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Forecasting Long-run Coal Price in China: A Shifting 

Trend Time Series Approach 

Boqiang Lin, Baomin Dong† and Xuefeng Li∗ 

Abstract. The paper studies the behavior of mid- to long-run real energy prices, 
especially coal price in China.  The problem is of great importance because the coal 
takes 70% share in China’s energy mix and China is the world’s second largest carbon 
emitter.  An accurate forecast in coal price is crucial in predicting China’s future 
energy consumption mix as well as private sector’s energy-type-related investment 
decisions.  In estimation and forecasting, the shifting trend time series model 
suggested by Pindyck’s (1999) is used to capture the technological progress etc. that 
are unobservable to the econometrician.  It is found that the shifting trend model with 
continuous and random changes in price level and trend outperforms plain vanilla 
ARIMA models.  It is argued that the model postulated by Pindyck is robust even in a 
transition economy where energy prices are subject to relatively rigid regulatory 
control. Out-of-sample forecasts are provided.  
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1. Introduction 
It has been recognized that fluctuations in energy prices have important and lasting effects on the 
economies of industrialized countries (Hamilton (2003)).  From a microeconomic or managerial 
perspective, forecasting energy prices can also be of very pragmatic1.  The literature has 
extensively studied the impact of oil price changes on the economy.  Energy plays a fundamental 
role in China’s economy and continues to support the rapid economic growth and growing living 
standards. Because coal is such a dominant component of the energy structure in China, the coal 
industry has been important in this context. Coal is used in all sectors of China’s economy and by 
households. It accounts for over two-thirds of primary energy consumption and more than 
three-quarters of electricity generation2. 

                                                        
† Contacting author, Department of Economics, University of International Business and Economics, 
baomindong@uibe.edu.cn  
∗ Department of Economics, University of International Business and Economics, Beijing, China 100029  
1 In private sectors especially energy producers and consumers regularly attempt to forecast prices of oil, coal, 
and other resources over time horizons as long as twenty or thirty years.  Producers make these forecasts for 
general purposes of strategic planning, and for specific purposes of evaluating investment decisions, e.g., related to 
resource exploration, reserve development, and production.  Industrial consumers, such as petrochemical 
companies or electric utilities, make these forecasts for the same kinds of reasons – oil, coal, and natural gas are 
important input costs that can affect investment decisions (e.g., an oil- versus coal-fired power plant for an electric 
utility), or even the choice of products to produce (e.g., a set of chemicals or the processes used to produce those 
chemicals).  
2 In 2004, the raw coal production is 1956 MT in China and the consumption demand in 2005 will exceed 2.1 BT, 
surpassing the demand in 2004 by 0.15 BT, where the increase is largest in power coal which accounts for 0.1 BT. 
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Forecasting the behavior and patterns of energy prices, however, can be quite challenging. In the 
case of China, the rate of growth in China’s energy consumption has been a little more than 
moderate since 2000, in comparison to the notable decline in domestic coal consumption in late 
1990s. The 2005 overall coal price increases by more than 50 Yuan/ton compared with 2004 level. 
Contributing to this have been newly operated coal-fired power generators, fast growing economy 
and decrease in the marginal benefits of efficiency improvements in electricity generation and in 
industry.  This view is shared by a number of economists and practitioners.  Thus, to 
characterize the price behaviors of coal and other energy, apart from domestic and international 
supply and demand conditions, one also needs to take into account market regulations, 
technological advances, and geopolitical considerations. These non-market-related aspects present 
the essential challenges for the econometrician, since they are largely unpredictable.  For that 
reason, Pindyck (1999) suggests that, rather than fully articulated structural model, it is preferable 
to adopt simple models for our long-run forecasting needs where prices grow in real terms and at a 
fixed rate.  

Despite being simple, the shifting trend models is flexible, allowing prices to grow from their 
current level (i.e., prices follow a random-walk process with drift) and/or from a changing trend 
line (i.e., prices revert to a possibly moving mean). Such differences can be thought of as 
reflecting differing assumptions regarding resource depletion and technological change. Indeed, 
using a simple Hotelling model on depletable resources, Pindyck shows that long-run energy 
prices should revert to an unobservable trending long-run marginal cost, with continuous random 
changes in their level and in the slope of their trend.  

The coal price in China grew very slowly under the centrally-planned regime during 1950’s to 
1980’s. The average mine-mouth sales price of raw and washed coal in major state-owned mines 
increased very slowly from 1953 to 1980 (see appendix A).  The story is changed after major 
reform measures took place.  The reform of coal prices in China has experienced five stages 
since the opening door policy enacted in late 1970s, from completely centrally planned one into a 
market oriented one gradually.  To eliminate the possible biases caused by rigidity of the 
regulatory price control before 1994, our model uses price data ranging from 1994 to 2005.   
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1 Prices in Qinghuangdao Coal Market 
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Table 1－1  Key State Coalmine Price 1953～2004 (in Yuan/ton) 

Pricing Scheme Year Average Price 
1953 11.00 
1960  
1965 17.68 
1970  
1975 16.48 

Coal Price 
determined by 
the State 

Single 
Track 
System 

1980 21.33 
1985 26.05 
1990 43.85 
1991 58.45 

Deregulation of 
Coal Prices 

1992 90.67 
1993 105.42 
1994 108.94 
1995 115.00 
1996 125.00 
1997 166.60 
1998 160.20 
1999 143.98 
2000 140.19 

Gradual 
Liberalization of 
Coal Prices 

Dual Track 
System 

2001 150.99 
2002 167.81 
2003 173.81 

Completely Market 
Determination 

2004 206.43 

Source: The Electric Power and Coal in China, Coal Industry Press 

With rapid economic growth in China since the economic reform in 1979, the nation recently 
experienced overall energy shortage.  In particular, the energy shortage is largely constituted by 
severe bottlenecks such as restricted electricity transmission capacity from western regions with 
abundant power resources to the eastern regions with relatively poor energy resources and fast 
growing energy demand.  On the other hand, economists claim that most energy input sources are 
underpriced, causing resource distortions in the economy, possibility of unsustainability of 
continuous growth, and environmental problems.  With abundant endowment of coal and heavy 
reliance on coal as main energy input source across the country, price of coal is essential to the 
nation's economic growth. 

Historically, there is a gap between commercial coal price and power coal price in China because 
of the inflexible electricity tariffs and priority of electricity generation among all industrial 
sectors3.   

                                                        
3 In 2004, the average price of commercial coal by key state coal firms is 206.54 Yuan/ton, with a 47.3% increase.  
Power coal price was 161.55 Y/t in average in the same year, who sees a 33.6% increase.  The difference between 
average commercial coal price and average power coal price was widened to 44.99 Y/t, or 14% difference in 
corresponding increases.   
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Table 1-2.  Commercial Coal Price vs. Power Coal Price during 1997～2004 (Y/t) 

 1997 1998 1999 2000 2001 2002 2003 2004 
Average Commercial Coal 
Price 166.34 160.20 142.74 140.19 150.99 167.88 178.61 206.54 

Average Power Coal Price 137.33 133.27 121.48 120.93 123.94 137.25 145.25 161.55 

Difference 29.01 26.93 21.26 19.26 27.05 30.56 33.36 44.99 

Coal-fried generation takes a share as high as 80% in China.  Power coal consumption is around 
half of the total coal consumption in China.  The growing demand for electricity continuously 
drives the demand for coal to increase.  Power coal price increase is a main component of coal 
price increase.  But the price gap is about to an end, since the NDRC has lifted up the last 
restriction on power coal pricing – the suggested price – since January 2006 Coal Ordering 
Conference.  To resolve potential conflict between coal producers and power generators, the 
regulator has prepared and indeed activated a price linkage program4 which allows power prices 
to float in line with the change in coal prices.   

The environmental valuation of powerplant emissions may put a limit for the coal price if the 
prices for alternative fuels remain constant or with moderate increase compared with coal price.  
Already, China has begun to charge powerplants for emissions of sulphur dioxide and nitrogen 
oxides. The tax on these pollutants may increase over the years, as a means of internalizing their 
environmental and health costs to China’s citizens.  In addition, as concerns grow over global 
warming, a market value may increasingly be attached to greenhouse gas emissions.  

Therefore, in our estimation, we only focus on the price behavior of commercial coal because of 
the fact that power coal price is now also completely subject to market determination.  

In this research we examine the mid- to long-run behavior of coal prices in China without 
considering structural modeling.  Following Pindyck (1999), we first test whether prices are 
mean-reverting.  The results support the hypothesis that coal price follow a mean-reverting trend, 
but the rate of mean revision is very slow so that a decision maker can treat the price movement as 
a geometric Brownian motion, or other random-walk process. In addition, similarly to the 
Pindyck’s result on US energy price long run data, the trends to which prices revert are themselves 
fluctuating over time.  

2. Brief Literature Review 

The idea of shifting trend, as pointed out earlier, is not new.  Perron (1989) developed a 
stochastic switching model that allows for discrete shifts in the slope or level of the trend line. 
Applying the model to data on real GNP, he found two events that seem to represent permanent 
changes in the underlying process, the Great Crash (which shifted the trend line downward) and 
                                                        
4 Under the scheme, power companies can transfer 70 per cent of the rise in fuel costs to end users, should coal 
prices increase by more than 5 per cent within a six-month period. Power companies will have to absorb the 
remaining 30 per cent themselves.   
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the 1973 oil price shock (which changed the slope of the trend line).  Other econometricians, 
such as Videgaray (1998), examined the possibility of such a structural change in the context of 
the price of crude oil and found a structural change around 1973 which supports Perron’s 
argument.   

    The present research will focus on time-varying trend or sometimes called shifting-trend 
models.  In energy price forecast model literature, Huntingon (1994) shows that the forecasting 
performance of ten structural models was problematic since the errors in structural models were 
due to factors such as exogenous GNP assumptions, resource supply conditions outside OPEC, 
and demand adjustments to price changes.  Lynch (2002) concludes in similar fashion in a 
comparison between the theory and empirics of oil supply forecasting.  Koomey et al (2003) 
point out that factors like technological innovation and inaccuracy of oil reserve forecasts may 
also contribute to the forecast errors.  Tang and Hammoudeh (2002) show that omission of 
market participants' expectations account for forecast errors too.  Pindyck (1999) points out that 
structural models may not be always accurate in long run forecast, but they are better suited at 
providing understandings of the causes of short or intermediate run fluctuations of prices and other 
variables.  Pindyck argues that the dynamics of real energy prices is mean-reverting to trend lines 
with slopes and levels that are shifting unpredictably over time.  The hypothesis of shifting long 
term trend lines was statistically tested by Benard et al (2004) and statistically significant 
instabilities for coal and natural gas prices were found. 

    Using the model of depletable resource production, Pindyck (1999) argues that the forecast of 
energy prices in the model is based on the long run total marginal cost.  To increase the 
prediction accuracy, Radchenko (2005) relaxes some assumptions on model parameters and white 
noise terms in Pindyck (1999), and proposes a Bayesian approach to estimate the model with 
autocorrelation.  Radchenko (2005) also combines shifting trend model, random walk model and 
autoregression model and finds that the combined model substantially decreases the mean squared 
forecast error (MSFE).   

The current research presents the shifting trend model and compares it with a benchmark 
time series ARIMA model.  Ye et al (2002) propose a short run monthly autoregressive 
distributed lag forecast model of WTI crude oil spot price using OECD inventory levels. Zeng and 
Swanson (1997) examine the predictive accuracy of various econometric models for the crude oil 
price using daily futures prices.  Chacra (2002) uses a quarterly forecast model to examine the 
relationship between world oil prices and components of CRP-energy and builds short-sighted 
forecasts.  Sun and Peng (2000) fit the historical prices (1994~1999 time series data) of high 
quality Shanxi coal (5,500 kCal/kg) in a time series model and conclude the data suits the ARIMA 
(1,1,1) model, using AIC (Akike Information Criterion). 

Our estimation shows that the coal price follows reversion to trend lines with slopes and 
levels that are both shifting continuously and unpredictably over time, so that each price follows a 
multivariate stochastic process.  The shifts themselves are mean-reverting, but ignoring the 
stochastic components here is misleading, and can lead to sub-optimal forecasts5.  

 
                                                        
5 Pindyck (1999) has shown that a multivariate model with continuous fluctuations in the trend line slope and 
level is consistent with basic models of exhaustible resource production. 
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3. The Model 

In the existing literature of Econometric models and forecasts on energy demand, single 
equation time series model is a frequently used choice.  On one hand, the naïve time series 
approach has the merit of avoiding misspecification errors compared with panel data model.  On 
the other hand, it is obvious that most economic data commonly used in demand analysis are 
normally nonstationary and Econometric studies that overlook this particular characteristic may 
lead to a ‘purious result', that is, obtaining a high R² although there is no meaningful relationship 
existing between the two sides of the equation.  This problem occurs because when both the 
dependent and independent variables involved exhibit strong trends, the high R² observed is due to 
the presence of the trends, not to a true relationship between them.   

    To overcome the spurious problem, one of the best solutions is to apply cointegration and 
error correction models (ECMs)6.  We use the traditional ECM time series model as a benchmark 
to be compared with.  

The model of interest here is the one developed by Pindyck (1999) who proposes a reduced 

                                                        
6 See appendix B for details.  

 

Figure2-1. Ex-Factory Price Indices for Industrial Products by Sector (1990=100) 
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form model with time-varying parameters for the analysis of stochastic properties of energy prices.  
This conjecture is supported by Benard et al (2004) who present evidence in favor of the class of 
time-varying parameter models suggested by Pindyck (1999). 

    The univariate shifting trend time series model is as follows: 

 1 1 2 1 2t t t t tp p b b t t uγ φ φ−= + + + + + ，           （3.1） 

    1 1, 1 1t t tc vφ φ −= + ，                            （3.2） 

    2 2, 1 2t t ts uφ φ −= + ，                           （3.3） 

    1t t tu u eψ −= + ，                             （3.4） 

where 1tφ  and 2tφ  are unobservable state variables, 1tp  is a real price of coal.  The 
distribution of the error terms te , 1tv  and 2tv  is multivariate normal, te  is uncorrelated with 

1tv  and 2tv , in particular, 2 2 2
1 1 2 2~ (0, ), ~ (0, ), ~ (0, )t t te N v N v Nω σ σ . When the 

parameter ψ is set to zero, the model converges to the one in Pindyck (1999).  The assumption of 
autocorrelation in the error term is based on the preliminary analysis of the error terms in white 
noise model.   

    Despite a parsimonious form of the model, it is proved difficult to estimate this model for 
energy prices using the maximum likelihood estimation approach. This model has problems with 
convergence and estimation of long-term trends for coal and natural gas prices.  Pindyck (1999) 
suggests that these problems may be attributed to the nonstationarity of the unobservable states.  
Thus the Bayesian analysis seems to be a better alternative for model estimation because the 
results in Bayesian framework are less influenced by whether variables are stationary or not. 

    To estimate different energy price models, Pindyck (1999) sets a parameter s in equation (3.3) 
to 1 for coal model, sets a parameter c to zero for natural gas model, and exclude the unobserved 
state from the estimation of gas model. We do not restrict parameter s to 1 or c to zero for any 
model and do not exclude the unobserved state 1tφ  from estimation. 

    To check how well shifting trend models perform, we compare mean forecast squared errors 
for shifting trend models with the random walk model and univariate autoregressive models.  
Therefore, we consider three forecasting models in total.   

    It is well known that combining several forecasts can yield a mean square forecast error 
lower than that of a single forecast. We construct linear combinations of forecasts to check how 
well they perform relative to single forecasts.  Combination forecasts are constructed using the 
following formula: 

                 , , ,
1

Mc

m h tt h t h m
m

y k y+ +
=

= ∑                   （3.5） 
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j h t
m

MFSE
k y

MFSE

ω

ω

=

=

∑
               （3.6） 

where 
c

t hy +  denotes a constructed combination forecast, ,t h my +  denotes the forecasts of the 
considered model (m=1,2,3), h is the forecast horizon (h= 10 years, 15 years), , ,m h tk  denotes a 
weight for each model and forecasting horizon.  In computing the weights, we set the coefficient 
ω=1 for simplicity, which implies that the weight of model is chosen as inversely proportional to 
its MFSE.  We also check the performance of combination forecast when the coefficient ω for 
larger value which implies that the best performing model receives more weight.   

The Gibbs sampling algorithm, one of the simplest Markov chain Monte Carlo algorithms, is used 
in estimation in univariate models with shifting trends. Gelfand and Smith (1990) discussed the 
value of the Gibbs algorithm for a range of problems in Bayesian analysis. 

   To define the Gibbs sampling algorithm, let the set of full conditional distributions be 

 {π(ψ₁|ψ₂,..., pψ )};{π(ψ₂|ψ₁,ψ₃..., pψ )};...,{π( pψ |ψ₁,..., 1dψ − )},        （3.7） 

Now one cycle of the Gibbs sampling algorithm is completed by simulating 1{ }p
k kψ =  from these 

distributions, recursively refreshing the conditioning variables. The Gibbs sampler in which each 
block is revised in fixed order is defined as follows. 

   Gibbs Sampling:  

    1.  Specify an initial value ψ⁽⁰⁾=(ψ₁⁽⁰⁾,..., (0)
pψ ) 

    2.  Repeat for j=1,2,...,M 

       Generate ( 1)
1

jψ +  from π(ψ₁| ( )
2

jψ , ( )
3

jψ ,..., ( )j
pψ ) 

       Generate ( 1)
1

jψ +  from π(ψ₂| ( 1)
1

jψ + , ( )
3

jψ ..., ( )j
pψ ) 

    ... ... 

       Generate ( 1)
1

jψ +  from π( pψ | ( 1)
1

jψ + ,..., ( 1)
1

j
pψ +
− ) 

    3.  Return the values Generate {ψ⁽¹⁾,ψ⁽²⁾,..., ( )Mψ } 

    Since when the k-th block is reached, the previous (k-1) blocks have been updated. Thus, the 
transition density of the chain, under the maintained assumption that π is absolutely continuous, is 
given by the product of transition kernels for each block: 

 ( 1) 1 ( ) ( )
1 1 1

1

( , ') ( | ,..., , ,..., ).
P

j j j j
k k k p

K

K ψ ψ π ψ ψ ψ ψ ψ+ +
− +

=

=∏            （3.8）     

    In our case, let iΘ  denote the ith draw of all model parameter, 
2 2 2

1 1 2( , , , , , , )i i i i i i i ib c sγ ω σ σΘ = , and 1
iΦ  be the ith draw of the first unobserved states and 

2
iΦ  be the ith draw of the second unobserved states.  Given the draw of parameters iΘ , the 

Gibbs sampling algorithm is used to generate the draw of parameters 1 i+Θ  and states ( 1)
1
i+Φ and 

( 1)
2
i+Φ . 
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    We use conjugate prior distributions to simplify computations in the Gibbs sampling 
algorithm.  The choice of hyperparameters in our univariate model should be based on the 
Econometrician's available information and trials.   

    For the distribution specification of hyperparameters for variance, we follow the existing 
literature, i.e., assume Inverted-Wishart distribution for the variance parameters.  The potential 
difference in the prior for variance across different energy input prices is consistent with the 
estimates of unobserved states and their variance in Pindyck (1999).  A simple way to 
incorporate the Gibbs sampling procedure is through a Kalman filter model.  In Eviews or TSP, 
the Kalman filter treats the trend line slope and level as state variables that evolve stochastically, 
and that cannot be observed directly.  The values are estimated recursively over the sample 
horizon, along with any fixed parameters.  Thus the Kalman filter is a type of time-varying 
parameter estimator.  

4. Data and Estimation Results 

We examine the coal prices over the 11-year period from 1994 to 2005.  All coal prices are 
Qinghuangdao coal market average trading prices, available from Development Research Center 
of State Council (PRC) and Coal Information Magazine.  Natural logarithm of each deflated 
series is taken.  

Firstly, an AR(1) with fixed trend time series model is estimated as follows.  

 2
1 2 3 1log logt tp t t pα β β β −= + ⋅ + ⋅ + ⋅  

The estimation results show that  

 
2

1log 0.307 0.0008 8E( 6) 0.947 log
       (0.114)  (0.0003)   2.2E(-6)        (0.0207)

t tp t t p −= − + − ⋅ +
 

where numbers in parentheses are standard errors of the parameter estimates.  
 
Regression 1: AR(1)   
Sample (adjusted): 1995M01 2005M09  

Variable Coefficient Std. Error t-Statistic Prob.   

α  0.306938 0.114407 2.682857 0.0083 

1β  -0.000822 0.000260 -3.163818 0.0020 

3β  0.946818 0.020704 45.73091 0.0000 

2β  8.00E-06 2.21E-06 3.623324 0.0004 

R-squared 0.983396     Mean dependent var 5.517869 
Adjusted R-squared 0.982998     S.D. dependent var 0.179204 
S.E. of regression 0.023367     Akaike info criterion -4.644470 
Sum squared resid 0.068252     Schwarz criterion -4.555794 
Log likelihood 303.5683     F-statistic 2467.794 
Durbin-Watson stat 1.569310     Prob(F-statistic) 0.000000 
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The actual, residual and fitted graph is as follows.   
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The out of sample forecast is done as follows.  
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The following graph is the one that transformed into prices (not logarithm). 
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The second model estimates the same model but with a smaller sample, i.e.,    

2
1 2 3 4 1log logt tp C C t C t C p −= + ⋅ + ⋅ + ⋅  

2
1 1log 0.326 0.0289 0.00031 0.945log 0.997

          (0.19)   (0.0038)   3.44E(-5)     (0.0456)          (0.119)
t t tp t t p u− −= − − + ⋅ + −

 

where numbers in parentheses are standard errors of the parameter estimates. 
 
Regression 2   
Sample: 2003M05 2005M09   

Variable Coefficient Std. Error t-Statistic Prob.   

T 0.028824 0.003817 7.552282 0.0000 
T2 -0.000306 3.44E-05 -8.912848 0.0000 
C -0.326043 0.190096 -1.715148 0.0992 

LPRICE(-1) 0.945278 0.045642 20.71060 0.0000 
MA(1) -0.997406 0.118892 -8.389143 0.0000 

R-squared 0.984735     Mean dependent var 5.764485 
Adjusted R-squared 0.982190     S.D. dependent var 0.201065 
S.E. of regression 0.026833     Akaike info criterion -4.242810 
Sum squared resid 0.017280     Schwarz criterion -4.007069 
Log likelihood 66.52074     F-statistic 387.0486 
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Forecast from this model shows that price will increase substantially in five years.   
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As one can see clearly that the second model also gives unreasonable price forecasts.  



 13

0

500

1000

1500

2000

2500

1996 1998 2000 2002 2004 2006 2008 2010

LPRICE_D1 LPRICE_S1
 

The third model, shifting trend model, outperforms all other estimations we have performed.  
The model we estimate is  

 1 2 1 1 2log t t t t tp c c p tφ φ ε−= + + + +  

 1 3 1, 1 1

2 4 2, 1 2

,
,

t t t

t t t

c
c

φ φ υ

φ φ υ
−

−

= +

= +
 

Regression 3, Shifting Trend Model 

 Coefficient Std. Error z-Statistic Prob.   

C(1) 2.834709 0.351328 8.068556 0.0000 
C(2) 0.467773 0.070751 6.611539 0.0000 
C(3) 0.961771 0.143505 6.701984 0.0000 
C(4) 0.994278 0.006032 164.8336 0.0000 
C(5) -8.894320 0.207795 -42.80339 0.0000 
C(6) -16.51694 0.092315 -178.9197 0.0000 

 Final State Root MSE z-Statistic Prob.   

SV1 0.008447 0.042130 0.200491 0.8411 
SV2 0.002584 0.000413 6.255229 0.0000 

Log likelihood 317.0173      Akaike info criterion -4.821974 
Parameters 6      Schwarz criterion -4.688959 
Diffuse priors 0      Hannan-Quinn criter. -4.767927 
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The following graph shows the estimated line and original line.  
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The following graph is the one that transformed into prices (not logarithm).  One can see that the 
shifting trend model forecast is much more reasonable than that of the simple ECM model.  
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Appendix A.  Coal Resources in China by Type of Coal (Gt) 

 

 
Coal Estimated   
Classification Resource Share  
brown coal 190.31 4.2% 
bituminous coal 2,421.51 53.2% 
gas coal 939.24 20.6% 
rich coal 103.21 2.3% 
coking coal 195.73 4.3% 
lean coal 80.38 1.8% 
meager coal 146.89 3.2% 
anthracite coal 474.24 10.4% 
total 4,551.50 100.0% 

This is the Chinese category of " Geologically Identified Reserves" 

 
Average Minemouth Sales Price of Raw and Washed Coal, Major 
State-Owned Mines (yuan/t) 

Year 
Average Price of Raw and 

Washed Coal 
Datong 
Bureau 

Kailuan 
Bureau 

Huaibei 
Bureau    

1953             11.00     

1957             11.46     

1965             17.68     

1975             16.48     

1980             21.33     

1982             21.58     

1984             22.73     

1985             26.05     

1986             26.51       27.93      26.84    

1987             26.28       28.32      27.04     
1988             27.72     

1990             43.85     

1991             47.89       49.14      53.10      55.45     
1992             54.73       58.04      61.65      58.28     

Source:  Energy Research Institute.        

 

Appendix B.  Cointegration and Error Correction Model (ECM) 

In ECM, let us start from the following simple equilibrium equation: 

 t tp xα β= + ,                                          (A.1) 
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When the residual terms are not zero, this quantity measures the extent of disequilibrium between 

tp  and tx , one typical form of which is 

    0 1 1 1t t t t tp x x p uγ δ δ τ− −= + + + +                         （A.2）, 

where tu  is the noise term.  Such formulation obviously yields 

 0 1 1( )t t t t tp x p x uδ μ α β− −Δ = Δ − − − + ,                     (A.3) 

where μ=1-τ.  When higher order lagged variables are introduced, the above equation is modified 
into: 

 
1 1

1
1 0

( )
k k

t i t i t t k t k t
i i

p y x p x uδ μ α β
− −

− − −
− =

Δ = Ψ Δ + Δ − − − +∑ ∑ ,      (A.4)        

    The popularity of ECM is due to the works of Granger and Engle on cointegration.  The 
importance of cointegration stems from the fact that statistical inference from conventional 
regression is only valid when the variables in a model are stationary.  Most economic time series 
are not, however, stationary.  The relation of the ECM to cointegration analysis derives from a 
representation theorem proved by Engle and Granger (1987).  A maximum likelihood procedure 
is developed by Johansen and Juselius (1990) and Johansen (1991) began to replace the simple 
regression approach to estimate the long run coefficients.  Chan and Lee (1997) estimate China's 
demand for coal using ECM and cointegration based on annual data from 1953 to 1994.   

We perform the augmented Dickey-Fuller unit root tests, as is often done.  Suppose that the 
detrended logarithm of price around its mean follows an AR(1) process:  

p
t 
=ρp

t −1 
+ε

t 
,  

where 0 ≤ρ≤1, and εt is a white noise process.  Then the asymptotic standard deviation of ρ is 
given by:  

( )
1/ 221s.d.

T
ρρ

⎛ ⎞−
= ⎜ ⎟
⎝ ⎠

 

where Τ is the number of observations.  Now, suppose we run a Dickey-Fuller unit root test to 
determine whether ρ ≤1. To reject the hypothesis that 1 – ρ = 0 at the 5 percent level, we would 
need a t-statistic on 1 – ρ of at least 2.89.  Thus, we would need  

( ) ( )2
2

2

1
2.89

1
T ρ

ρ
−

≤
−
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or equivalently, Τ ≥ (8.352)(1– ρ
2
)( 1– ρ)

 2
.  

We perform augmented Dickey-Fuller unit root tests on the full sample of data.  The test 
involves regressions of the form:  

 ( ) 01
1 1 N

t t k t kk
p p p cρ α −−

Δ = − − + Δ =∑  

where p is the log real price, and N is the number of lags.  The test is based on the MacKinnon 
(1991) critical values for the t-statistic on ρ – 1. 

 

Appendix C.  The Trend Line for a Depletable Resource  

For a depletable resource such as coal, we would expect both the level of the log price 
trajectory and its slope to fluctuate over time in response to fluctuations in demand, extraction 
costs, and reserves.  To see this, consider the basic Hotelling model of a depletable resource 
produced in a competitive market with a constant marginal cost of extraction, c. In this model the 
price trajectory is dP/dt = r(P – c).  Hence the price level itself is given by  

0'
rt

tp p e c= + ,  

where P’0= P0 − c is the net price. If the demand function is isoelastic, i.e., is of the form 

n
t tQ AP−= , the trajectory for the rate of production will be given by  

 ( )'
0

rt
tQ A c p e

η−
= +  

In this case, we can find the initial net price P0 by making use of the fact that cumulative 
production over the life of the resource must equal the initial reserve level, R0:  

( )'
0 00 0

rt
tR Q dt A c p e dt

η∞ ∞ −
= = +∫ ∫   

For arbitrary values of the elasticity of demand, η, this equation can be solved numerically for '
0p . 

For a unitary elasticity of demand (η = 1), we can solve it analytically:  

'
0

0 '
0

log c pAR
rc p

+
=  

or 

 
0

'
0 / 1rcR A

cp
e

=
−  
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Hence the price level at any time t is given by  

 
0 / 1

rt

t rcR A

cep c
e

= +
−

 

and the slopes of the price trajectory and log price trajectory are given by  

 
0 / 1

rt
t

rcR A

dp rce
dt e

=
−

 

and 

 ( )0 /

log
1

t
rcR A rt

d p rc
dt e ce c−

=
− +  

From these equations it is easy to see that an upward shift in the demand curve, i.e., an 
increase in A, leads to an increase in the price level Pt, and an increase in the slopes of both the 
price trajectory and the log price trajectory. An increase in the level of extraction cost, c, leads to 
an increase in price, but a decrease in the slopes of the price and log price trajectories. Finally, if 
new discoveries result in an unexpected increase in the reserve level, R0, this will cause a decrease 
in price, and will also lead to decreases in the slopes of the price and log price trajectories. For 
most depletable resources, one would expect demand, extraction costs, and reserves all to fluctuate 
continuously and unpredictably over time.  Whether or not the processes that these variables 
follow are stationary is an open matter.  But in either case, we would expect price to revert to a 
trend line with a level and slope that likewise fluctuate over time.

 
 

If demand, extraction costs, and reserves change very infrequently but by large, discrete 
amounts, then a switching model of the sort estimated by Perron (1989) is appropriate as a 
description of price. It is important to note that this trend line to which price reverts, and which 
represents long-run total marginal cost, is itself unobservable. We might estimate the "parameters" 
of the trend line (and hence marginal cost itself) at any point in time using data up to that point, 
but those parameters (and hence the corresponding level of marginal cost) will change over time. 
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Appendix D. The Derivation of Shifting Trend Model of Price  
A model of long-run commodity price evolution should incorporate two key 

characteristics: (i) reversion to an unobservable long-run total marginal cost, which follows a trend; 
and (ii) continuous random fluctuations in both the level and slope of that trend. A continuous 
time model that has these characteristics is a version of the multivariate Ornstein-Uhlenbeck 
process.  

Suppose, first, that the log price follows a simple trending Ornstein-Uhlenbeck (OU) 
process. If the trend is quadratic, that process can be written in continuous time as:  

 d d dp p t zγ σ= − +  

where p  =p −α 0 −α1t −α 2 t 
2 

 is the detrended price. In terms of the price level itself, this is 

equivalent to:  

 ( )2
0 1 2 1 22dp p t t t dt dzγ α α α α α σ⎡ ⎤= − − − − + + +⎣ ⎦  

Note that the parameter γ describes the rate of reversion to the (fixed) trend line. If γ = 0, the log 
price follows an arithmetic Brownian motion (so price is a geometric Brownian motion), and the 
variance ratio would approach 1.  

In the bivariate case, we could write the multivariate Ornstein-Uhlenbeck process as:  

 ( ) pd p p x dt dzγ λ σ= − + +  

where x is itself an Ornstein-Uhlenbeck process:  

 xdx xdt dzδ σ= − +  

where dzp and dzx may be correlated.   
In discrete time, this process would be given by the following equations:  

 
1 1 ,t p t t p tp p xα λ ε− −= + +  

 1 ,t x t x tx xα ε−= +  

where ptε  and xtε  are normally distributed with mean 0, and with some covariance.  As 

discussed below, if x were unobservable, this process could be estimated using the Kalman filter.  
Pindyck (1999) considers a slightly more general multivariate version of this process that 

allows for fluctuations in both the level and slope of the trend. In particular, suppose that in 
continuous time the process for the log price is:  

 ( )1 2 pd p p x yt dt dzγ λ λ σ= − + + +  

with  

 1

2

x x

y y

dx xdt dz
dy ydt dz

δ σ
δ σ

= − +
= − +
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Rewriting yields 

dp = [−γ (p −α 
0 
−α

1
t −α 

2 
t )+α

1 
+ 2α 

2 
t +λ

1 
x +λ

2 
yt]dt +σdz 

p 
. 

Combining terms, we can write this as:  

dp = (−γp −α’
0 
−α’

1
t −α’

2

2t  +λ
1 
x +λ

2 
yt)dt +σdz

p
. 

These equations describe a process in which the log price reverts to a trend line with level and 
slope that fluctuate stochastically, and which may or may not be observable 

These equations imply the following discrete-time model, which will be the basis of the 
empirical work that follows:  

 2
1 1 2 3 1 2t t t t tp p b b t b t tρ φ φ ε−= + + + + + +  

2 2 2, 1 2t t tc vφ φ −= +  

1tφ  and 2tφ  are treated as unobservable state variables.  This is appropriate, since marginal 

cost at any point in time, the resource reserve base, and the demand parameters are all 
unobservable.  

If we make the further assumption that the distribution of the error terms, tε , 1tv , and 

2tv  is multivariate normal and that tε  is uncorrelated with 1tv  and 2tv , then a natural 

estimator of this system of equations is the Kalman filter. To simplify matters, we assume that the 

error in the state equations, 1tv , and 2tv , are uncorrelated.  

 


