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I. Introduction 
This paper tries to analyze the role of government expenditure in a growing economy 
employing the intertemporal optimizing behavior of the representative consumer.  Our 
model is closely related to Brock and Turnovsky (1981), Turnovsky and Fisher (1995), 
Turnovsky (1995), in the following sense; there exist only one kind of good which is 
used for consumption, investment or government expenditure, consumer’s instantaneous 
felicity function depends on consumption, leisure and government expenditure in the 
case of government consumption service, and in the case of public input affecting 
production on only consumption and leisure.  The representative consumer tries to 
maximize the present value of the felicity function overtime subject to the law of 
motion of capital.  However our model is different from theirs in introducing 
adjustment costs of investment explicitly.  In this sense, we owe Abel and Blanchard 
(1983)’s a lot to derive the global stability of the economy when such adjustment costs 
are taken into consideration.  Our model is a generalization of their model first in 
introducing endogenous labor supply (or leisure-labor choice), and second government 
expenditure which is included either into felicity function in the case of government 
service or into production in the case of public input.   
   Third we analyze the (not local but) global effects of government expenditure on per 
capita consumption, investment-capital ratio and per capita labor supply along 
transitional path.  More specifically we show that the increase in government 
expenditure decreases consumption, but increases both investment-capital-ratio and 
labor in both cases of government expenditures.  To our best knowledge this result is 
new.  
   In the field of macro dynamic model with and without government expenditure 
Trunovsky (1995)’s book is very comprehensive and an important contribution.  Since 
the pioneering works by Frankel and Razin (1985) most of whose contributions are 
contained in their book (1996), the role of fiscal policies in the growing economy has 
been discussed by many authors. Employing finite horizon continuous time model, 
Blanchard (1985) analyzed the role of fiscal policy.  Aschauer (1988) employed 
discrete time optimizing model of representative consumer whose felicity function 
depends on consumption, leisure and government expenditure, while the government 
expenditure affects production as well, and analyzed the effects of government 
expenditure on consumption, output and interest rate etc. in a variety of situations. 
Barro (1990) employed continuous time optimizing model where government 
expenditure affects felicity or production, and analyzed its effects on growth rates and 
saving rates with empirical analysis. 
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   Using AK model with public expenditure included into production function, Barro 
and Sala-I-Martin (1992) studied the role of tax policy in various situations. King and 
Rebelo (1990) explained the differences in growth rates based on the role of 
government expenditure and tax policy employing endogenous growth model with 
physical capital and human capital.  Deveraux and Love(1995) also analyzed the 
effects of government expenditure in the two sector endogenous growth model; among 
others. 
   In the next section we show our model.  First, we analyze the case of government 
service which affects felicity but not production.  The social planner is assumed to 
maximize the intertemporal utility, i.e., the present value of the sum of the consumer’s 
felicity function over time composed of consumption, leisure and government 
expenditure under the equilibrium market condition of the good which is used either for 
consumption, investment or government expenditure, and under the law of motion of 
capital.  There exist investment adjustment costs.  Then from the present value 
Hamiltonian we derive the first order conditions and the transversarity condition, and 
show the existence and uniqueness of the stationary state. 
   Next we show the stationary state to be (not local but) a globally stable saddle point 
(Theorem 1) where investment-capital ratio decreases as capital increases.  This is a 
generalization of Abel and Blanchard (1984).  Next we show that consumption 
increases as capital stock increases employing the same method used for 
investment-capital ratio. (Theorem 2)  Then we analyze the effects of government 
expenditure g, on investment-capital ratio z, consumption c and labor l.  Under fairly 
weak assumptions (A.1 through A.4), z and l increase while c decreases as g increases 
(Theorem 3).  This is our main contribution of this paper.  Especially the technique 
employed to prove these results can be applied for many similar cases  Next we 
analyze the case of government expenditure, which affects production but not felicity.  
We show as Theorems 4 and 5 that the characteristics of optimal path of consumption, 
investment-capital ratio and labor supply (i.e., the conclusions of Theorems 1, 2 and 3) 
remain unchanged.   
 
II. Government Expenditure in Felicity Functions 
First we discuss the social planner’s optimum. 
II.1 Social Planner’s Optimum 
Let there exist only one good which is used either for consumption, investment or 
government expenditure. Good is produced employing capital and labor.  Let 

),( lkfy =  be the labor productivity function where NKk /=  and NLl /=  being 
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respectively the per capita capital and the per capita labor, K being the capital stock. L 
being the total labor employed and N being the total hours of the population.  N is 
assumed to be equal to the total population.  Then the market equilibrium condition is 
expressed as  

 gkiiclkf +++= ))/(1(),( φ . (1)
Furthermore NCc /= , NIi /=  and NGg /=  are respectively per capita 
consumption, investment and government expenditure (=government service) where C, 
I and G are respectively total consumption, investment and government expenditure.    
    The function φ reflects the investment adjustment costs, first introduced by Eisner 
and Strotz (1963), then Lucas (1967) and Abel and Blanchard (1983) ét.al. φ is convex 
with 0)0( =φ , 0>φ  for 0/ >ki , 0'>φ , 0">φ  (from convexity) and 1)0(' =φ .  
Intuitively φ  states that given K, the investment adjustment costs increase more, the 
more investment.  Total hour N is used either for production as labor hour L or for 
leisure N-L.  Then per capita leisure is l−1 .  Here by construction 10 ≤≤ l  holds.  
The productivity function f, is assumed to be concave, homogenous of degree one, 

),(
++
lkf , i.e., 0>kf  and 0>lf , thrice continuously differentiable in (k, l), f is 

assumed to satisfy the Inada Condition, i.e., 0→kf  as +∞→k  and ∞→kf  as 

0→k  given 0>l . 
Furthermore both productive factors are indispensable for production, i.e., 

0)0,(),0( == kflf  holds for any 0>l  and 0>k . 
  The representative consumer has the felicity function  

 glcglcu log)1log(log),1,( βα +−+=−  (2)
where 0>α  and 0>β  are constant reflecting the constant elasticity of substitution 
between any two of three – consumption, leisure and government expenditure.  The 
government expenditure is included into the felicity in our first model, later it is 
included into the productivity function.  Furthermore the felicity function is seen to be 
separable.  Although this looks too much simplified and specified, yet will turn to be 
inevitable in order to obtain the definite conclusions on the characteristics of the optimal 
path.  The characteristic of this felicity function lies in that consumption, leisure and 
government expenditure are all indispensable for the consumer in the sense that level of 
utility decreases to minus infinity if any of these decreases to zero.  The law of motion 
of capital is expressed as  

 nkik −=  (3)
where k  is time rate of k, and 0>n  is the population growth rate.  (In general time 
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rate change of variable x is expressed as x .)  Then the social planner tries to 
maximize  

 dteglcu tn∫
∞ −−−

0

)(),1,( ρ  

 
with respect to c, l, k, and i subject to (1) and (3).  g is given as parameter which is not 
controlled by the social planner in our model.  Here 0=t  is the present (initial) time, 

)( n>ρ  is the intertemporal discount rate of the felicity function.  By defining the 
Hamiltonian, 

 [
] tnenki

gkiiclkfglcH
)()(

)))/(1(),((log)1log(log
−−−

+−+−−++−+=
ρλ

φξβα
     

we obtain the first order conditions; 

 ξ=c/1  (4)
 lfl ξα =− )1/(  (5)
 )'1( z⋅++= φφξλ  (6)
and  

 )'( 2zfk ⋅+−= φξρλλ  (7)
where kiz /=  being investment-capital ratio.  Then  

 α/)1( lflc −=  (8)
is obtained from (4) and (5).  The transversality condition is 

 0lim )( =−−

∞→

tn

t
ke ρλ . 

 
II. 2 Stationary State 
First we derive the stationary state.  By setting 0=k , we obtain nz =  where z  is 
the stationary value of z.  (In general stationary value of variable x is expressed as x .)  
Then from (6) and (7) by setting 0=λ , we obtain  
 )'1/()'( 2 zzfk ⋅++⋅+= φφφρ  (9)

from which )/( lkh = , the stationary value of capital labor ratio lk /  is obtained from 

)1,/(),( lkflkf kk =  where )(nφφ =  and )('' nφφ = .  Then by substituting (8) into 

(1), we obtain  

 glhnhfllhf l +++−= )1(/)1,()1()1,( φα  
and hence 

 { } { })1(/)1,()1,(//)1,( φαα +−++= hnhfhfghfl ll . (10)
Here we assume 
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A.1 ))(1()1,( Mghnhfg ≡+−< φ  
Then we obtain A.1 01 >⇔<⇔ cl  from (8).  Lastly lhk =  follows. 
 
II.3 Global Stability 
Next we show the global stability of our economy.  Although basically we follow the 
argument of Abel and Blanchard (1983), our model is more complicated than theirs 
because labor supply is endogenous in our model.  From (1) and (8), we can express l 
and c as functions of k, z and g; 

 
⎥
⎦

⎤
⎢
⎣

⎡ +⋅++++−−
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
−− dkff

dgdzzkdkzf
dc
dl

cffl
f

llk

k

lll

l

)/(
)'1())1((

/1
1

/)1/(1
φφφ

. 

Hence 

 { } Dffczfl llkkk ///))1(( ++−−= φ  (11)
 0/)'1( >⋅++= Dczklz φφ  (12)
 0/1 >= Dclg  (13)
where 

 0/)1/()1( >−−+= lll fflD α  (14)
and hence  

 ),,(
++

= gzkll . 

 { } Dzffflfc kllllkk /))1()(/)1/(1( φ+−−−+= , (15)
 { } 0/)'1(/)1/(1 <⋅++−−−= Dzkfflc lllz φφ , (16)
 { } 0//)1/(1 <−−−= Dfflc lllg , (17)
and hence 

 ),,(
−−

= gzkc . 

Here in view of (8), c is also expressed as  

 )),,(,(),( gzklkclkcc ==
−+

. 

Here we make the following assumption; 
A.2  )1/( 1−+> αθσ  
where σ  being the elasticity of substitution between capital and labor, i.e., 

ffff kllk ⋅= /σ , and θ  being the share of capital income, i.e., )1(/ <⋅= fkfkθ 1.  
A.2 is assumed through the paper. 
   Then from (3) through (8) and A.1 and A.2, we obtain the following phase diagram 

of (k, z) showing the existence of the stable saddle point path ),( gkzz
−

= . (See 
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Appendix I. 
Fig. 1 

Here the dotted lines show the saddle point path ),( gkzz
−

=  and E is the stationary 

point.  Next we show that the optimal path ),( gkzz
−

=  converges monotonically to 

the stationary point E globally.  For this we employ the following lemma;  
Lemma 1. (Poincaré-Bendixon Theorem (Hsu and Meyer (1968) Section 5-8)) 
(1) For the two dimentional autonomous differential equation system, the path 

(trajectory) must become unbounded or converge to a limit cycle or to a point. 
(2) If a limit cycle exists, then the Poincaré index N-S is 1 where N denotes the number 

of nodes, centers and forci enclosed by a limit cycle, and S denotes the number of 
saddle points enclosed by a limit cycle.    

Since the Poincaré index 1−=− SN , because the stationary point is locally a saddle 
point, the optimal path must converge to a stationary point from (1).  Hence it suffices 
to show both k and z are bounded.  First we show the boundedness of k.  From (1) and 
(3), we obtain  

 nkkfnkgiclkfnkik −≤−−⋅−−=−= )1,(),( φ . 
 

Fig. 2 
Then recalling f satisfies Inada condition, and hence observing 0<k  for kk ~

>  

where )(~
+∞<k  is the value of k such that nkkf =)1,(  holds, we obtain that k is 

bounded.  Then from (1) z is also seen to be bounded from above.  Hence we obtain 
from (1) of Lemma 1, the optimal path is globally stable, and since it is at least locally a 
saddle point path, so is also globally from the continuity of the optimal path with 
respect to its initial values2. 
 
Theorem 1  

Under A.1 and A.2, the optimal path ),( gkzz
−

= is globally a saddle point path. 

                                                                                                                                                  
1 A. 2 is satisfied for the Cobb-Douglas production function since 1=σ  holds. 
2 In Fig. 1, if the initial point is too close either to 0=z  curve or 0=k  curve then 

either +∞→z  or 0→z  as k approaches to k . Hence by continuity of the optimal 
path and its global stability there must exist initial value of (k, z), ),( 00 zk  from which 
the optimal path converges to a stationary state. 
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Optimal Path of g)c(k,c =  
Next we show the solution path of consumption c as function of k and g.  Although we 
can obtain the properties of the optimal path of ),( gkcc =  utilyzing the results of the 

optimal path of ),( gkzz =  to some extent, i.e., ),( gkcc
+

=  holds as far as 

zfk )1( φ+>  holds as shown by Abel and Blanchard (1983) 3 , the property of 

),( gkcc
+

=  through entire path is not derived without analyzing this in (k, c) plane as 

shown below. 
Fig 3 

The derivation of the optimal path ),( gkcc =  is carried out by the similar method 
as ),( gkzz = .  (See Appendix II for detail.) 

   As shown in Fig. 3, the optimal path of ),( gkcc
+

=  is a stable saddle point path 

shown by the dotted lines toward the stationary point E where mk  and Mk  are defined 

implicitly by 0== ck , i.e., )),((1)(,()),(,~,( gkzgkzgklkf φ+=  where ),,( gzkll =  

),(~)),,(,( gklggkzkl == .  Noting that stationary point E is locally a saddle point, and 

k is bounded, and hence c is bounded from (1), we can employ Poincaré-Bendixon 
Theorem once again, and derive;  
 
Theorem 2 

Under A.1 and A.2, the optimal path ),( gkcc
+

=  is globally a stable saddle point path. 

Next we investigate the effects of the change in government expenditure on z and c. 
 
II. 4 Effects of Government Expenditure  
Here we show 

 ),(
−

= gkcc , ),(
+

= gkzz  and ),(
+

= gkll  

                                                  
3 The iso consumption plus government expenditure curve +−=+ 1(),( ilkfgc  

constki =))/(φ , is shown to be upper sloped as far as zfk )1( φ+≥  holds in (k, z) plane.  
From this and ),( gkzz

−
= , we obtain ),( gkcc

+
=  as far as zfk )1( φ+≥  holds.  
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to hold locally, and then generalize these into global properties.  First we show 

),(
+

= gkzz  to hold globally.  From (9), )/( lkh =  is seen to be independent of g.  

Then from (10) and (8) 
 ↓⇔↑⇔↑ clg  

in view of )(),( hflkf ll = .  Then k  increases by the same rate as l .  This implies 

in Fig. 1, 0=z  curve shifts to the right around the stationary state E, and hence 

),( gkzz =  curve increases upward around E, or ),(
+

= gkzz  to hold locally around E.  

Next we show ),(
−

= gkcc .  0=k  curve is shown to be 

 gnknklkfc −−+−= )1(),( φ  

where 0=k  if and only if nz = .  Given k, increases in g lowers ),( lkfc −  which 

is made possible by increasing l and decreasing c from (13) and (17).  This implies that 
0=k  curve shifts down in Fig. 3 as a results of increases in g.  Here recalling c  to 

decrease and k  to increase we observe that ),( gkcc =  curve shifts down around E, 

implying ),(
−

= gkcc  to hold locally.   Lastly we observe ),( gkll =  to hold locally 

from (8), (18) implies ),(
−

= lkcc  )),(,( gklkc=  , and hence ),(
+

= gkll .   Next we 

generalize the above results in to the global ones.  
From (4), (6), (7), (15) and (16), we obtain 

 klzkElzkBzlzkA ),,(),,(),,( +=  (18)
Where 

 { } 0/)'1(/)1/(1)'1/()"'2(),,( >++−−++++= cDzkfflzzlzkA lll φφφφφφ  (19)
 )'1/()'(/),,( 2 zzflzkB k φφφρλλ +++−==  (20)
and  

 { } cDzffflflzkE kllllk /))1()(/)1/(1(),,( φ+−−−+=  (21)
(See Appendix I for derivation of the above equations.) 
(3) is expressed as  

 ),( zkFnkkzk =−= . (3)
Then 

 { } ),,(),,(/))(,,(),,( lzkGlzkAnkzklzkElzkBz =−+=  
                     ),,(~)),,(,,( gzkGgzklzkG == . 

(22)
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Recalling ),,( gzkll =  and ),( lkcc = , in view of (8) we can see that the change in k 
and z caused by the change in g is channeled through change in l only.  To obtain the 
effects on z and k of g, we assume 

A.3  Given (k, z), 0/),,(~
≠∂∂ ggzkG . 

This is equivalent to 0/)),,(,,( ≠∂∂ lgzklzkG  given (k, z) in view of ),,( gzkl = . 
Now we show 
 
Theorem 3 

Under A.1 through A.3, ),(
+

= gkzz , ),(
−

= gkcc  and ),(
+

= gkll  holds globally. 

Proof 
Let the solution path (k, z) of (3) and (22) converging to E as ∞→t  be )(tkk = , 

),( gkzz = .  For a contradiction we assume there exist )ˆ,ˆ( zk , 0tt = , g1 and g2 

)( 21 gg <  such that  

)(ˆ
0tkk = , )),(()),((ˆ 2010 gtkzgtkzz ==  with 21 gg < .  That is the two solution paths 

)),(,( 1gkzk  and )),(,( 2gkzk  meet at )ˆ,ˆ( zk .  Then by the mean value theorem 

there exists ),( 210 ggg ∈  such that 0/),ˆ( 0 =∂∂ ggkz . 

   By partially differentiating (22) with respect to g, we obtain  

 gGggkzzGgtkkGggkzt ∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂⋅∂∂ /~/),(/~/)(/~/),(/ , 

which is equivalent to  

 gGggkzzGggkzt ∂∂+∂∂⋅∂∂=∂∂⋅∂∂ /~/),(/~/),(/ . 

Now from the above equation, we obtain 

 gGggkzt ∂∂=∂∂⋅∂∂= /~/),ˆ(/0 0 , 

contradicting A.3. 
Hence we obtain the two solution paths never meet.  This further implies that if 

0/),( >∂∂ ggkz  near E holds, it also holds globally.  ),(
−

= gkcc  follows from 
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),(
−

= lkcc , ),,(
++

= gzkll  and ),(
+

= gkzz .  ),(
+

= gkll  follows from ),(
−+

= ckll  and 

),(
−

= gkcc .                                                       ■ 

It is interesting to note that under fairly mild condition of A.3, the global effects of g on 
z is derived.  Furthermore to our best knowledge, these effects are new.   

Theorem 3 states interesting results. Given capital stock k, while the increase in 
government expenditure increases accumulation rate of capital, kk / , it also decreases 
the consumption level.  These results seem opposite to the well known short-run 
results about the effects of government expenditure on accumulation rate and 
consumption – i.e., increase in g results in decrease in investment and increase in 
consumption.  
 
III. Government Expenditure as a Productive Input 
Here we investigate the role of government expenditure which affects not consumption 
but production as a productive input.  The market equilibrium condition of good is 
expressed as  

 gkiicglkf +++= ))/(1(),,( φ . (1)’
Here per capita government expenditure g is included in the productivity function f.  
We assume f is concave, thrice continuously differentiable in (k, l, g) and homogenous 
of degree one in (k, l).  Further 0=f  if 0=⋅⋅ glk  holds. (That is, all of k, l and g 

are indispensable for production.)   0>gf  and from concavity 0<ggf  hold.  We 

assume further lkf  and 0>lgf .  The felicity function of the representative consumer 

is simplified as  

 )1log(log)1,( lclcu −+=− α  (2)’
where 0>α  being constant. 
   The law of motion of capital is the same as before: 

 nkik −=  (3)
 
The Social Planner’s Optimum 
The social planner maximizes  

 ∫
∞ −−−

0

)()1,( dtelcu tnρ  

with respect to c, l, k and i subject to (1)’ and (3).  By defining the Hamiltonian  
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 { }[ ] tnenkigkiicglkflcH )()()/(1(),,()1log(log −−−+−+−−+−+= ρλφξα , 
we obtain the first order conditions, 

 ξ=c/1 , (4)
 lfl ξα =− )1/( , (5)
 )'1( zφφξλ ++=  (6)
and  

 )'( 2zfk ⋅+−= φξρλλ  (7)
and the transversality codition  

 0lim )( =−−

∞→

tn

t
ke ρλ . 

(4) and (5) imply 

 α/)1( lflc −=  (8)
as before.   
   (1)’ and (8) imply 

 gkzglkflglkf l +++−= )1(/),,()1(),,( φα . (1)”
Recalling f is homogenous of degree one in (k, l) and hence ),1,(),,( ghfglkf kk = , we 
observe from (1)” 

 { } { })1(/),1,(),1,(//),1,( φαα +−++= hzghfghfgghfl ll . 

Then ll =  is derived from this equation.   
 
Existence and Uniqueness of the Stationary State 
By letting 0=k  and 0=λ , we obtain as before, nz = , and 
 )/1/()'),,(( 2 zzglkfk φφφρ +++= . (9’)
 (9)’ implicitly defines hlkh == )/(  with help of nz = .  Lastly lhk ⋅=  follows.  
Here we assume  
A. 1’  Mgg ~<   
is retained where Mgg ~=  is implicitly defined by )1(),1,( φ+−= knghfg .  Fig. 4 
illustrates A.1’.  
 

Fig 4 
 
The intersection of curve ),1,( ghf  and straight line )1( φ++ hng   defines Mgg ~= .   
Under A. 1’ we observe for  

 { } { })1(/),1,(),1,(//),1,( φαα +−++= hnghfghfgghfl ll  (10)’
which is derived from the above equation, 
 A. 1’ 01 >⇔<⇔ cl . 
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Next we assume 

A.3’ 1),,( <glkf g . 

That is, at the stationary state, gf−1 , the net resource withdrawal effects, which are 

direct resource costs of a unit of infrastructure government expenditure relative its 
direct benefit of increasing production is positive4.  In the different context, as 

explained fully later in A. 5’, gf>1  seems plausible assumption since this allows the 

existence of positive c and z if g is decreases from its maximum level Mg~ . 
Under A. 3’, the increase in government expenditure increases capital-labor ratio k at 
the stationary state, i.e., 0/ >∂∂ gk as shown below. 
From (9)’ and (1)”, we obtain that l and k are expressed as functions of g at the 
stationary state;  

 

.
)/)1(1(

)1(/)1(/)1()/11(

⎥
⎦

⎤
⎢
⎣

⎡
−+−

−

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+−−−−−+

dgflf
dgf

kd
ld

nflf
f

flf
f

glg

gl

lkk

kk

lll

lk

α

φααα
 

This implies ),( gzkk =  and ),( gzll =  with  

 { } 0~//)1()/11(()/)1(1(/ >−−++−+−=∂∂ Dflffflffgk lllglglglk ααα  (24)
and  

 { } 0~/)1())1((/ <−++−−=∂∂ Dffnffgk gglklk φ  (25)
where  

 0)/11())1((~ >+−+−= αφ lkkklk ffnffD  
from the homogeneity of degree one of f in (k, l) and 0)1( >+− φnfk  at the stationary 
state (To obtain this, we can employ the same arguments as the case of government 
service affecting felicity function.  So, see Appendix I, for this inequality.) 
In view of Fig. 4, A. 3’ is seen to be equal to mgg ~>  where mg~  is the minimal level 

of government expenditure such that ),,(1 glkf g=  holds.  Then from A.3’, it is seen 

that )~,~( Mm ggg∈ .  Next we show the global stability of the economy.   
 
Global Stability  
Basically we follow the former arguments.  From (1)’ and (8), l and c are expressed as 
                                                  

4 We owe this interpretation to Turnovsky and Fisher (1995). 
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functions of k, z and g;  

 .
)/()/(

)1()'1()1((
/1/)1/(1
1

⎥
⎦

⎤
⎢
⎣

⎡
+

−+++++−−
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−−

−
dgffdkff

dgfdzzkdkzf
dc
dl

cffl
f

lglllk

gk

lll

l φφφ

 
Hence  

 { } Dffczfl llkkk ///))1(( ++−−= φ , (11)’
 0/)'1( >++= Dczklz φφ , (12)’
and   
 { } Dffcfl lglgg ///)1( +−=  (13)’
where  

 0/)1/()1( >−−+= lll fflD α  (14)’
and hence 

 ),,( gzkll
+

= . 

 { } Dzffflfc kllllkk /))1()(/)1/(1( φ+−−−+= , (15)’
 { } 0/)'1(/)1/(1 <++−−−= Dzkfflc lllz φφ , (16)’
and   
 { } Dffflfc gllllgg /)/)1/(1)(1( +−−−−= . (17)’

and hence ),,( gzkcc
−

= .  Again, in view of (8) c is expressed also as 

 )),,,(,(),,( ggzklkcglkcc ==
−+

. 

We retain A. 2; 
A. 2 )1/( 1−+> αθσ . 
Then from (3) though (8), and A. 1’ and A. 2, we obtain the same phase diagram of (k,z) , 

showing the existence of the stable saddle point path ),( gkzz
−

= , by following exactly 

the same arguments as in Appendix I.  Here the boundedness of k follows from 

nkgkfnkigcglkfk M −≤−⋅−−−= )~,1,(),,( φ  and 0)~,1,( <− nkgkf M  as k 

becomes large in view of Inada condition of f.  Then we obtain the optimal path of 

),( kc  with ),( gkcc
+

=  as a saddle point path again employing the same arguments as 

the one in Appendix II.  In short,  
 
Theorem 4 
Under A. 1’ and A. 2, the optimal path of ),,( zkc  is globally stable saddle point path 
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with ),( gkzz
−

=  and ),( gkcc
+

= . 

Effects of Government Expenditure 

First we recall from (9)’, ↑↑↔ hg  from ),1,( ghfk  being constant,  

???  ↓↔ l  and ↑k  from (23) and (24) ↑↔ c  ????? 

from (8). (in view of ),1,( ghfl , increases both in h  and g increases lf  but 

decreases l , and hence c  increases from (8).)  ???????????? 

   Next we can show ),(
+

= gkzz  to hold locally around E just as the case of 

government expenditure in the felicity function. 
 
Now we investigate the global effects of the change in government expenditure on 
consumption c and investment-capital ratio z.  As before we obtain from (4), (6), (7), 
(15)’ and (16)’ 

 kgzkEgzkBzgzkA ),,(~),,(~),,(~
+=  (18)’

where 

 
{ } ),,(~),,(/)'1(),,(/),,()1/(1

)'1/()"'2()),,,(,,(),,(~

gzkDglkczkglkfglkfl

zzggzklzkAgzkA

lll ⋅++−−

++++==

φφ

φφφφ

 

(19)’

 
)'1/()')),,,(,((/

)),,,(,,(),,(~

2 zzggzklkf
ggzklzkBgzkB

k φφφρλλ +++−=

==
 (20)’

 {
} ),,(~),,(/)1(),,())(,,(/),,(

)1/(1(),,()),,(,,(),,(~

gzkDglkczglkfglkfglkf

lglkfgzklzkEgzkE

klll

lk

⋅+−

−−+==

φ
 

(21)’

and  
 ),,(/),,()1/()1()),,(,,(),,(~ glkfglkflgzklzkDgzkD lll−−+== α . 
(3) is expressed as  

 nkkzk −= . (3)
Then employing the system of two ordinary differential equations (3) and 

 { } ),,(~),,(~/))(,,(~),,(~ gzkHgzkAnkzkgzkEgzkBz ≡−+=  (22)’
we can investigate the effects of change in g.  Here we recall if g is contained in 

)~,~( Mm gg  with +∞<<< Mm gg ~~0  then both 0z  and 0c  are positive. 
Then employing the same arguments as the one of government expenditure in felicity 

function, we can again see that ),( gkzz =  and ),(~ gkll = )),,(,( ggkzkl=  and 
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)),,(~,(),(~ ggklkcgkcc ==  are continuously differentiable in ),( gk . 

Next we assume  

A. 4’ Given ),( zk   0/),,(~ ≠∂∂ ggzkH    

A. 5’ )/)1/(1)(1( llgglg fflff −−−<   )~,~( Mm ggg∈ , and ???? 

A 5’ is equivalent with 0<gc  from (13)7.  That is, given k and z, an increase in 

lowers c.    
Recalling 0/ >∂∂ gk , we obtain 
 
Theorem 5 

(1) Under A.1’ through A.4’, ),(
+

= gkzz  hold globally. 

(2) Under A.1’ through A.5’, ),(
−

= gkcc  and ),(
+

= gkll  hold globally. 

???  If the production function is specified to be of Cobb-Douglas, i.e., =),,( glkf  
τµµ glk −1  where 1,0 << τµ . 

Then A.5’ is reduced to  

 )1( llf g −+< µ  )1(<  )1(<  ??? 

i.e., the marginal product of government expenditure fg is less than )1( ll −+ µ .  On 

necessary condition for A.5’ to hold is 1<gf .  Recalling the market equilibrium 

condition (1)’, in case of 0=c , it is reduced to gkciglkf i ++= ))/1(),,( φ .  Given k, 

l and i, this equation gives the maximum level of g.  If 1<gf  holds, then by reducing 

the level of g from this maximum level, it is possible to obtain positive c and z, a natural 
plausible condition. 
 
Proof 
(See Appendix III.) 
 
IV. Concluding Remarks 
This paper analyzes the role of government expenditure in the dynamic optimization 
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model with investment adjustment costs for both cases of government consumption 
service and public input.  The felicity function is of general type so that consumption, 
leisure and government expenditure are included as an arguments in the function in the 
former case of government consumption service, but in the latter case of public import, 
only consumption and leisure are included into felicity function, although it is at the 
same time, specified to be additive and logarithmic in each argument for both cases.  
We can immediately generalize our model into the case where the government 
expenditure affects both consumption and production. 
   Also we note that these does not exist an optimal level of government expenditure g 
which solves social planners’ maximization problem in either case of g – g in the 
felicity function or g in the production function.  In fact if such g ever exists, it causes 
time ???(dynamic) inconsistency.      
   Once thing?? we did not analyze here is the effects of anticipated change in g in the 
middle of transitional period.  Although our results can be readily applied to the 
unanticipated change in g – social planners solves maximization problem twice (once in 
the beginning and next at the time of change in g), in general the solution path (c, k, z) 
of the anticipated change are expected to shift at the ime of change, we leave this to as 
our next task. 
   Our stress is on the global nature of the optimal path of investment capital ratio z 
and consumption c as functions of capital stock and government expenditure.  
Especially the global effects of government expenditure on these variables are derived 
from rather weak assumption A. 3 or A. 4 – i.e., the sgn of the partial derivative of 
RHS of the differential equation of z  with respect to g does not change.   

Although it is common to derive the negative eigen values of the coefficient matrix 
of the system of ordinary equations by linearlizing around the stationary state, and then 
to predict the effects of government expenditure g by partially differentiating these 
eigen values with respect to g, this conventional method is confined only to the local 
analysis even if we can manage to derive the signs explicitly.  (In our model the partial 
differentiation of eigen values seems extremely tedious and any definite sign seem 
unobtainable.)  Hopefully our predictive method of the effects of government 
expenditure can be readily applicable in many similar models. 
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Appendix I 
From (6) and (7), we obtain  

 )'1/()'(/ 2 zzfk ⋅++⋅+−= φφφρλλ . (A-1)
From (6), it follows that  

 zzz 1)'1)("'2(// −++⋅++= φφφφξξλλ . (A-2)
From (4), (14), and (15), we observe 

 czckccc zk /)(// +−=−=ξξ . (A-3)
Hence from (A-2) and (A-3) 

 { }[ ]zcDzkfflzz lll /)'1(/)1/(1)'1/()"'2( φφφφφφ ++−−++++  

{ } kcDzffflf kllllk
1)())1()(/)1/(1(/ −+−−−++= φλλ . (A-4)

Let 

 { } 0/)'1(/)1/(1)'1/()"'2(),,( >++−−++++= cDzkfflzzlzkA lll φφφφφφ  

  (A-5)
 )'1/()'(/),,( 2 zzflzkB k φφφρλλ +++−== , (A-6)
and  

 { } cDzffflflzkE kllllk /))1()(/)1/(1(),,( φ+−−−+= . (A-7)
Then (A-4) or 

 klzkElzkBzlzkA ),,(),,(),,( +=  (A-8)
and  

 nkzkk −=  (3)
constitute the system of ordinary differential equations in (k, z) in view of ),,( gzkll = . 
   Here we investigate the slope of 0)1( =+− φzfk  curve. 
 
The slope of 0)1( =+− φzfk  curve 
By total differentiation of 0)1( =+− φzfk , we obtain  
 dzzlfdklff zklkklkk )'1()( φφ +++−=+ . 
Here from (10) along 0)1( =+− φzfk ,  

 )sgn()sgn( 2
kllkkkklkk fDfflff +=+  

     ))/)1/(1/(sgn( 2
kllllllkk ffflcfff +−−+=  (from (13)) 

     0))1/(1/(sgn( <−+= lcfff llkk  
(A-9)

from 02 =− klllkk fff . 

Next, from (11), 

 )sgn()'1sgn( Dckfzlf klzkl +−=+++− φφ  

        
)/)1/(sgn( llllkl fcflcfkf −−++−=   (from (13)) 
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      )/)1/(sgn( lkllkl lfkcflcfkf +−++−=  (from )0( =+ lfkf llkl  
      [ ]α/))(/(sgn llllkl fflfclfkf ++−=  (from (8)) 
      [ ]llkl fglfkf )1()/(sgn 1−++−= α   

(along 0)1( =+− φzfk , 0=++− gclfl  follows from (1)) 
[ ]lk fglfkf )1()/(sgn 11 −− ++⋅−= ασ   

(from the definition of ffff kllk /=σ ) 
{ }[ ]1)1(/)1(/sgn 11 −+++−= −− lglg αααθσ  (from fkfk /=θ , 

and )1)1/(( −+= lgfl αα  derived from gclfl +=  and 
α/)1( lflc −=  (8)) 

{ }[ ]1)1(/)1(sgn 11 −+++−= −− ll αααθα . 
Here observing for { } 01)1(/)( >−+= lll αϕ  ( 0)( >lϕ  follows from 

0)1)1/(( >−+= lgfl αα ) and { } 01)1(/1)(' 2 <−+−= ll αϕ  holds and hence  

{ } 1/1)1(/ =>−+ αααα ll .  We can conclude { }[ ] 01)1(/)1(sgn 11 >−+++− −− ll αααθσ  
if { }1)1(/)1( 11 −+++ −− ll αααθσ  01 11 >++−> −− αθσ  or )1/( 1−+> αθσ , i.e., A.2 
holds.  Hence the slope of the curve  

0)1( =+− φzfk , 0/
0)1(
<

=+− φzfk
kddz  under A. 2. 

 

F. Intersection of 0=λ  curve and 0)1( =+− φzfk  curve  

                                Fig. A. 1 

Next we investigate the intersection of 0=λ  curve and 0)1( =+− φzfk  curve, from 

(A-6). 

 2')'1(0 zfz k φφφρλ +=++⇔= . 

Hence at their intersection 

 22 ')1(')'1( zzzfz k φφφφφρ ++=+=++  (A-10)
or 

 0)'1)(( =++− zz φφρ  

must follow.  This shows that two curves intersect at z=ρ .  Denoting F to be the 

point of intersection, we observe 0=λ  curve is positively sloped at F.  In fact, by 

totally differentiating 2')'1( zfz k φφφρ +=++ , we obtain  

 { } dklffdzzzlfz kklkkzkl )()'2"()"'2( 2 +=+−−+ φφφφρ . 
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Here 0<+ kklkk lff  from (A-9).  At F, we observe  

 
.0/)'1(

)'2"(/)'1()"'2(

)'2"()"'2(
2

2

zfromDczkf
zzDczkfz

zzlfz

kl

kl

zkl

=<++−=
+−++−+=

+−−+

ρφφ
φφφφφφρ

φφφφρ

 

Hence the slope of 0=λ  curve is positive at F, showing that the two curves intersect 
only at F.  Although the slope of 0=λ  in general is indefinite, recalling that this 

curve intersects with )0( == knz  horizontal line at the stationary point E with the 

slope never becoming flat because { +−+−+= 1()"'2)((/)(/ kfzzlffdkdz klkklkk φφρ  
} 0)' ≠+ zφφ , never intersect with 0)1( =+− φzfk  curve other than at point F, and 

hence the curve 0=λ  is drawn as shown in Fig. A. 1, we obtain that the positive 
orthant of (k, z) plane is divided into seven regions (region I through region VII as 

drawn in Fig. A. 1) by three lines 0=k , 0=λ  and 0)1( =+− φzfk . 

Derivation of 0=z  curve 
Table A.1 

 I II III IV V VI VII 
λ  + – – + – + + 
k  + + + + – – – 

)1( φ+− zfk  – – + + + + – 
z  ? – ? + – ? ＋ 

Now we derive 0=z  curve.  Table A. 1 shows how λssgn , k , )1( φ+− zfk  and 

hence z  are determined in seven regions, λ  is positive (negative) on the right (left) 
hand side of this curve, so λ  is positive in I, IV, VI and VII, and negative II, III and V.  

k  is positive (negative) above (below) the horizontal curve )( nz = , and hence k  is 

positive in I, II, III and IV, and negative in V, VI and VII.  Lastly )1( φ+− zfk  is 
positive (negative) on the left (right) and below (above) this curve.  Hence 

)1( φ+− zfk  is positive in III, IV, V and VI, and negative in I, II and VII.  In equation 
(A-8), recalling 0),,( >lzkA  always and 0),,( >lzkE  if and only if 0)1( >+− φzfk , 
we obtain zsgn  in each region from (A-8) as shown in Table A. 1.  Since 0>z  in 
IV and VII, and 0<z  in II and V, and 0=z  curve must pass through the stationary 
point E, 0=z  curve is seen to path through regions III and VI, with 0>z  ( 0<z ) 
above (below) 0=z  curve as shown Fig. A. 1. 
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Appendix II 
 
First we derive l and z as functions of c and k from (1) and (8).  (8) implies  

 ),(
−+

= ckll  

with 

 0))1(/()1( >−−−= llllkk flffll  (A-11)
and  

 0))1/(( <−−= lllc ffll α . (A-12)
Then from (1), (A-11) and (A-12), 

),,(
−−

= gckzz  

with  

 )'1(/))1(( zkzlffz klkk ⋅+++−+= φφφ , (A-13)
 0)'1(/)1( <⋅++−= zklfz clc φφ , (A-14)
and 

 0)'1(/1 <⋅++−= zkzg φφ . (A-15)
Employing (A-2) and (A-3), we obtain  

 zzzcc 1)'1)("'2(/// −++++−=−= φφφφλλξξ  
    )()'1)("'2(/ 1 czkzzz ck +++++−= −φφφφλλ , 

 

and hence from (A-13) and (A-14) 

 { } klkc lffzczzzc +++−=+++− − )("'2(/)'1)("'2(/1 1 φφλλφφφφ  

                     kzkz 21 )'1())1( −− +++− φφφ . (A-16)
Here 

 )'1/()'()),(),,(,(/ 2 zzfcklckzkB k φφφρλλ +++−== . (A-6) 
Then (A-16) and  

 knckzk )),(( −=  (3)
constitute the system of ordinary differential equations in (k, c) – in view of ),( ckzz = . 
 
The slope of 0)1( =+− φzfk  curve in (k, c) plane 
By totally differentiating 0)1( =+− φzfk , we obtain 
 { } { }dczzlfdkzzlff ccklkkklkk )'1()'1( φφφφ +++−=++−+ . 
Here from (A-11) and (A-13) we obtain  

 { }kkklkk zzlff )'1(sgn φφ ++−+  
   { }kzlffflfflff klklllklklkk /))1(())1(/()1(sgn φ+−+−−−−+=  

   { }))1((/)1(())1(/()1(sgn 2
lllklllllklkk flfkflfflfflf −−−−−−−+=  
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                      (from 0)1( =+− φzfk ) 

   { }))1()1())1((sgn 2
lklkllllkk flfflkflfkf −−−+−−=  

  ))1(sgn( lkkk flkf −−=   (from 02 =− klllkk fff ) 
  )sgn( lkf−=  (from 0=+ lkkk lfkf ) 0<  .     

(A-17)

Next, we observe from (A-12) and (A-14) 

 { }cckl zzlf )'1(sgn φφ +++−  
{ }klffflf cllllkl /)1())1/(((sgn −+−−−= α    

      { }[ ]kfflffflf lllllllkl /)1))1/(())1/((sgn −−−+−−−= αα  
{ }llllkl flffkf )1(sgn −+−−= αα  (from )0)1( <−− lll ffl  

      { }lkl fflklk )1()/)1((sgn +−−−= αα  (from lkff lkll /−= ) 
      { }llk fffflklk )1(/)/)1((sgn 1 +−−−= − ασα  

(from ffff kllk /=σ )  
{ } 0)1()/)1((sgn 1 <+−−−= − αθσα ll   (from fkfk /=θ ) 

(A-18)

if 1)/)1(( 1 +<−− − αθσα ll .  Noting θασθσα 11)/)1(( −− <−− ll , we obtain (A-18) 
holds if 11 +<− αθασ , or  

A. 2  )1/( 1−+> αθσ .  Hence the slope of 0)1( =+− φzfk  in (k, c) plane 

0/ 0)1( >=+− φzfk
dkdc  under A. 2. 

Fig. A. 2 

Derivation of 0=k (i.e., nz = ) curve 
Now we investigate 0=k (i.e., nz = ) curve in (k, c) plane.  First we consider its 

intersection with the horizontal axis (i.e., 0=c ).  Then (1) is reduced to  
 gnklkf ++= )1(),( φ . 
Furthermore (8) implies 1=l .  In fact, although 0=c  also holds if 0=lf , i.e., 

0/ →lk  or 0→k , 0→k  would imply 0),( →lkf , contradicting 0>= nz .  

Hence 10 =⇔= lc , and 100 <<⇔> lc . 
Then  

 gnkkf ++= )1()1,( φ  (A-19)
must follow.  Here from A. 3, there exist two k’s, mk  and Mk  such that (A-19) hold.  

Recalling nckzzk ==⇔= ),(0 ,  

 )'1(/))1(( zkzlffz klkk φφφ +++−+=  (A-13)
and  

 0<cz , (A-14)
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we observe 0/ 0>=kdkdc  if 0)1( >+− φzfk  (i.e., on the left and upper side of 

0)1( =+− φzfk curve from (A-17)) holds.  Then 0=k  curve is derived as shown in 

Fig. A. 2.  Here 0=k  curve intersects with 0)1( =+− φzfk  when 0/ 0>=kdkdc  

holds.   
 
The Derivation of 0/ =λλ  curve 
The slope of 0/ =λλ  curve is obtained by totally differentiating )'1( zφφρ ++  

0)'( 2 =+− zfk φ  obtained from (A-6); 

 { } { } 0)"'2)(()"'2)(( =+−+−++−+−− dczzzlfdkzzzlff ccklkkklkk φφρφφρ  
(A-20) 

We observe 0)'()'1( 2 =+−++ zfz k φφφρ  and 0)1( =+− φzfk  holds if and only if 

z=ρ , i.e., 0/ =λλ  curve and 0)1( =+− φzfk  curve intersect at the point where 

z=ρ  holds.  As shown in Fig. A. 2, z=ρ  curve is a dotted line below nz =  
curve.  And these three curves intersect at point F.  Next we observe that although the 
slope of λλ /  is not definite, it is negative at F.  In fact (A-20) is reduced to  
 0)( =−+− dclfdklff cklkklkk  
at F.  Here 0<cl  from (A-12), and from (A-10)  

{ }))1(/()1(sgn)sgn( lllklklkkkklkk flfflfflff −−−+=+  

{ }klkllllkk flfflff )1())1((sgn −+−−=  (from 02 =− klllkk fff ) 

0)sgn( <= lkk ff . 
 
Derivation of 0=c  curve 
E is the stationary point at which both 0=k  and 0/ =λλ  curves, (and hence 0=c  

curve from (A-16)) intersect.  λk  is determined by )'1/()')1,(( 2 zzkfkk φφφρ +++=  

(i.e., 0/ =λλ ) and kzgkf )1()1,( φ++= , and Nk  is by 0)1()1,( =+− zkfk φ  and 

kzgkf )1()1,( φ++= .  Then the positive orthant of (k, c) plane is divided into seven 



 23

regions I through VII, by the three curves 0=k , 0/ =λλ  and 0)1( =+− φzfk .  As 

in Appendix I, we now investigate the sgns of these curves in respective regions as 
shown in Table A. 2. 

Table A. 2 
 

 I II III IV V VI VII 
λ  + + – + – + – 
k  – – – + + + + 

)1( φ+− zfk  – + + + + – – 
c  ? – ? ? + ? ? 

 
Now in (A-16), observing that the coefficient of c  is positive from (A-14), and the 

coefficient of k  is also positive if 0)1( >+− φzfk  from (A-11) and (A-16), we can 

see that 0sgn <c  in II and 0sgn >c  in V, while csgn  is indeterminate in other 
regions.  Finally recalling that 0=c  curve must path through E, we can derive 0=c  
as shown in Fig. A. 2. 
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Appendix I 
 
Strict Concavity of the value function W(k, k*) , 
Proof8Strict concavity of cw, c and c* in (k, k*). 
Let  
 [ ] dtegcugcuggkkW tn

iicckk

)(

*,*,,*,,00 *)*,(),(max*),*,,( −−∫ += ρβ  (A-1)

and  
 [ ] dtegcugcuggkkW tn

iicckk

)(

*',',*',',*','00 *),*'(),'(max*),,*','( −−∫ += ρβ  (A-1)*

and  
 { } [ ] dtegcugcucciikk tn

t
)(

0 *)*,(),(maxarg*),*,*,,( −−∞

= ∫ += ρβ  (A-2)

 { } [ ] dtegcugcucciikk tn
t

)(
0 *),*'(),'(maxarg)*','*',',*','( −−∞

= ∫ += ρβ  

                

(A-2)* 

Further let 
 [ ] *)*,(),(*)*,(),(max*),*,,(

*,
gcugcugcugcukkkkJ

cc
ββ +=+=  (A-3)

and  
 [ ] *),*'(),'(*),*'(),'(max)*',',*','(

*','
gcugcugcugcukkkkJ

cc
ββ +=+= . (A-3)*

Here 
 ****)()( ggiicckfkf +++++=+  (A-4)
and 
 **''*'')*'()'( ggiicckfkf +++++=+  (A-4)*
hold by definition.  We want to show 
 )*',',*','()1(*),*,,(*),*,,( kkkkJkkkkJkkkkJ λλλλλλ −+>  (A-5)

for any λ  with 10 << λ  where )*','(*),( kkkk ≠ ,  ')1( kkk λλλ −+= , 

*')1(** kkk λλλ −+= , ')1( kkk λλλ −+=  and *')1(** kkk λλλ −+= , and thereby the 

strict concavity of c and c* as functions of k and k*.  From (A-4) and (A-4)*, we observe 
when )*','(*),( kkkk ≠  holds,  

 *)()()*'()1(*)()'()1()( λλλλλλ kfkfkfkfkfkf +<−++−+  

and hence 
 *)()(*** λλλλλλ kfkfggiicc +<+++++ . (A-6)
(The subscript λ  denotes the linear combination of the variables x and x’ with 

                                                  
8 We follow Brock and Scheinkman (1977) for the following arguments. 
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')1( xxx λλλ −+= .  Furthermore from (1) and (1)*, we obtain  

 λλ δφλλφ knkzkzk )(')'()1()( +−−+=  (A-7)

and  
 *)(*')*'()1(**)(* λλ δφλλφ knkzkzk +−−+=  (A-7)*
Let λλµ kk /=  and λλµ kk /')1(1 −=− , and */** λλµ kk=  and 

*/*')1(*1 λλµ kk−=− .  Then from (A-7) and (A-7)* we obtain 

 λµλλλλ δφδφµµφ knzkknzzkk )()()())'()1()(( +−≤+−−+=  

and  
 *)(*)(** λµλλ δφ knzkk +−≤  

from the concavity of φ , where ')1( zzz µµµ −+=  and *'*)1(*** zzz µµµ −+= .  Let 

λz  and λ*z  be the values of z and z* respectively such that  
 λλ

λ
λ δφ knkzk )()( +−=  (A-8)

and  
 *)(*)*(* λλ

λ
λ δφ knkzk +−=  (A-8)*

hold. 
   Here we note by construction 
 µ

λ zz ≤  and ** µ
λ zz ≤  (A-9)

and by definition *),( λλ
λ kkzz =  and *),(** λλ

λ kkzz =  holds from (A-8) and (A-8)*. 

(In general z and z* are seen to depend on k and k*.  Furthermore (A-8) and (A-8)* state 

that λz  and λ*z can be expressed as functions of λk  and λk *.)  Furthermore, we 

observe λλµλ
λ

λ
λ λλλλµµ iiizkkzzzkzkzki =−+=−+=−+=⋅≤⋅= ')1('')1()')1((  and 

similarly ** λ
λ ii ≤ .  Then we can take λ

wc  with *λλ
λ cccw +≥  such that  

 *)()(** λλ
λλλ kfkfggiicw +=++++ . (A-10)

Here we note ** λλ
λλλ cccccw +>+=  if )*','(*),( kkkk ≠ (which is obtained from 

λλ
λλ cccc /*/* =  in view of (4) and (4)*9) holds. 

                                                  
9 (4) and (4)* show that given g and g*, c and c* are proportionate independent of k.  Hence ,* cc γ=  
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  Hence we note  
*)),*'(),'()(1(*))*,(),(( gcugcugcugcu βλβλ +−++ *)*,(),( gcugcu λλ β+≤  

*),*(),( gcugcu λλ β+< *),*,,( λλλλ kkkkJ≤ , and hence (A-5) holds.  Since λk  and 

λk * depend on λk  and λk * from (A-8), (A-8)*, and from *),( λλ
λ kkzz =  and 

*),(* λλ
λ kkzz = , λ

λ
λ zki =  and λ

λ
λ *** zki = , we observe that from (A-10) λ

wc , λc  

and λ*c  depend also on λk  and λk *, with  

 )*'')(1(*)(**),( cccccckkcc ww +−++=+>= λλλλλλ
λ  

   )*','()1(*),( kkckkc ww λλ −+= , 

 )*','()1(*),(')1(*),( kkckkcccckkcc λλλλλλλ
λ −+=−+=>= , 

and  
 )*','(*)1(*),(**')1(***),(** kkckkcccckkcc λλλλλλλ

λ −+=−+=>=  

showing the strict concavity of wc , c and c in (k, k*).  Here we note (A.5) implies 

 dtekkkkJdtekkkkJ tntn )()( *),*,,(*),*,,( −−−− ∫∫ ≥ ρρ
λλλλ λ  

                 dtekkkkJ tn)(*),',*','()1( −−∫−+ ρλ .         

If )*','(*),( kkkk ≠  holds for some time with 00 tt << , then the strict inequality holds 

for the above, showing  
 )*','()1(*),(*),*,,(max*),( 0000

)(

*,,*,*,,
00 kkWkkWdtekkkkJkkW tn

iicckk
λλρ

λλ λλλλ
λλ

−+>≥ −−∫
                                                                (A-11) 

i.e., the strict concavity of W in (k, k*).                                    
 
 

Appendix II 
 
Solution Path of k, k*, z and z* - local representation 
II-(1) 
By totally differentiating (5) and (5)* and rearranging, we obtain 
 "/')//( φφµµλλ −=z , (A-12)

                                                                                                                                                      
'*' cc γ=  and λλ γ *cc = hold.  This implies γλλ

λλ == cccc /*/* . 
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and 
 *"/*'*)/*/(* φφµµλλ −=z , (A-12)*
where *)('*' zφφ = and *)("*" zφφ = . 

Next by totally differentiating (4) and (4)*, we observe  
 ww cccccc /*/*// σσσλλ −=−=−=  (A-13)
where 0)1(1 >−−= σασ . 

Total differentiation of (2) leads to 
 ****)*'()'( kzkzkzfkzfcw −−−+−=  (A-14)
where *)('*' kff = . 
By substituting (A-14) into (A-13) (thereby deleting wc ) and then substituting (A-13) into 

(A-12) and (A-12)* (thereby deleting λλ / ), and rearranging, we obtain  
 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

**"/*'*1*"/*'
"/'*"/'1

z
z

ckck
ckck

ww

ww

φφσφφσ
φφσφφσ

 

  
{ }

{ }
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
−−+−−

⎥
⎦

⎤
⎢
⎣

⎡
−−+−−

=
*"/*'*/***)*'()'(

"/'/**)*'()'(

φφµµσ

φφµµσ

kzfkzf
c

kzfkzf
c

w

w  .       (A-15) 

Here let A, the determinant of coefficient matrix of (A-15) be evaluated at E (the 
stationary state) . 
 1)"'21()*"/*'*"/'(1 11 >−=+−= −− φφσφφφφσ kckk

c
A w

w

. (A-16)

Let k , k *, µ  and µ * be represented near E so that  

 )(' zzkk −=φ  (A-17)
 )*(**'* zzkk −=φ  (A-17)*
 )("')()'(" kkfzzfz −−−−= µφµφµ  (A-18)
 )*("')*()'("* kkfzzfz −−−−= µφµφµ  (A-18)*
from (1), (1)* (6) and (6)*. (Henceforth all coefficients are evaluated at E, so *'' φφ = ,  

*"" φφ = , *'' ff = , *zz = , and *kk =  etc. hold.)  From (A-15), we obtain 

 { } ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎥

⎦

⎤
⎢
⎣

⎡
−−+−−=

*"
*'*1

"
'/**)*'()'(

φ
φσ

φ
φµµσ

ww c
kkzfkzf

c
zA  

 { }
"

'*
*"
*'*/***)*'()'(

φ
φσ

φ
φµµσ

ww c
kkzfkzf

c ⎥
⎦

⎤
⎢
⎣

⎡
−−+−−+  
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       { }
"
'*

*"
*'

*
*

*"
*'*1

"
'

"
'**)*'()'(

φ
φ

σ
φ
φ

µ
µ

φ
φσ

φ
φ

µ
µ

φ
φσ

www c
k

c
kkzfkzf

c
−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−+−−=   (A-19) 

and  
 { } ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎥

⎦

⎤
⎢
⎣

⎡
−−+−−=

"
'1

*"
*'

*
***)*'()'(*

φ
φσ

φ
φ

µ
µσ

ww c
kkzfkzf

c
zA  

 { }
*"
*'

"
'**)*'()'(

φ
φσ

φ
φ

µ
µσ

ww c
kkzfkzf

c ⎥
⎦

⎤
⎢
⎣

⎡
−−+−−+  

       { } .
*"
*'

"
'

"
'1

*"
*'

*
*

*"
*'**)*'()'(

φ
φσ

φ
φ

µ
µ

φ
φσ

φ
φ

µ
µ

φ
φσ

www c
k

c
kkzfkzf

c
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−−+−−=  (A-19)* 

Let 
 *)*()()*()( 14131211 kkakkazzazzazA −+−+−+−= , 

and  
 *)*()(*)*()(* 24232221 kkakkazzazzazA −+−+−+−= . 

Then by substituting (A-17) through (A-18)* in to (A-19) and (A-19)*, we observe 
 )'(")*"*'*1("''"')'( 11111

11 fzckkzfca ww −−−−−= −−−−− φφφσφφφφφσ  

 AzfAzfkczf w )'('")'("')"'2)('("' 111 −=−=−−−= −−− φφφφφφσφφ , 

 0*)*(*""'**"*'**'"'*)*'( 11111
12 =−−−−= −−−−− fzckkzfca ww φφφσφφφφφσ ,  

 "')*"*'*1("' 111
13 fcka w φφφσφφ −−− −=  ,      

 "'"'**"*' 111
14 fcka w φφφσφφ −−−=  ,      

 0)'("*"*'"''*"*')'( 11111
21 =−−−−= −−−−− fzckkzfca ww φφφσφφφφφσ  ,      

 )*'*(")"'1(*"*'**'*"*'*)*'( 11111
22 fzckkzfca ww −−−−−= −−−−− φφφσφφφφφσ    

                   Azfkczf w )'(*')"'2)('(*"*' 11 −=−−−= −− φφφσφφ  ,     

 "'*"*'"' 111
23 fcka w φφφσφφ −−−= , 

 *"*')"'1(*"*' 111
24 fcka w φφφσφφ −−− −= . 

Recalling 
 )'(' zfn −=− φρ  (9)
we observe that 0' >−zf  at E holds.  Now let  
 0)'(' 1

1
22

1
11 >=−=−== −− anzfAaAa ρφ  

 03
1

24
1

13 >== −− aAaAa  

 04
1

23
1

14 <== −− aAaAa  
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 0**'' 5 >== akk φφ . 

This shows (24). 
 
 

Appendix III 
 

Let )',1,,( 321 iii ννν , 2,1=i , satisfy 

 

.0
1

00
00

0
0

3

2

1

5

5

341

431

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−

−
−

i

i

i

i

i

i

i

a
a

aaa
aaa

ν

ν
ν

ω
ω

ω
ω

 (A-20)

Then we obtain 

 

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

+=−

+=−
+=−
+=−

,*
and

,
,*
,

21

21

211

211

2313

2212

2111

tt

tt

tt

tt

eBeAkk

BeAekk
eBeAzz
eBeAzz

ωω

ωω

ωω

ωω

νν

νν
νν

 (A-21)

where A and B are determined by the initial values and stationary values of k and k*.  
From (A-20), we obtain 
 0)( 34311 =++− iii aaa ννω   (i) 
 0)( 33421 =++− iii aaa ννω   (ii) 
 015 =− iia ων ,    (iii) 
and  
 0325 =− iiia νων .    (iv) 
From (iii) and (iv), 
 3251 // iiii a ννων == , 
and hence 132 iii ννν =  are obtained.  Substituting this into (ii), we obtain  
 0)( 334131 =++− iiii aaa νννω , 
or 
 0/)( 33411 =++− aaa iii ννω .      (v) 

From (i) and (v), 12
3 =iv  is derived. We recall 1ω  and 2ω  (which are expressed as (25) 

and (26).) satisfy respectively 0)( 43511
2
1 =+−− aaaaωω  and  

0)( 43521
2
2 =−−− aaaaωω . 
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(1) 13 =iν .  Then 21 ii νν = , and from (i) and 51 / aii ων = , 0/)( 4351 =++− aaaa ii ωω
is derived.  This is satisfied if 1=i . 

Similarly 
(2) 13 −=iν .  Then 21 ii νν −= , and from (i) and 51 / aii ων =

0/)( 4351 =−+− aaaa ii ωω .  This is satisfied if 2=i . 
In short we obtain 511211 / aωνν == , 113 =ν , 5221 / aων = , 522122 / aωνν −=−= , 

123 −=ν .  Then (A-21) is expressed as  

 tt BeaAeazz 21 )/()/( 5251
ωω ωω +=− , 

 tt BeaAeazz 21 )/()/(* 5251
ωω ωω −=−  

 tt BeAekk 21 ωω +=−  
and  
 tt BeAekk 21* ωω −=−  
where A and B must satisfy 

BAkk +=−0 , and BAkk −=−*0 , 

or 

 2/)*( 00 wkkkA −+=  and 2/*)( 00 kkB −= . 

Substituting A and B into the above, we obtain (27) through (31)*. 

 
 

Appendix IV 
Derivation of (33) 
From (11) and (11)*, we obtain  
 WWccc cccccuu σσλλ ==−=− )(  (A-22)
From (32), we observe  
 )(1 WWW ccc −= ω . (A-23)
Hence from (12), (A-22) and (A-23) 
 WWWWWW ccccccr )()( 11 −+=−+=−= ωσρωσρλλρ . (A-24)
(Here we note 21)( WWWWWW ccdccccd =− − , and hence linearlization around the stationary 
state implies WWWWWW cccccc )()( −=− ). 

Next (10) is linearlized around the stationary state;  
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)()1()(

))(())(()(

)()1()())(())(()(

)()(

1
1

1

WW

WWW

WW

cczzk

kkzfaanccca

cczzkkkzfaanra

gzkckfanra

−+−−−

−−′+−−+−=

−+−−−−−′+−−+−=

−−−+−=

−

−

γ

ρωσ

γρρ
 

from (A-24). 
Employing (27),(28),(32), and 1

5 )()( −′−−=−−′ φωρω ii nkazf  (obtained from (9) and 
ka ⋅′= φ5 ), the above is rewritten as  

 ))((2 aanBeAea tt −−++= ρωω  (A-25)
where  
 )())(2)1(( 0

1
1

11
1 WWW kkncaA −′−−++−= −−− φωργωσ , 

and  
 11

002 2*))(( −−′−−−= φωρ kknB . 

Now let  
 aeeea tntt +++= − )(

21
2 ρωω ξαα  (A-26)

where 1α , 2α  and ξ  depend on initial values and stationary values of k and k*, 

Wc , 2,1, =iiω , and g and g*.  Then by totally differentiating (A-26), we obtain 

 
).)(()()(

)(
2

2

2211

)(
2211

aanenen

eneea
tt

tntt

−−++−++−=

−++= −

ρρωαρωα

ρξωαωα
ωω

ρωω

 (A-27)

Then by comparing (A-25) and (A-27), we obtain  
 )()2)1(()( 0

111
111 WWW kkcanA −′++−−=+−= −−− φγωσρωα  (A-28)

and 
 11

0022 2*)()( −−′−−=+−= φρωα kknB . (A-29)
In (A-26), by letting t = 0, we obtain  
 aa −−−= 210 ααξ . (A-30)
By multiplying tne )( −− ρ  on both sides of (A-26), we observe  
 tntntntn eaeeae )()(

2
)(

1
)( 21 −−+−+−−− +++= ρρωρωρ ξαα .    

From NPG (17) and, aa →  and ρ→r  as ∞→t , we can conclude 0=ξ , or 

 210 αα −−= aa . (A-31)
Next by substituting (A-28) and (A-29) into the above and by rearranging we obtain  
 [

{ } ]φρωσ

φ

′+−−−+−

−−+−−−−−′=
−

−−−

1
1

0
1

000
11

0

)22)((

)(}2*)()()22(2)*({

WW

WWWWW

gkzfnc

kkkkkkgkzfggaa
 (33)

noting  
 { } )()22())(()1( 111 ngkzfngzkfa W −−−−−−+=+ −−− ρργ  

and 
 11 )22(2)*(21)22()( −− −−−=−−−−− WW gzkfgggzkfgzkf . 
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Figures 
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