that
is, if the first dollar spent on investment has a very substantial marginal
effect on cost reduction. In what follows we assume that this is the case, so
that, given IN , at the optimal investment level I∗S, we have

F 0(I∗S) = −(1 + β)/ω(IN , I
∗
S). (38)

The second-order condition is
d2VS
dI2S

= −ω(IN , I∗S)F 00(I∗S)−
1

9b
[F 0(I∗S)]

2 ≡ ∆S < 0, (39)

16Notice that it is assumed that the fall in cost is independent of the existing level of
cost. A more general formulation would have C0S appear as a parameter in the function
FS .
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which is satisfied.

Proposition 4: Assume that |F 0S(0)| > (1 + β)/ω(IN , 0). Then the opti-
mal policy for the government of S is to raise taxes to invest in the city’s
infrastructure, until condition (38) is satisfied.

Remark: Because of upward sloping reaction functions, if we are considering
optimal output tax, we would get a result similar to that of Eaton and
Grossman (1986), who found that if a foreign firm and a home firm compete
in prices (and their reaction functions have positive slope) then the optimal
policy for the home government is to increase the cost of the home firm by
taxing its exports. In our model, we deal with modifying real costs, and the
optimal policy is to reduce the cost of the home firm, if the initial cost is high.
There are two features worth noting. Firstly, since the production firms that
are located on the long narrow region linking N and S are the purchasers of
the services, they are the analog of the consumers in the third market in the
Eaton-Grossman model. However, in our model, the “demand” for service
of S, given by (19), remains unchanged if both distributors slightly raise
their service prices by the same amount. This is not the case in the Eaton-
Grossman model. The second feature is that while in the Eaton-Grossman
model a dollar of subsidy reduces the cost of the home firm by a dollar,
in our model a dollar of spending in infrastructure reduces the cost of the
distributor by F 0S which is not a constant (recall that F

00
S > 0).

7 Simultaneous Government Policies

Now suppose that both cities are engaged in the infrastructure-investment
game. The governments first choose an investment level simultaneously.
Then the distributors, taking these investment levels as given, compete in
a Bertrand fashion.
For a given initial pair (C0S, C

0
N), let us find the reaction function of each

city. From (36), we obtain city S’s reaction function IS = rS(IN), with a
negative slope given by

dIS
dIN

¯̄̄̄
¯
S

≡ r0S(IN) =
1

∆S

"
F 0NF

0
S

9b

#
< 0, (40)

where ∆S is defined in (39). By condition (40), the magnitude of the slope
is less than unity if |F 0S(IS)| ≥ |F 0N(IN)|. The reaction function IS = rS(IN)
is illustrated in Figure 6. Note that there is a maximum value of city S’s
investment, as represented by the flat part AB of the reaction schedule.
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This is the optimal investment of the government when distributor S is a
monopolist.17

Similarly, for city N, the reaction function of government N is IN =
rN(IS), which satisfies

dIN
dIS

¯̄̄̄
¯
N

≡ r0N(IS) =
1

∆N

"
F 0NF

0
S

9b

#
< 0, (41)

where ∆N is defined in a similar way to ∆S above. The reaction function is
illustrated in Figure 6, with CD representing the maximum value of govern-
ment N’s investment.
In general, there is the possibility of multiple equilibria, as illustrated in

Figure 6. If the initial costs C0S and C
0
N are identical, and the functions FN(.)

and FS(.) are the same, then there exists a symmetric Nash equilibrium that
is stable, see point E3 in Figure 6. However, there may exist non-symmetric
stable equilibria, such as points E1 and E5.
In the case of multiple equilibria, it can be shown, by construction of

iso-welfare curves, Vi = constant (i = S,N), that city N prefers E5 to E3 to
E1, and similarly, city S prefers E1 to E3 to E5.
In what follows, we will restrict attention to the case where there is only

one Nash equilibrium. We assume that such equilibrium is stable. See Figure
7, where the unique Nash equilibrium is E.

8 Stackelberg Game between Cities

As explained earlier, it is possible that one of the cities, say S, develops first.
Suppose that initially city N has a very low investment in infrastructure,
such as I0N so that distributor N cannot compete with distributor S.

18 In the
absence of active investment by city N, the government of S and distributor
S reach the monopoly equilibrium as described in Section 3. This equilibrium
can be represented by a point in between A and B in Figure 7. Note that
the investment by city N that corresponds to point B, denoted by IBN in
Figure 7, is the one that will yield a service cost to distributor N equal to the
market price of the good, CN = P. With this service cost and market price,
distributor N will not want to provide any distribution service.
Suppose now that city N invests in infrastructure. What is the new equi-

librium? The reaction curve of city S is ABEF. Since city S develops earlier,
it has the first mover advantage. Note that AB is a horizontal line, showing

17Point B gives the value of IN that gives a service cost CN = P.
18In other words, we assume that CN (I0N ) > P.
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the maximum strategic investment of city S if it takes city N’s investment as
given.
If city N decides to increase its infrastructure investment, we have to

consider its reaction curve. Suppose that at a lower service cost, its reaction
curve is represented by KLMECD as shown in the diagram. The intersecting
point between the two reaction curves, point E, gives the Nash equilibrium.
To reach this point, city S has to invest IES < I0S, yielding a welfare of V̄S
to city S. Since infrastructure investment considered here is an accumulated
investment, it makes no sense to destroy some of the investment made pre-
viously. So city S will more likely keep the existing investment level. Taking
this as given, city N will react with an investment of IMN , with the equilibrium
given by point M. City S will get a welfare level higher than V̄S.
City S, however, can in general do better than point M. In Figure 7, one

of its iso-welfare contour, denoted by V̂S, touches city N’s reaction curve at
L. This is the Stackelberg point, with city S acting as the leader and city N
as the follower. Since city S has the first mover advantage, it can increase its
investment level to ILS at the time when city N is about to enter the market.
Reacting to this level, city N will choose the investment level ILN . Thus city
S successfully achieves the welfare level V̂S, which is higher than V̄S.
It is often said that a Stackelberg equilibrium is not a likely outcome in an

oligopoly market because it is difficult for agents to make credible threats.
In this case, the threat made by city S is credible because the increase in
investment is not reversible.
In the above case with the Stackelberg equilibrium at L, city N enters

the market, makes some investment, and captures part of the market. Other
cases can be considered. Consider the case in which an iso-welfare contour
of city S touches N’s reaction curve at point K or higher (instead of point L).
Starting from the monopoly case and anticipating the entrance of city N, city
S makes a preemptive move, increasing its investment to IKS . In this case, city
N will have no incentive to invest because it does not make sense to make
distributor N competitive, recalling that with its investment corresponding
to point B or K, distributor N’s service cost is at least as high as the market
price, P. This result is summarized in the following proposition:

Proposition 5 (Limit Investing): If city S has the first mover advantage,
it can increase its investment to a level at which city N responds with zero
investment. There are cases in which city S will choose to increase its invest-
ment to a level to discourage city N from helping distributor N to enter the
market.
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9 Concluding Remarks

We have modelled the rivalry between two cities, focussing on infrastructure
investment. We have shown that at the firm level, equilibrium may involve
limit pricing by a distributor. At the city level, preemptive investment by the
city that exists first is possible. Such preemptive investment could discourage
the latecomer from entering the market.
There are a few issues that could be taken up in future research. Firstly,

what is the optimal cooperative outcome, where the cooperation may be
between the two cities, at the expense of the production firms in the long
narrow strip that join them? One can also involve the welfare of the owners of
these firms as well. Secondly, cities may compete in more than one dimension.
When the model is extended to allow for this, is it possible that the non-
cooperative equilibrium may maximize, rather than minimize, the difference
between the two cities? Could it be the case that one city becomes a financial
centre while the other becomes a goods distribution centre?
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Appendix

Proof of Proposition 1: The proof of part (a) is simple and is omitted.
To prove (b), write the first-order condition (17) as

G(P, IS) ≡ π0SM(CS(IS))C
0
S(IS)− (1 + β) = 0. (42)

The second-order condition is

∂G

∂IS
= (C 0S)

2
π00SM + π0SMC

00
S,

is assumed to be negative, i.e.,

−π0SMC
00
S

C 0Sπ
00
SM

< C 0S,

or in Figure 2, curve CI is less steep than the GB curve. The response of IS
to an increase in P is obtained from (42):

dIS
dP

= − ∂G/∂P

∂G/∂IS
=

π00SMC
0
S

(C 0S)
2 π00SM + π0SMC

00
S

> 0. (43)

From (13), (14) and (43),

dxm∗

dP
=

s
3b

8(P − CS)
Ã
1− C 0S

dIS
dP

!
> 0

dθ∗S
dP

=
2

3
+
1

3
C 0S
dIS
dP
.

The sign of dθ∗S/dP is ambiguous.
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Figure 1

Monopoly: Optimal Market Size
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Monopoly: Optimal Investment
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Figure 3

Reaction Functions and Nash Equilibrium
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Figure 4

Nash Equilibrium and Cost Structures
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Figure 5

Distributor S as a Stackelberg Leader
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Nash Equilibria for Government Policies
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Port S as a Stackelberg Leader
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