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Abstract

The role of government expenditure is analyzed in the context of growing economy
with endogenous labor supply and with investment adjustment costs. Assuming the
dynasty model of representative consumer’s utility maximization - i.e., the present value
of over time felicity function maximization under the law of motion capital where
felicity function depends consumption, leisure and government expenditure, the global
stability of the economy is derived showing investment-capital ratio to decrease as
increase in capital-labor ratio. Further the increase in government expenditure is seen

to increase investment-capital ratio and labor but decrease consumption globally.
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I. Introduction
This paper tries to analyze the role of government expenditure in a growing economy

employing the intertemporal optimizing behavior of the representative consumer. Our
model is closely related to Brock and Turnovsky (1981), Turnovsky and Fisher (1995),
Turnovsky (1995), in the following sense; there exist only one kind of good which is
used for consumption, investment or government expenditure, consumer’s instantaneous
felicity function depends on consumption, leisure and government expenditure in the
case of government consumption service, and in the case of public input affecting
production on only consumption and leisure. The representative consumer tries to
maximize the present value of the felicity function overtime subject to the law of
motion of capital. However our model is different from theirs in introducing
adjustment costs of investment explicitly. In this sense, we owe Abel and Blanchard
(1983)’s a lot to derive the global stability of the economy when such adjustment costs
are taken into consideration. Our model is a generalization of their model first in
introducing endogenous labor supply (or leisure-labor choice), and second government
expenditure which is included either into felicity function in the case of government
service or into production in the case of public input.

Third we analyze the (not local but) global effects of government expenditure on per
capita consumption, investment-capital ratio and per capita labor supply along
transitional path. More specifically we show that the increase in government
expenditure decreases consumption, but increases both investment-capital-ratio and
labor in both cases of government expenditures. To our best knowledge this result is
new.

In the field of macro dynamic model with and without government expenditure
Trunovsky (1995)’s book is very comprehensive and an important contribution. Since
the pioneering works by Frankel and Razin (1985) most of whose contributions are
contained in their book (1996), the role of fiscal policies in the growing economy has
been discussed by many authors. Employing finite horizon continuous time model,
Blanchard (1985) analyzed the role of fiscal policy. Aschauer (1988) employed
discrete time optimizing model of representative consumer whose felicity function
depends on consumption, leisure and government expenditure, while the government
expenditure affects production as well, and analyzed the effects of government
expenditure on consumption, output and interest rate etc. in a variety of situations.
Barro (1990) employed continuous time optimizing model where government
expenditure affects felicity or production, and analyzed its effects on growth rates and

saving rates with empirical analysis.



Using AK model with public expenditure included into production function, Barro
and Sala-I-Martin (1992) studied the role of tax policy in various situations. King and
Rebelo (1990) explained the differences in growth rates based on the role of
government expenditure and tax policy employing endogenous growth model with
physical capital and human capital. Deveraux and Love(1995) also analyzed the
effects of government expenditure in the two sector endogenous growth model; among
others.

In the next section we show our model. First, we analyze the case of government
service which affects felicity but not production. The social planner is assumed to
maximize the intertemporal utility, i.e., the present value of the sum of the consumer’s
felicity function over time composed of consumption, leisure and government
expenditure under the equilibrium market condition of the good which is used either for
consumption, investment or government expenditure, and under the law of motion of
capital. There exist investment adjustment costs. Then from the present value
Hamiltonian we derive the first order conditions and the transversarity condition, and
show the existence and uniqueness of the stationary state.

Next we show the stationary state to be (not local but) a globally stable saddle point
(Theorem 1) where investment-capital ratio decreases as capital increases. This is a
generalization of Abel and Blanchard (1984). Next we show that consumption
increases as capital stock increases employing the same method used for
investment-capital ratio. (Theorem 2) Then we analyze the effects of government
expenditure g, on investment-capital ratio z, consumption € and labor I. Under fairly
weak assumptions (A.1 through A.4), z and | increase while ¢ decreases as g increases
(Theorem 3). This is our main contribution of this paper. Especially the technique
employed to prove these results can be applied for many similar cases Next we
analyze the case of government expenditure, which affects production but not felicity.
We show as Theorems 4 and 5 that the characteristics of optimal path of consumption,
investment-capital ratio and labor supply (i.e., the conclusions of Theorems 1, 2 and 3)

remain unchanged.

I1. Government Expenditure in Felicity Functions

First we discuss the social planner’s optimum.

11.1 Social Planner’s Optimum

Let there exist only one good which is used either for consumption, investment or

government expenditure. Good is produced employing capital and labor. Let
y = f(k,I) be the labor productivity function where k=K/N and I=L/N being



respectively the per capita capital and the per capita labor, K being the capital stock. L
being the total labor employed and N being the total hours of the population. N is
assumed to be equal to the total population. Then the market equilibrium condition is
expressed as
f(k,h=c+i(l+¢(i/k))+g. (1)
Furthermore ¢=C/N , i=I1/N and g=G/N are respectively per capita
consumption, investment and government expenditure (=government service) where C,
| and G are respectively total consumption, investment and government expenditure.
The function @reflects the investment adjustment costs, first introduced by Eisner
and Strotz (1963), then Lucas (1967) and Abel and Blanchard (1983) ét.al. ¢is convex
with ¢(0)=0, ¢>0 for i/k>0, ¢'>0, ¢">0 (from convexity) and ¢'(0)=1.
Intuitively ¢ states that given K, the investment adjustment costs increase more, the
more investment. Total hour N is used either for production as labor hour L or for
leisure N-L. Then per capita leisure is 1—1. Here by construction 0<1<1 holds.

The productivity function f, is assumed to be concave, homogenous of degree one,

f(k,I), ie, f, >0 and f >0, thrice continuously differentiable in (k, I), f is

assumed to satisfy the Inada Condition, i.e., f, >0 as k—>+0o and f, —> oo as

k—>0 given 1>0.
Furthermore both productive factors are indispensable for production, i.e.,
f(0,1)=f(k,00=0 holds forany 1>0 and k>0.
The representative consumer has the felicity function

u(c,1-1, g)=logc+alog(l-1)+ Blogg )
where >0 and £ >0 are constant reflecting the constant elasticity of substitution
between any two of three — consumption, leisure and government expenditure. The
government expenditure is included into the felicity in our first model, later it is
included into the productivity function. Furthermore the felicity function is seen to be
separable. Although this looks too much simplified and specified, yet will turn to be
inevitable in order to obtain the definite conclusions on the characteristics of the optimal
path. The characteristic of this felicity function lies in that consumption, leisure and
government expenditure are all indispensable for the consumer in the sense that level of
utility decreases to minus infinity if any of these decreases to zero. The law of motion

of capital is expressed as

K=i-nk 3)

where k is time rate of k, and n>0 is the population growth rate. (In general time



rate change of variable X is expressed as X.) Then the social planner tries to

maximize

J':u(c, 1-1, g)e " Mdt

with respect to C, I, k, and i subject to (1) and (3). g is given as parameter which is not
controlled by the social planner in our model. Here t=0 is the present (initial) time,
p(>n) is the intertemporal discount rate of the felicity function. By defining the

Hamiltonian,

H= [logc+alog(l—|)+ﬂlogg +&(fF(k,Dh)—c—i(1+¢(i/k)—9)+

A(i—nk)le= ™

we obtain the first order conditions;

l/c=¢ 4

al(1-1)=df, (5)

A=E(1+9+9¢"7) (6)
and

A=pi-&(f +¢'2%) 7)
where z=1i/k being investment-capital ratio. Then

c=(1-Hf/a (8)
is obtained from (4) and (5). The transversality condition is

lim Ake "™ =0.

t—oo

I1. 2 Stationary State

First we derive the stationary state. By setting k=0, we obtain Z=n where Z is
the stationary value of z. (In general stationary value of variable x is expressed as X .)

Then from (6) and (7) by setting A =0, we obtain
p=(f,+¢'7°)/(1+¢ +¢'7) 9)

from which h = (m) , the stationary value of capital labor ratio k/I is obtained from

f (k,)=f, (k/1,1) where ¢ =¢(n) and ¢#'=¢'(n). Then by substituting (8) into

(1), we obtain
f(h,DI=A-Df,(h,1)/a+nhl(1+¢)+g
and hence
I ={f,(h,D/a+gl{f (. 1)+ f,(h.1)/a—nh1+4)}. (10)

Here we assume



Al g<f(h,D-nh(1+g4)=g,)
Then we obtainA.1 <1 <1<T>0 from(8). Lastly k=hl follows.

11.3 Global Stability

Next we show the global stability of our economy. Although basically we follow the
argument of Abel and Blanchard (1983), our model is more complicated than theirs
because labor supply is endogenous in our model. From (1) and (8), we can express |

and ¢ as functions of k, z and g;

f, —1 || dl —(f,—z(1+¢))dk +k(1+ ¢+ ¢"z)dz + dg

[1/(1—I)— £,/ 1, l/c}[dc}:[ (f,/ f,)dk }
Hence

l, ={-(f, —z(1+¢))/c+f,/f,}/D (11

I, =k(1+¢+¢"2)/Dc >0 (12)

l, =1/Dc>0 (13)
where

D=(+a)/(1-1)-f,/f >0 (14)
and hence

I=1(k, 2, 9).

6 ={fi+@/A=D=f, / f)(f, —2(1+¢))}/D, (15)

c, =—{/1-1)—f,/f k(+¢+¢-2)/D<0, (16)

c, =—{l/(1-1)-f,/f,}/D<0, (17)
and hence

c=(k,z,0).

Here in view of (8), C is also expressed as
c :c(If, H=ck, 1(k,z,9)).

Here we make the following assumption;
A2 o>0/(1+a)
where o being the eclasticity of substitution between capital and labor, i.e.,
o=ff/f,-f, and 6 being the share of capital income, i.c., &=f -k/f(<I)'.
A.2 is assumed through the paper.

Then from (3) through (8) and A.1 and A.2, we obtain the following phase diagram

of (k, z) showing the existence of the stable saddle point path z=z(k,g). (See



Appendix I.
Fig. 1

Here the dotted lines show the saddle point path z=2z(k,g) and E is the stationary

point. Next we show that the optimal path z=1z(k, g) converges monotonically to

the stationary point E globally. For this we employ the following lemma;

Lemma 1. (Poincaré-Bendixon Theorem (Hsu and Meyer (1968) Section 5-8))

(1) For the two dimentional autonomous differential equation system, the path
(trajectory) must become unbounded or converge to a limit cycle or to a point.

(2) If alimit cycle exists, then the Poincaré index N-S is 1 where N denotes the number
of nodes, centers and forci enclosed by a limit cycle, and S denotes the number of
saddle points enclosed by a limit cycle.

Since the Poincaré index N —S =-1, because the stationary point is locally a saddle

point, the optimal path must converge to a stationary point from (1). Hence it suffices

to show both k and z are bounded. First we show the boundedness of k. From (1) and

(3), we obtain

k=i-nk=f(k,l)-c—i-¢g—g—-nk< f(k,)—nk.

Fig. 2

Then recalling f satisfies Inada condition, and hence observing k <0 for k>k
where Iz(< +00) is the value of k such that f(k,I)=nk holds, we obtain that K is

bounded. Then from (1) z is also seen to be bounded from above. Hence we obtain
from (1) of Lemma 1, the optimal path is globally stable, and since it is at least locally a
saddle point path, so is also globally from the continuity of the optimal path with

respect to its initial values”.

Theorem 1

Under A.1 and A.2, the optimal path z =1z(k, g) is globally a saddle point path.

1 A. 2 is satisfied for the Cobb-Douglas production function since o =1 holds.

2 In Fig. 1, if the initial point is too close either to Z=0 curveor k=0 curve then
either Z—>+w or Zz—>0 as kapproaches to k . Hence by continuity of the optimal
path and its global stability there must exist initial value of (4, 2),(K,,Z,) from which

the optimal path converges to a stationary state.



Optimal Path of ¢ =c(k,qg)

Next we show the solution path of consumption ¢ as function of k and g.  Although we
can obtain the properties of the optimal path of ¢c=c(k,g) utilyzing the results of the

optimal path of z=2z(k,g) to some extent, i.e., c=c(k,g) holds as far as

f, >(1+¢)z holds as shown by Abel and Blanchard (1983)°, the property of

c=c(k,g) through entire path is not derived without analyzing this in (K, C) plane as

shown below.
Fig 3
The derivation of the optimal path ¢c=c(k,g) is carried out by the similar method
as z=12(k,g). (See Appendix II for detail.)

As shown in Fig. 3, the optimal path of c=c(k,g) is a stable saddle point path
shown by the dotted lines toward the stationary point E where Kk, and k,, are defined

implicitly by k=¢=0, i.e., f(k,IN,(k,g)):Z(k,g)(l+¢(z(k,g)) where 1=1(k,z,9)

=1(k,z2(k,9),9)=1(K,g). Noting that stationary point E is locally a saddle point, and
k is bounded, and hence ¢ is bounded from (1), we can employ Poincaré-Bendixon

Theorem once again, and derive;

Theorem 2

Under A.1 and A.2, the optimal path c=c(k,g) is globally a stable saddle point path.

Next we investigate the effects of the change in government expenditure on z and C.

1. 4 Effects of Government Expenditure

Here we show

c=c(k,9), z=12(k,g9) and I=I(k,9)

3 The iso consumption plus government expenditure curve c+g = f(k,I)—i(l+
#(i/k)) =const, is shown to be upper sloped as far as f, >(1+¢)z holds in (%, 2) plane.

From this and z=z(k,g), we obtain c=c(k,g) asfaras f >(1+¢)z holds.



to hold locally, and then generalize these into global properties. First we show

z=12(k,g) to hold globally. From (9), h =(k/I) is seen to be independent of g.

Then from (10) and (8)
gTelTecd

in view of f (k,I)=f,(h). Then k increases by the same rate as | . This implies

in Fig. 1, Z=0 curve shifts to the right around the stationary state E, and hence

z=12(k,g) curve increases upward around E, or z=12z(k,g) to hold locally around E.

Next we show c=c(k,g). k=0 curve is shown to be
c=fk,)-nk(l+¢)-nk—g
where k=0 if and only if z=n. Given kK, increases in g lowers c— f(k,l) which

is made possible by increasing | and decreasing ¢ from (13) and (17). This implies that

k=0 curve shifts down in Fig. 3 as a results of increases in g. Here recalling € to
decrease and k to increase we observe that ¢=c(k, g) curve shifts down around E,

implying c=c(k,g) to hold locally. Lastly we observe |=1I(k, g) to hold locally

from (8), (18) implies c=c(k,l) =c(k,l(k,g)) , and hence |I=1(k,g). Next we

generalize the above results in to the global ones.
From (4), (6), (7), (15) and (16), we obtain

Ak,z,Nz=B(k,z,1)+E(k,z,Dk (18)
Where

AK,z,1)=2¢'+¢"2) 1+ ¢+ 2)+{1/A-1)— T,/ f, ]k +@+¢'2)/cD>0 (19)

Bk,z,)=A/A=p—(f +4'2°)/(1+d+¢'2) (20)
and

E(k,z,1) = {f, + /A==, / f)(f, —z(1+¢))}/cD 21)

(See Appendix I for derivation of the above equations.)
(3) is expressed as
k=kz-nk =F(,2). 3)
Then
2={B(k,z,1) + E(k,z,1)(zk —nk)}/ A(k,z,1) = G(K,z,I) 22)
=G(k,z,1(k,z,9))=G(k, z, 9).



Recalling 1 =1(k,z,g9) and c=c(k,l), in view of (8) we can see that the change in k
and z caused by the change in g is channeled through change in | only. To obtain the

effects on z and k of ¢, we assume
A3 Given (k, z), dG(k,z,9)/dg #0.
This is equivalent to 0G(k, z,1(k, z, g))/dl #0 given (k, z) in view of |=(k, z, Q).

Now we show

Theorem 3

Under A.1 through A.3, z=12(k,g), c=c(k,g) and |=I(k,g) holds globally.

Proof
Let the solution path (k, z) of (3) and (22) converging to E as t—>o be k=Kk(t),

z=12(k,g). For a contradiction we assume there exist (kA, 2), t=t,, g and O
(9, <g,) such that

k= kt,), Z=1z(k(t,),9,)=2z(k(t,),9,) with g, <g,. Thatis the two solution paths
(k,z(k,g,)) and (k,z(k,g,)) meet at (IZ, Z). Then by the mean value theorem

there exists g, €(9,,9,) such that az(|2, g,)/09=0.
By partially differentiating (22) with respect to g, we obtain
o/ot-0z(k, )/ g =G/ ok - ok(t)/og +6G / 6z -z(k,q)/ 69 + G /6,
which is equivalent to
o/ot-oz(k,q)/og =G /oz-0z(k,q)/ 09 +0G /g .
Now from the above equation, we obtain
0=0/ét-0z(k,g,)/69 =G/ og

contradicting A.3.

Hence we obtain the two solution paths never meet. This further implies that if

0z(k,9)/09 >0 near E holds, it also holds globally. c=c(k,g) follows from



C:C(k,!), I=I(k,z,9) and z=12z(k,g). I=I(k,g) follows from Izl(k,(f) and

c=c(k,g). [

It is interesting to note that under fairly mild condition of A.3, the global effects of g on
zis derived. Furthermore to our best knowledge, these effects are new.

Theorem 3 states interesting results. Given capital stock k, while the increase in
government expenditure increases accumulation rate of capital, k/k, it also decreases
the consumption level. These results seem opposite to the well known short-run
results about the effects of government expenditure on accumulation rate and
consumption — i.e., increase in ¢ results in decrease in investment and increase in

consumption.

I11. Government Expenditure as a Productive Input
Here we investigate the role of government expenditure which affects not consumption
but production as a productive input. The market equilibrium condition of good is
expressed as

fk,1,9)=c+i(1+¢(i/k)+g. ay
Here per capita government expenditure g is included in the productivity function f.

We assume f is concave, thrice continuously differentiable in (k, I, g) and homogenous
of degree one in (k, I). Further f =0 if k-1-g=0 holds. (That is, all of k, | and g

are indispensable for production.)  f; >0 and from concavity f, <0 hold. We

assume further f, and f,; >0. The felicity function of the representative consumer

is simplified as
u(c,1-1l)=logc+alog(l-1I) Q)
where « >0 being constant.

The law of motion of capital is the same as before:

K =i-nk 3)

The Social Planner’s Optimum

The social planner maximizes
I: u(c,l-he " dt

with respect to C, |, k and i subject to (1)’ and (3). By defining the Hamiltonian

10



H =[logc+alog(1-1)+&{f (k,1,g)—c—i(l+@(i/k)—g}+ A —nk) ™",

we obtain the first order conditions,

l/c=¢, 4)
al(l-1)=4,, (5)
A=E(l+¢+9'7) (6)
and
A=pi-&(f +¢'2%) 7)
and the transversality codition
lim ke =0.
(4) and (5) imply
C=(1—|)f|/0( (8)
as before.
(1)’ and (8) imply
fk,,g)=1-Df (k,l,g9)/a+kz(1+¢)+9. (1)

Recalling f is homogenous of degree one in (k, I) and hence f,(k,1,9)=f,(h,1, g), we
observe from (1)”
I={f(hLg)/a+glH{f(hLg)+ f(h1.g)/a—hz(l+4)}.

Then |=1 is derived from this equation.

Existence and Uniqueness of the Stationary State
By letting k=0 and 1i=0 , we obtain as before, Z=n, and
p=(f(1,9)+4'2)/(1+4+4/7). 9)

(9) implicitly defines h(=k/l)=h with help of Z=n. Lastly k=h-1 follows.

Here we assume

A I g<d,

is retained where g=§,, is implicitly defined by g= f(h,l,g)—nk(1+4). Fig. 4

illustrates A.1°.

Fig 4

The intersection of curve f(h,l,g) and straight line g+ nh(1+¢) defines g=g -
Under A. 1’ we observe for

I ={f,(h.Lg)/a+g{f (h.1Lg)+f (h1g)/a-nh(+g)} (10y
which is derived from the above equation,

Al ol<lat>0.

11



Next we assume

A3 f(kI,g)<l.

That is, at the stationary state, 1— fg , the net resource withdrawal effects, which are

direct resource costs of a unit of infrastructure government expenditure relative its

direct benefit of increasing production is positive*. In the different context, as

explained fully later in A. 5, 1> f; seems plausible assumption since this allows the

existence of positive € and z if g is decreases from its maximum level §,, .

Under A. 3’, the increase in government expenditure increases capital-labor ratio k at
the stationary state, i.e., 6k /g > 0as shown below.

From (9)’ and (1)”, we obtain that | and k are expressed as functions of g at the

stationary state;

f fie dl
[f,(1+1/a)—(1—|)f,,/a fk—(1—I)f,k/a—n(1+q7)}{dlz}:
- f,,dg }
(—f,+(1-)f, /a)dg |
=k(z,9) and 1=1(z,§) with
ok /09 ={f, (1= f, +(1=Dt, /@) + f (f,(1+1/a)=(1-Df, /a}/D>0 (24

This implies k

and

ok /09 =—{f, (f—n(1+§)+ f,(1—F)}/D<0 (25)
where

D=f,(f —n(1+¢)—f, f(1+1/a)>0
from the homogeneity of degree one of f in (k, I) and f, —n(1+¢)>0 at the stationary

state (To obtain this, we can employ the same arguments as the case of government
service affecting felicity function. So, see Appendix I, for this inequality.)
In view of Fig. 4, A. 3’ is seen to be equal to g >, where §, is the minimal level

of government expenditure such that 1= f_ (k,I,g) holds. Then from A.3’, it is seen
that g€(J,,0,). Nextwe show the global stability of the economy.

Global Stability

Basically we follow the former arguments. From (1)’ and (8), | and C are expressed as

4 We owe this interpretation to Turnovsky and Fisher (1995).

12



functions of k, z and g;

[ f, —1}[&} {—(fk—z(l+¢)dk+k(1+¢+¢'z)dz+(l—fg)dg

1/(1-)—f,/f 1/c|dc (fy/ f)dk+(f,/ f)dg
Hence

l, ={-(f, —z(+¢))/c+f,/f}/D, a1y

I, =k(1+¢+¢'2)/Dc>0, (12y
and

l, ={1-f,)/c+f,/f,}/D (13)
where

D=(+a)/(1-)-f,/f >0 (14
and hence

1=1(k,2.9).

¢, =1{fy +W/A-D—f,/ f)(f —z(1+¢)}/D, (15)

c,=—{/1-D)—f,/f )k(+¢+¢'2)/D<0, (16)
and

C, =1~ (- f)A/A-1)~f, /f)+ f, }/D. 17y

and hence c=c(k,z,9). Again, in view of (8) C is expressed also as

c=c(k,l.9)=c(k.I(k,z,9).9).

We retain A. 2;
A 2 o>0/1+a™).
Then from (3) though (8), and A. 1’ and A. 2, we obtain the same phase diagram of (k,z) ,

showing the existence of the stable saddle point path z =2z(k,g), by following exactly

the same arguments as in Appendix I. Here the boundedness of k follows from
k=f(k,1l,g)-c—g-i-g—nk<f(k,1,§,)-nk and f(k,1,d,)-nk<0 as k
becomes large in view of Inada condition of f. Then we obtain the optimal path of

(c,k) with c=c(k,g) as a saddle point path again employing the same arguments as

the one in Appendix II. In short,

Theorem 4
Under A. 1’ and A. 2, the optimal path of (c,k,z) is globally stable saddle point path

13



with z:z(lf,g) and c=c(k,g9).

Effects of Government Expenditure

First we recall from (9)’, g T<>h T from f, (h,1,g) being constant,

Next we can show z=12z(k,g) to hold locally around E just as the case of

government expenditure in the felicity function.

Now we investigate the global effects of the change in government expenditure on
consumption € and investment-capital ratio z. As before we obtain from (4), (6), (7),
(15)’ and (16)’

Ak,z,9)2=B(k,z,9)+E(k,z,9)k (18)’
where
ﬂ(k,z,g) =AK,z,1(k,z,9),0) =2¢'+¢"2) /(1+ ¢+ ¢'2) + 19y
== f,(k,1,9)/ ,(k,1,0) k(1 +¢+#'2)/c(k,1,9)- D(k,z,9)
B(k,z,9)=B(k,z1(k,2,9).9) = (20’
AlA=p=(f (k1K 2,9),0)+¢'2")/[(1+$+¢'2)
E(k,z,g) =EKk,zIl(k,z,09))= {f,k(k,l,g)+(l/(l—|)—
fll(k’lag)/ f|(k,|, g))(fk(knla g)—Z(1+¢)}/C(k,|,g) IS(k,Z, g) (21),
and

D(k,z,9)=D(k,z,I(k,z,9) =(1+a)/(1-1)- fo(k,1,9)/ f,(k,1,9).
(3) is expressed as

k=kz—nk. (3)
Then employing the system of two ordinary differential equations (3) and
2={B(k,2,0)+E(k,2,0)(zk —nk)f/ Ak, 2,9) = A (K, 2,9) 22y

we can investigate the effects of change in g. Here we recall if g is contained in
(§,,0y) with 0<g, <@, <+ thenboth z, and c, are positive.

Then employing the same arguments as the one of government expenditure in felicity

function, we can again see that z=1z(k,g) and |=r(k,g) =I(k,z(k,9),g) and
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c=C(k,g)=c(k,1 (k,g),g) are continuously differentiable in (k, Q).
Next we assume

A. 4 Given (k,z) 0H(k,z,9)/69 =0
A5 f <A-f)AA-)=f,/f) ge(@,. Gy),and 222?

A 5’ is equivalent with ¢, <0 from (13)7. That is, given k and z, an increase in
lowers c.

Recalling ok /6g >0, we obtain

Theorem 5

(1) Under A.1’ through A.4’, z=12(k,g) hold globally.

(2) Under A.1’ through A.5’, c=c(k,g) and |=I(k,g) hold globally.

??? If the production function is specified to be of Cobb-Douglas, i.e., f(k,l, )=
k“I'*g* where O0<u,7<1.
Then A.5’ is reduced to

f,<l+ud-1) (<1) (<) 772
i.e., the marginal product of government expenditure f, is less than |+ x(1-1). On
necessary condition for A.5’ to hold is f; <1. Recalling the market equilibrium
condition (1)’, in case of ¢ =0, itis reducedto f(k,l,g)=i(l+¢c'/K))+g. Givenk,
| and i, this equation gives the maximum level of g. If f; <1 holds, then by reducing

the level of g from this maximum level, it is possible to obtain positive € and z, a natural

plausible condition.

Proof
(See Appendix I1I.)

IV. Concluding Remarks

This paper analyzes the role of government expenditure in the dynamic optimization
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model with investment adjustment costs for both cases of government consumption
service and public input. The felicity function is of general type so that consumption,
leisure and government expenditure are included as an arguments in the function in the
former case of government consumption service, but in the latter case of public import,
only consumption and leisure are included into felicity function, although it is at the
same time, specified to be additive and logarithmic in each argument for both cases.
We can immediately generalize our model into the case where the government
expenditure affects both consumption and production.

Also we note that these does not exist an optimal level of government expenditure g
which solves social planners’ maximization problem in either case of g — g in the
felicity function or g in the production function. In fact if such g ever exists, it causes
time ???(dynamic) inconsistency.

Once thing?? we did not analyze here is the effects of anticipated change in g in the
middle of transitional period. Although our results can be readily applied to the
unanticipated change in g — social planners solves maximization problem twice (once in
the beginning and next at the time of change in g), in general the solution path (c, K, z)
of the anticipated change are expected to shift at the ime of change, we leave this to as
our next task.

Our stress is on the global nature of the optimal path of investment capital ratio z
and consumption C as functions of capital stock and government expenditure.
Especially the global effects of government expenditure on these variables are derived
from rather weak assumption A. 3 or A. 4 — i.e., the sgn of the partial derivative of
RHS of the differential equation of Z with respect to g does not change.

Although it is common to derive the negative eigen values of the coefficient matrix
of the system of ordinary equations by linearlizing around the stationary state, and then
to predict the effects of government expenditure g by partially differentiating these
eigen values with respect to g, this conventional method is confined only to the local
analysis even if we can manage to derive the signs explicitly. (In our model the partial
differentiation of eigen values seems extremely tedious and any definite sign seem
unobtainable.)  Hopefully our predictive method of the effects of government

expenditure can be readily applicable in many similar models.
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Appendix |
From (6) and (7), we obtain

A A=p—(f, +¢"2) /(1 +d+¢"7). (A-1)
From (6), it follows that

AA=EIE+Qp+¢" )1 +p+¢'7) " 7. (A-2)
From (4), (14), and (15), we observe

E/E=—¢/c=—(ck+c,2)/c. (A-3)

Hence from (A-2) and (A-3)
[(2p+¢"2)[(1+ g+ @' )+ {1/A-1)— £,/ f, )k(1+p+¢'2)/cD]z

= A2+ {f, + A=) = £,/ £)(f, —2(1+$))}(cD) 'k . (A-4)
Let
Ak,z,1)=(24'+¢"2) (1 + ¢+ ¢'2) + {1/(1-1)— T,/ T, )k(1+$+¢'2)/cD >0
. (A-5)
Bk,z,)=A/A=p—(f +¢'2°)/(1+d+¢'7), (A-6)
and
E(k,z,l) = {fi + W=D =,/ f)(fy —z(1+¢)}/cD. (A7)
Then (A-4) or
Ak,z,)z =B(k,z,1)+E(k,z,1)k (A-8)
and
k = zk —nk 3)
constitute the system of ordinary differential equations in (K, z) in view of 1=1(k,z,9).

Here we investigate the slope of f, —z(1+¢)=0 curve.

The slope of f, —z(1+¢)=0 curve
By total differentiation of f, —z(1+¢)=0, we obtain
(fy + fl)dk =(—=f 1, +1+p+¢'2)dz .
Here from (10) along f, —z(1+¢)=0,
sgn( g + flo) =sgn(fy, f;D+ D)
=sgn(f, f,(f,/c+1/A-)—f,/f)+f;) (from (13)) (A-9)
=sgn(f, f,(f,/c+1/1-1))<0

from f,f,—f;=0.
Next, from (11),

sgn(—fyl, +1+ ¢ +¢'2) =sgn(—f, k + Dc)

=sgn(—f k+ f, +c/(1-1)—cf,/f,)__(from (13))
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=sgn(—fy k+ f, +c/(1-1)+cf k/If)) (from (f k+ f,1=0)
=sgn[(f k/ f)(c— )+ f +f /a] (from (8))
=sgn|- (fk/ fhg+1+a™)f,]
(along f, —z(1+¢)=0, —fl+c+g=0 follows from (1))
:sgn[—a"(fkk/f -|)g+(l+a‘1)f,]
(from the definition of o= f f,/f,f)
=sgn|-o"'@ /1 +(1+a g /{1+a)l -1}] (fom O=fk/f
and f,=ag/((1+a)l-1) derived from fl=c+g and
c=(1-DHf/a (8))
= sgn[—a’19+ (I+a™")a /{(1 +a)l —1}].

Here observing for  ¢(l)=I /{(1+a)| ~1}>0 ( @)>0 follows from

f,=ag/((1+a)l=1)>0)and ¢'(I)=-1/{1+a)l-1}> <0 holds and hence

a/{(1+a)l-1}>a/a=1. We can conclude sgn[—0’1¢9+(1+a’l)al/{(1+a)| —1}]>O
if o'0+(+aNad/{l+a)l-1} >-c"'0+1+a" >0 or o>0/(1+a™), ie, A2

holds. Hence the slope of the curve

f,—z(1+¢)=0, dZ/dk| <0 underA. 2.

f,—2(1+4)=0

F. Intersection of A=0 curve and f,—z(1+¢)=0 curve
Fig. A. 1

Next we investigate the intersection of A=0 curve and f, —z(1+¢)=0 curve, from
(A-6).

A=0= p(l+g+¢'2)=1 +¢'2°.
Hence at their intersection

pl+p+d'2)=f +4'2° =2(1+¢) +¢'2’ (A-10)
or

(p-)(1+¢p+¢'27)=0
must follow. This shows that two curves intersect at p=z. Denoting F to be the
point of intersection, we observe A =0 curve is positively sloped at F. In fact, by
totally differentiating po(1+¢+¢'z) = f, +¢'z>, we obtain

1p(20+4" D)= 1, = (9"2° + 29 D)}z = (T, + il )k
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Here f,, + fyl, <0 from (A-9). AtF, we observe

PP+ )~ fl, —(4"2* +2¢'2)
=pQp+¢"2)— f k(1+p+¢'2)/Dc—(4"2° +2¢'2)
=—f k(l+¢+¢'2)/Dc<0 from p=1z.

Hence the slope of A =0 curve is positive at F, showing that the two curves intersect
only at F. Although the slope of A=0 in general is indefinite, recalling that this

curve intersects with z=n(k =0) horizontal line at the stationary point E with the

slope never becoming flat because dz/dk =(f, + fk,Ik)/{(p— 2)2¢'+¢"z)— f k(1 +
¢+¢'Z)}¢ 0, never intersect with f, —z(1+¢)=0 curve other than at point F, and

hence the curve A =0 is drawn as shown in Fig. A. 1, we obtain that the positive
orthant of (k, z) plane is divided into seven regions (region I through region VII as

drawn in Fig. A. 1) by three lines k=0, A=0 and f,—2(1+¢)=0.

Derivation of Z2=0 curve

Table A.1
I II 11T v \% VI VII
A + - - + - + +
K + + + + — - -
f—2(1+9) - - + + + + -
z ? - ? + - ? +

Now we derive 2=0 curve. Table A. 1 shows how sgnsi, k, f, —z(1+¢) and

hence 7 are determined in seven regions, A is positive (negative) on the right (left)
hand side of this curve, so A is positive in I, IV, VI and VII, and negative II, III and V.

k is positive (negative) above (below) the horizontal curve (z=n), and hence k is

positive in I, II, III and IV, and negative in V, VI and VII. Lastly f, —z(1+¢) is
positive (negative) on the left (right) and below (above) this curve. Hence
f, —z(1+¢) is positive in III, IV, V and VI, and negative in I, Il and VII. In equation
(A-8), recalling A(k,z,1)>0 always and E(k,z,1)>0 ifand only if f, —z(1+¢)>0,
we obtain sgnZ in each region from (A-8) as shown in Table A. 1. Since Z>0 in
IV and VII, and Z2<0 inIl and V, and Z=0 curve must pass through the stationary
point E, Z=0 curve is seen to path through regions III and VI, with 2>0 (2<0)

above (below) Z2=0 curve as shown Fig. A. 1.
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Appendix 11

First we derive | and z as functions of ¢ and k from (1) and (8). (8) implies

I =I(k,c)
with

L, =a-bHf /(f-A-Df)>0 (A-11)
and

|, =a/1-Df, - f)<O0. (A-12)
Then from (1), (A-11) and (A-12),

z=1(k,c, 9)
with

2, =(f+ fili —z(1+¢))/k(1+ ¢+ ¢"2), (A-13)

z,=(fl.-D/k(1+¢+¢"2)<0, (A-14)
and

2, =—1/k(1+¢+4'2)<0. (A-15)

Employing (A-2) and (A-3), we obtain
Cle==E/E==A]A+QRp+4" )1+ +¢'7)"' 2
=1 A+Qe+4" )1+ ¢+ ¢'2) " (z,k +2.6),
and hence from (A-13) and (A-14)
{l/c—Qp+¢"2)1+¢+¢'2) "2, 6 =4/ A+ QP +4"2)(F, + T],

—z(l+ Pk ' (1+p+¢'2) k. (A-16)
Here
Al A=B(k, z(k,c), Ik, )= p—(f +@'2>) /(1 +d+¢'7). (A-6)
Then (A-16) and
k =(z(k,c)—n)k (3)

constitute the system of ordinary differential equations in (K, ¢) —in view of z =z(k,C).

The slope of f, —z(1+¢)=0 curvein (k, c) plane
By totally differentiating f, —z(1+¢)=0, we obtain
{fo + Tl —(1+g+¢'2)z, Jdk = {~ f 1. +(1+¢+¢'2)z, Jdc.
Here from (A-11) and (A-13) we obtain
sgn{fy + ful, —(1+9+¢'2)z, }
:Sgn{fkk + f =D f /(F =A=-Df)-(f + £l _Z(1+¢))/k}
_=senl{fy + =D A Af —A=D )= (fa=Df, /k(f,—1-Df,)]
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(from f, —z(1+¢)=0) (A-17)
zsgn{kfkk(fl_(l_l)fll)+k(1_|)fkl2_fl(l_l)flk)}
=sgn(kfy, —(1-Df,) (from f, f, —f,*=0)
=sgn(—f,) (from kf, +If, =0) <0 .
Next, we observe from (A-12) and (A-14)
sgn{- f |l +(1+@+¢'2)z2.}
=sgn{(-fua /(-1 f, = f)+(fl. = 1)/k}
=sgn[- fua (A-Df, — f)+{fa(d-Df, — f)-D}/K]
sen{kf o — fa—f, +(1=Df,} (from (1-D)f, - f, <0)
sgn{(ak —(1-Dk /1) f, —(@+Df,} (from f, =—f,k/I) (A-18)
sgn{(ak —(1-Dk /Do f f,/ f —(@+1)f,}
(from o=ff /f,f)
—sgn{@a—(1-1)/)o"'0—(a+1)}<0 (from 0= fk/f)
if (a—(1-1)/DHo'@<a+1. Noting (a—(1-1)/No'§<ac™'6, we obtain (A-18)

holds if ac™'@<a+1,or

A. 2 o>60/1+a™"). Hence the slope of f, —z(1+¢)=0_in (k. C) plane

dc/dk‘ fo_20sgy=0 > 0 _under A. 2.

Fig. A. 2

Derivation of k=0(i.e., z=n) curve

Now we investigate k=0(i.e., z=n) curve in (k, ¢) plane. First we consider its

intersection with the horizontal axis (i.e., ¢=0). Then (1) is reduced to
_ 1K D=nk(l+¢)+Q.

Furthermore (8) implies |=1. In fact, although ¢=0 _also holds if f, =0, i.e.,

k/ >0 _or k—>0., k—>0 _would imply f(k,1) >0 . contradicting z=n>0.
lhen I

Hence cf(@+akang)ey0<=0<I<1. (A-19)
must follow. Here from A. 3, there exist two k’s, Kk, and k,, such that (A-19) hold.

Recalling k=0< z=2z(k,c)=n,

2, =(fe+ fily —z(1+¢))/k(1+ ¢+ 4'2) (A-13)
and
2, <0, (A-14)
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we observe dC/dk|k-=0>0 if f,—z(1+¢)>0 (i.e., on the left and upper side of

f, —z(1+¢) =0curve from (A-17)) holds. Then k=0 curve is derived as shown in

Fig. A. 2. Here k=0 curve intersects with f,—z(1+#)=0 when dc/dk|,_ >0

holds.

The Derivation of A/1=0 curve

The slope of A/A=0 curve is obtained by totally differentiating p(1+¢+¢'z)
—(f, +¢'2°)=0 obtained from (A-6);

= fu = ful + (0 - DQP+4"2)7, jdk + {= . + (0 - 2)(24'+¢"2)z, jdc =0
(A-20)

We observe p(1+¢+¢'2)—(f +¢'2°)=0 and f, —z(1+¢)=0 holds if and only if

p=1,ie, A/A=0 curve and f, —z(1+¢)=0 curve intersect at the point where

p =12 holds. As shown in Fig. A. 2, p=z curve is a dotted line below z=n
curve. And these three curves intersect at point F.  Next we observe that although the

slope of A/ is not definite, it is negative at F. In fact (A-20) is reduced to
—(fy + fl)dk—f,l.dc=0

atF. Here |, <0 from (A-12), and from (A-10)
sgn( i+ ful) =sen{fy + f A=Df (f, —A=D )}

:Sgn{fkk(fl -(1=-Df)+f, (l_l)fkl} (from f, f, - ka2 =0)
=sgn(f, f,)<0.

Derivation of ¢=0 curve
E is the stationary point at which both k=0 and A/1=0 curves, (and hence ¢=0

curve from (A-16)) intersect. kK, is determined by p=(f, (K.)+¢'2*)/(1+¢+¢'2)

(e, A/2=0) and f(k,1)=g+z(1+¢)k, and k, is by f (k,))—=(1+¢)z=0 and

f(k,1)=g+z(1+¢)k. Then the positive orthant of (k, ¢) plane is divided into seven
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regions I through VII, by the three curves k=0, A/1=0 and f —z(1+¢)=0. As

in Appendix I, we now investigate the sgns of these curves in respective regions as
shown in Table A. 2.

Table A. 2
I 11 111 1\ \Y VI VII
) + + - + - + -
K - - - + + + +
f,—z(1+¢) - + + + + - _
¢ ? — ? + ? ?

Now in (A-16), observing that the coefficient of € is positive from (A-14), and the
coefficient of k is also positive if f, —z(1+¢)>0 from (A-11) and (A-16), we can

see that sgn¢<0 in Il and sgn¢>0 in V, while sgnC is indeterminate in other
regions. Finally recalling that ¢ =0 curve must path through E, we can derive ¢=0

as shown in Fig. A. 2.
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Fig. 1 Phase diagram of (k, z) and saddle point path of z
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c AlA=0

T — [ < k = O(Z = n)

0 k, ky k k, Ky, k
(=1 0<I<1) (=01
Fig. A.2
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Appendix I

Strict Concavity of the value function W(k, k*) ,
Proof®Strict concavity of c,, ¢ and c* in (k, k*).

Let

W (ko ko*,g,9%) = max flu(c,g)+Au(c*,g*)p " dt (A-1)
and

W(k," ko™, 9,9%) = k",k‘*r,r;%.,i*-“u (c',g) + Au(c*, g "dt (A-1)*
and

{(k, k*,i,i *c,c*)}:io =arg maxj[u(c, )+ Au(c*,g*) " dt (A-2)

{(k", k*' i, i*'c, c*')}:i0 =arg maxJ'[u (c',g)+ Au(c*,g*)p " ™dt (A-2)*
Further let

J (k. k*,k,k*) = max[u(c, g) + Au(c*,g*)]=u(c, 9) + Ai(c*, g*) (A-3)
and

3k kK k) =maxfu(c’, 9) + Au(er, g¥)]=u(c’ ) + Au(er, g% (A-9)*
Here

f(k)+ f(k*)=c+c*+i+i*+g+g* (A-4)
and

f(k')+ f(k*)=c+c*+i'+i*+g+0g™* (A-4)*
hold by definition. We want to show

J(k, k%K, K, %) > 23 (K k* K k) + (- A)I (K kK k™) (A-5)
for any 4 with 0<A<1l where (kk*)=(k'k*) , k, =4k +(1-A)k'

k,*=Ak*+(1-A)k*, k, =4k+(1-A)k' and k,*=ik*+(@1-2)k*, and thereby the

strict concavity of ¢ and c* as functions of k and k*. From (A-4) and (A-4)*, we observe

when (k,k*) = (k',k*') holds,
A (K)+ (L= 2) f(K') + AF (k%) + (L= A) F (k*) < f(K,)+ f(K,*)

and hence
C,+C, *+i, +i,*+g +9g *< f(k,)+ f(k,*).

(A-6)

(The subscript £ denotes the linear combination of the variables x and x* with

8 We follow Brock and Scheinkman (1977) for the following arguments.
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X, =AX+(@—-A4)x". Furthermore from (1) and (1)*, we obtain

K, = A¢(2)k + (1- )p(2)k'~(n+ 5K, (A-T)
and

K,* = A¢(2*)k *+(L— (2 )k*~(n+ S)k,, * (A-T)*
Let u=k/k, and 1-pu=Q0-A)k'Tk, and wr=k*lk,* and

1-p*=@1-A)k*/k,*. Then from (A-7) and (A-7)* we obtain
K, =k, (up(2) + (1- w)(2)) - (N+ S)k, <k, 4(z,)— (n+ )k,
and
k,*<k,*¢(z,*)-(n+5)k, *
from the concavity of ¢, where z,=pz+(Q-x)z" and z,*=pu*z*+(1-pu*)z*. Let

z* and z** be the values of z and z* respectively such that

k, =g(2)k, —(n+5)k, (A-8)
and
k‘z*=¢(2*l)ki*_(n+5)kz* (A-8)*
hold.
Here we note by construction
z°<z, and z* <z, * (A-9)

and by definition z* =z(k,,k,*) and z**=z*(k,,k,*) holds from (A-8) and (A-8)*.

(In general z and z* are seen to depend on k and k*.  Furthermore (A-8) and (A-8)* state

that z* and z**can be expressed as functions of k, and k,*) Furthermore, we
observe i*=k,-z2* <k, -z, =k,(uz+(1-p)z')=Akz+(@1-A)k'z'=Ai+(1-A)i'=i, and

similarly i** <i,*. Thenwe cantake c, with ¢, >c, +c,* such that
Cl+it+i* +g+gr=f(k,)+ f(k,*). (A-10)

Here we note c.=c*+c* >c,+c,* if (k,k*)=(k',k*") (which is obtained from

c**/c* =c,*/c, inview of (4) and (4)*°) holds.

9 (4) and (4)* show that given g and g*, ¢ and c* are proportionate independent of k. Hence cx=c,
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Hence we note
A(u(c,g)+ pu(c*, g%)) + A-2)(u(c’, g) + pu(c*, g%)) <u(c,,9) + Au(c,*, g%)

<u(c*, g)+ pu(c**, g*) <J(k,,k,*k,k,*), and hence (A-5) holds. Since k, and
k,* depend on k, and k,* from (A-8), (A-8)* and from z*=2z(k,k,*) and
2% =z2(k,,k,*), i*=k,z* and i*" =k, *z**, we observe that from (A-10) c., c*

and c** dependalsoon k, and k,*, with

ci=c,(k,,k,*)>c, +c,*= A(C+C*)+(1-A)(c+c*')
= Ac, (K, k*)+(@-A)c, (k' k*"),

¢t =c(k,,k,*)>c, = Ac+(L-A)c'= Ac(k, k*) + (L— A)c(k', k*"),
and

c* =c*(k,,k,*)>c,*=Ac*+(1—A)c*'= Ac* (K, k*) + (L— A)c* (k' k*)
showing the strict concavity of c,, candcin (k, k*). Here we note (A.5) implies

[0k, %k, k%) ™ dt 24 [ 3 (k,k* K, k=)e ™' dt

+(1-2) j J(K' k* k' k*)e it

If (k,k*)=(k',k*") holds for some time with 0<t<t,, then the strict inequality holds

for the above, showing
W (kos ko, )= max AJ'J(k,k*,k,k*)e‘(p‘”)‘dt>iW(ko,ko*)+(1—/l)W(kO',kO*‘)

PR R il Kl o
(A-11)
i.e., the strict concavity of W in (k, k*). [ |
Appendix 11
Solution Path of k, k*, z and z* - local representation
1-(1)
By totally differentiating (5) and (5)* and rearranging, we obtain
2=(A1A—pul w)p'l ¢, (A-12)

=)' and c*=,c** hold. Thisimplies ¢**/c* =c,*/c, =y.
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and
= (A A= > 1 p=)g= 1 9>, (A-12)*
where ¢*'=¢'(z*)and ¢*"=¢"(z*).
Next by totally differentiating (4) and (4)*, we observe
AAi=-G¢lc=—Gc¢*/c*=-5¢,/c, (A-13)
where & =1-a(l-0)>0.
Total differentiation of (2) leads to
¢, =(f'—2)k+(f*-z%)k*—zk — 2%k * (A-14)
where f*'=f'(k*).
By substituting (A-14) into (A-13) (thereby deleting ¢, ) and then substituting (A-13) into
(A-12) and (A-12)* (thereby deleting A/4), and rearranging, we obtain
1-ok¢'lc,g"  —ok*¢'lc,¢" z
—ok¢*'lc,g*" l-ok*¢*'lc ¢*"| 2*

{_i{(f—z)kﬂf*—z*)k' *)- ﬂ/#}bm

Here let A, the determinant of coefficient matrix of (A-15) be evaluated at E (the
stationary state) .

A= 1——(k¢/¢ wk*g* [ g*") = (1- 25T, ¢ k") > 1. (A-16)

(A-15)

C
{ Foz)k + (F*=2%)K*|— io*/ u }¢*/¢*

Let k, k* 4 and z* be represented near E so that

k=¢'k(z-2) (A-17)
K* — *'K*(2*-1) (A-17)*
p=¢"(7-Ya(z-17)-¢' " u(k—k) (A-18)
i =¢"(7- ) a(z*-2)- ¢ f m(k*—k) (A-18)*

from (1), (1)* (6) and (6)*. (Henceforth all coefficients are evaluated at E, so ¢'=¢*',
g'=¢*", t'=1*, z=z* and k=k* etc. hold) From (A-15), we obtain

j — _z 2k *_ x| xl_ ﬁ _ak*¢*l
Az_[ CW{(f 2)K+ (F*=z)K *} y/yL"[l —cw¢*"j

¢+ ok*¢'
P*" Cuf"

§°|QI

{(F=2)k + (F—z%)k*}- i /y}
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I TR S U T U Sel 2l NV e i ol AN
- {(f-2)k+ (Fr—z%)k }¢" ﬂ¢"{1 j 5 (A-19)

W c.g*" ) wu*g* c,¢"
and
. o* ok¢'
pr* = fog)kt (Frozke) £ |2 ]
Z { Sy Lﬁ( cw¢"J
_i 2\k *1_ ok '*_E ﬂ—ﬂ
+[ . {(F=2)k + (Fr—z)K *} u}¢"acw¢*"
{(f —2)K + (F¥—7%)K }Z: ”*Z: (1 & '7; J—%;i— '7;* (A-19)*
Let
Ai=a,(z-2)+a,(z*-2)+a,(k—k)+a,(k*—k*),
and

AZ*=a,(2—Z)+8,,(2*~7%) + &, (k —Kk) +a,,(k *—k*).
Then by substituting (A-17) through (A-18)* in to (A-19) and (A-19)*, we observe
=-oc, (f-2)g'¢" " gk —¢'¢"" (L-ck*g*c,/¢*" " )" (2~ ')
=g (-2)(200, Pk ") = § ¢ (1-2)¢" A= ¢ (1 -2)A,
8, =30, (F¥=29)g " g~k g g™ Gk g ¢+ (2~ 1) =0,
a; =4 LGk *g~c, /g )t
N A S A A
8, =00, ({2 fk— g ¢ Skge}g™ §'(2- 1) =0
8y, = =0, (12~ g™ gk~ (L akpre, g g (2~ 1)
=g (F-2)(200, Pk —¢") = g7 (DA

S e
A e VA Vi
Recalling
p-n=4¢'(f'-2) )

we observe that f'—=z>0 at E holds. Now let
a A" =a,A" =¢'(f'-z)=p-n=2a,>0

a,A"=a,A"t=a,>0

a,A"t=a,A"=a,<0
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P'k=¢*"k*=a,>0.
This shows (24).

Appendix 1
Let (v, v, Lviy)', 1=12, satisfy
a, — o, 0 a;, a, \(vy
0 - a8y || Vip | 0 (A-20)
ag 0 -o; 0 1 '
0 ag 0 -o )\vg,
Then we obtain
Z2-7=Av,e” +Bv,e™,
2*—7=Av,e” +Bv,e™,
k—k = Ae™ +Be™, (A-21)
and
k*—k = Av,e™ + Br,.e™,

where A and B are determined by the initial values and stationary values of k and k*.
From (A-20), we obtain

(& —w;)vy+a;+a,v;; =0 (i)

(a,—w)vi, +a, +a,1;, =0 (i)

agv, —w; =0, (iif)
and

agV,, —o;v;; =0. (iv)

From (iii) and (iv),
Vi =185 =V, [vy,

and hence v,, =v,;v,, areobtained. Substituting this into (ii), we obtain
(& — )iV +a, +a3v;3 =0,

or
(&, -—w)vy+a,/vi;+a;=0. (V)

From (i) and (v), v; =1 is derived. We recall @, and @, (which are expressed as (25)
and (26).) satisfy respectively o/ —a,», —a,(a,+a,)=0 and

wzz_aia)z_as(a3_a4)zo-
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(1) wv,;=1. Then v, =v,, and from (i) and v, =w/as, (8, —®;,)w,/a;+a,+a,=0
is derived. This is satisfied if i=1.

Similarly

@ vy=-1 . Then v,=-v, , and from (i) and v,=0/a,
(a, —w;)o,la;+a,—a,=0. Thisis satisfied if i=2.

In short we obtain v,=v,=m/a, v,=1, v,,=w,la,, v,,=-V,,=-0,/a,,

v,; =—1. Then (A-21) is expressed as

2-7=(w,/3;)Ae™ +(w,/a;)Be™,

2*-7=(w,/3;)Ae™ —(w,/a;)Be™

k—k = Ae”" + Be“!
and

k*—k = Ae“! — Be“"
where A and B must satisfy

k,—k=A+B,and k,*~k =A-B,
or
A=(k, +k,*—k,)/2 and B=(k, —k,*)/2.

Substituting A and B into the above, we obtain (27) through (31)*.

Appendix 1V

Derivation of (33)
From (11) and (11)*, we obtain

— A2 = ~(ug Juc)e = T ¢/c =T ¢y [oy (A-22)
From (32), we observe

Gy =@ (Cy —Cy). (A-23)
Hence from (12), (A-22) and (A-23)

r=p—Ai/A=p+Gm (Cy —Cy)/Cy = p+5m; (Gy —Cy)/Cy - (A-24)
(Here we note d(c, —G,)c, -/dc, =&, /cy? , and hence linearlization around the stationary
state implies (cy —Gy)/cy = (G —Gw)/Gy ).
Next (10) is linearlized around the stationary state;
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a=(r-nja+f(kk)-c-zk-g
=a(r—p)+(p-n(a-a)+(f'-2)(k-k)-k(z-2) - [1+7) (cw —C)
= acw; (cy — Gy )/G +(p-n)(a-a)+(f' - 2)(k-k)
—k(z=2) =L+ 7)™ (cw —Cw)
from (A-24).
Employing (27),(28),(32), and f'—Z—(@,/as)k =(p—-n—w,)¢'" (obtained from (9) and
as = ¢'-k ), the above is rewritten as

a=Ae”"'+Be” +(p-n)(a-3) (A-25)
where

A= (G /Gy —(L+7) " +27)(p—n-)d  (kow —k),
and

B=(p-n-w,)(k - ko*)g_lz_l .
Now let

a=ae” v oe® + &My g (A-26)
where «,,a, and ¢ depend on initial values and stationary values of k and k*,
¢y, @,i=12,and gand g*. Then by totally differentiating (A-26), we obtain

a= otla)lewt +a,m,e”" +E(p—n)er M (A-27)
=a,(w,— p+n)e”" +a,(w, — p+n)e +(p—n)(a-3a).

Then by comparing (A-25) and (A-27), we obtain

a =A@ - p+n) =~(G8w, [y — (L+7) " +27)F H(kow — k) (A-28)
and

@, = Bf(@, — p+n) = ~(ks —kg*)§' 27" (A-29)
In (A-26), by letting t = 0, we obtain

c=ay-—ao—ay-a. (A-30)

By multiplying e~ on both sides of (A-26), we observe
ae (P = ge(@mpt y o a(@rmpet 2y (ot
From NPG (17)and, a—a and r— p as t— o, we canconclude &£=0, or
a=a - —a,. (A-31)
Next by substituting (A-28) and (A-29) into the above and by rearranging we obtain
& ={apd —(9*-09)2 (2 =27k — gy ) " (kow —kw )+ (ko — ko*)zfl}/[(kow —kw) (33)
oG +(p-n)2f ~22K - gy ) |+ 7]
noting
W+ ) =g+ (F -k - g)(p-n) 2 2f ~ 27K - gy ) H(o 1)
and
(f ~kz-0)/(2f ~2kz-gy)-1/2=(g*-0)2"(2f ~ 2k~ gy)™".
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Figures

k

Fig. 1 Monotone convergence of the path (k,k*)

f A, k=k*
C /A
E
Bl
D k+k*=k,
45° ' B f
0

k
Fig. 2 Properties of the Stationary State (k,k*)
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k*

k=k*
ex=0
0
Fig. 3.1

k* ex=0

k=k*
0

Fig. 3.1l
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k*

E x/////—A
N

C

0
Fig. 3.1 a<0(EX >0)

k*
k = k*

0

Fig. 3.1V a>0(ex<0)
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k*

k = k*
ex<0 A
ex=0
E ex>0

N

C
0
Fig.3.l.a (@a<0,ie,ex>0)

k*
k =k*
/ A
E ex=0

B
C
0

Fig.3.1.b (a>0,ie,ex<0)
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k* ex=0

k =k*
ex<0
A
[ ex>0
V\B
C
0
Fig.3.1l.a (a<0,ie,ex>0)
k*
ex=0 ,k=k*
A
E
B
C
0

Fig. 3.1l.b  (@>0,ie,ex<0)
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