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differences in the models’ climatological thermal ocean 
stratification in the region of seasonal sea ice around Ant-
arctica. Exploiting this relationship, we use observational 
data for the time-mean meridional and vertical temperature 
gradients to constrain the real Southern Ocean response to 
SAM on fast and slow timescales.
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1  Introduction

In contrast to the strong global warming trend, the South-
ern Ocean (SO) has exhibited a gradual decrease in sea sur-
face temperatures (SSTs) over recent decades (Fig. 1; Fan 
et  al. 2014; Armour and Bitz 2016; Armour et  al. 2016). 
The large-scale geographic pattern of warming is related to 
the climatological background ocean circulation (Marshall 
et  al. 2014, 2015; Armour et  al. 2016; Hutchinson et  al. 
2013, 2015). In the SO region, deep waters, unmodified by 
greenhouse gas forcing, are upwelled at the surface where 
they take up heat as the mean wind-driven circulation—
partially compensated by the eddy circulation—transports 
them northward (Marshall et al. 2015; Armour et al. 2016). 
The background circulation can therefore reduce the rate of 
surface warming in the SO relative to the rest of the World 
Ocean. However, this mechanism of passive heat transport 
is not sufficient to explain the persistent surface cooling 
trends around Antarctica.

Some studies interpret the pattern of observed South-
ern Hemisphere SST trends as a response to a poleward 
shift and strengthening of the surface westerlies. These 
recent tendencies in the atmospheric circulation resemble 

Abstract  We investigate how sea surface temperatures 
(SSTs) around Antarctica respond to the Southern Annu-
lar Mode (SAM) on multiple timescales. To that end we 
examine the relationship between SAM and SST within 
unperturbed preindustrial control simulations of coupled 
general circulation models (GCMs) included in the Climate 
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in the SAM index. We demonstrate that in many GCMs, 
the expected SST step response function is nonmonotonic 
in time. Following a shift to a positive SAM anomaly, an 
initial cooling regime can transition into surface warming 
around Antarctica. However, there are large differences 
across the CMIP5 ensemble. In some models the step 
response function never changes sign and cooling persists, 
while in other GCMs the SST anomaly crosses over from 
negative to positive values only 3 years after a step increase 
in the SAM. This intermodel diversity can be related to 
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the positive phase of the Southern Annular Mode (SAM) 
of natural variability, but they may in fact be a forced 
response (Thomas et  al. 2015), the result of ozone deple-
tion (Thompson and Solomon 2002; Gillett and Thompson 
2003; Sigmond et  al. 2011; Thompson et  al. 2011; Wang 
et al. 2014). Figure 1 illustrates the synchronous evolution 
of observed SST and SAM anomalies over the SO. The 
SST averaged between 55°S and 70°S is negatively corre-
lated with the SAM index at a lag of 1 year (R = −0.65). 
Multiple mechanisms have been proposed to explain the 
relationship between SST trends around Antarctica and 
poleward intensification of the westerlies.

Many studies conclude that a poleward intensification 
of the westerlies impacts SO SSTs by changing the ocean 
circulation (e.g., Hall and Visbeck 2002; Oke and Eng-
land 2004; Russell et al. 2006; Fyfe et al. 2007; Ciasto and 
Thompson 2008; Bitz and Polvani 2012; Marshall et  al. 
2014; Purich et  al. 2016). The recent circulation changes 
have been confirmed by measurements of dissolved pas-
sive tracers (Waugh et  al. 2013; Waugh 2014). A positive 
SAM induces anomalous northward Ekman transport in the 
high latitude region of the Southern Hemisphere (Hall and 
Visbeck 2002). This gives rise to surface cooling poleward 
of 50°S. Ciasto and Thompson (2008) and Sen Gupta and 
England (2006) propose that the aforementioned oceanic 
mechanism complements SAM induced changes in the sur-
face heat fluxes, and that both processes act in concert to 
set the spatial distribution of temperature anomalies around 
Antarctica.

Meanwhile, Bitz and Polvani (2012) demonstrate that 
in the coupled CCSM3.5 GCM, an ozone-driven poleward 
intensification of the westerlies leads to an increase in SSTs 
throughout the SO. This result implies that changes in the 
winds cannot account for the observed cooling around Ant-
arctica and may even have the opposite effect. Bitz and Pol-
vani (2012) explain that poleward intensification by itself 
can lead to a positive SST response via anomalous Ekman 
upwelling of warmer water in the salinity-stratified cir-
cumpolar region. This highlights an apparent divergence in 
literature about the sign of the SO SST anomalies associ-
ated with a SAM-like pattern. A similar lack of consensus 
also carries over to studies which explore the connection 
between the westerly winds and SO sea ice. Hall and Vis-
beck (2002) suggest that a positive SAM causes sea ice 
expansion, while Sigmond and Fyfe (2010, 2014) demon-
strate that poleward intensification (forced by ozone deple-
tion) is associated with a decrease in sea ice extent.

Ferreira et  al. (2015) propose a theoretical framework 
that can resolve this ostensible disagreement about the sign 
of the SST anomaly associated with a poleward intensi-
fication of the westerlies. They use two different coupled 
GCMs to demonstrate that the SO response to winds in 
forced ozone depletion simulations is timescale-dependent. 
An atmospheric pattern similar to a positive SAM triggers 
short-term cooling followed by slow warming around Ant-
arctica. The fast response is dominated by horizontal Ekman 
drift advecting colder water northward, while the slow 
response is sustained by Ekman upwelling of warmer water. 
Ferreira et  al. (2015) show that the transition between the 
cooling and warming regime differs between two coupled 
GCMs and therefore can be highly model-dependent.

In our work we examine how the SO responds to a pole-
ward intensification of the westerlies in 23 state-of-the-art 
CMIP5 coupled models (Taylor et  al. 2012). By analyz-
ing the GCMs’ control simulations, we are able to study 
the relationship between SAM and SO SST anomalies 
(55°S–70°S) even in models which have not performed 
wind override experiments or targeted ozone depletion sim-
ulations. In agreement with Ferreira et al. (2015), our find-
ings suggest that anomalous Ekman transport may affect 
the SO response to SAM on interannual and decadal time-
scales. Furthermore, we interpret the diversity in the fast 
and slow responses across the CMIP5 ensemble in terms 
of the models’ time-mean SO stratification. Finally, we use 
observational data for the ocean temperature climatology to 
constrain the SST step response function of the real SO.

2 � Data and methods

The GCMs used in this study have made their experimen-
tal results publicly available through the CMIP5 initiative 
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Fig. 1   Shown in black is the 1982–2014 timeseries of SST [°C] aver-
aged between 55°S and 70°S based on the NOAA Reynolds Opti-
mum Interpolation (Reynolds et al. 2002). The 1980–2014 timeseries 
of the annual-mean SAM index based on the ERA Interim reanalysis 
(Dee et al. 2011) is superimposed in gray. The index is defined as the 
first principal component of SLP variability south of 20°S and is nor-
malized by its standard deviation. Thick straight lines indicate linear 
trends fitted to each timeseries. Note the reversed scale for the SAM 
timeseries shown on the right
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(Taylor et al. 2012). In our ensemble we include 23 mod-
els that have archived their output of ocean potential tem-
perature, SST, and sea level pressure (SLP). We examine 
data from the CMIP5 preindustrial control simulations 
(piControl), which do not have any sources of external 
forcing. Thus all climate anomalies that we observe in 
these experiments can be attributed to internal variability. 
Moreover, the control simulations are hundreds of years 
long allowing us to perform statistical analysis with large 
samples of data. Table  1 provides additional information 
about the length of individual CMIP5 simulations. In order 
to conduct our analysis consistently across the ensemble, 
we convert all model output fields to the same regular 
latitude–longitude grid (0.5◦ × 1◦). In the case of three-
dimensional fields, we also interpolate the original output 
onto the same depth-based vertical coordinate system with 
40 levels.

We define an annual-mean index for the SAM in each 
model as the first principal component of variability in SLP 
south of 20°S. Positive values of this index correspond to 
a poleward intensification of the westerly winds. In order 
to remove the secular drift, we linearly detrend the SAM 
timeseries.

We furthermore consider the annual- and zonal-mean 
zonal wind stress [τx] [N/m2] at the ocean surface for the 
CMIP5 models that have provided this field. Hereafter, we 
use [·] to denote the zonal averaging operator. At each lat-
itude we regress [τx] against the model’s SAM index and 
estimate the anomaly [τ ′x] associated with a one standard 
deviation increase in the SAM, 1σSAM. However, in our 
intercomparison we have to take into account differences in 
the magnitude of SAM variability across the set of CMIP5 
models. We thus calculate σSAMEns, the ensemble mean of 
the index standard deviations σSAM. We then rescale each 
[τ ′x] estimate by the nondimensional ratio σSAMEns/σSAM 
(Fig.  2). After rescaling, the different CMIP5 mod-
els exhibit very similar peak amplitudes and latitudinal 
structures of the wind stress anomaly associated with a 
+1σSAM

Ens SAM event.
We then calculate an area-weighted average of the 

annual-mean SST anomalies between 55°S and 70°S (here-
after referred to as SO SST). We have chosen this latitude 
range because the anomalous westerlies associated with 
SAM induce northward transport and upwelling in this 
zonal band. Further north, the wind anomaly gives rise to 
downwelling. As with the SAM index, we detrend the SST 
timeseries to eliminate the long-term drift. A comparison of 
the SO SST anomalies against the SAM index in CMIP5 
models shows negative correlations at short lags (Fig.  3). 
This is reminiscent of the synchronous evolution of west-
erly winds and SO SST seen in observations (Fig. 1).

For each GCM, we estimate the impulse response func-
tion G (a quasi-Green’s function) of SO SST with respect 

Table 1   List of CMIP5 control Simulations

Model name Control run 
length (years)

ACCESS1-0 500

ACCESS1-3 500

BCC-CSM1.1 500

CanESM2 996

CCSM4 1051

CESM1(CAM5) 319

CMCC-CM 330

CNRM-CM5 850

GFDL CM3 500

GFDL-ESM2G 500

GFDL-ESM2M 500

GISS-E2-H 540

GISS-E2-R 550

IPSL-CM5A-LR 1000

IPSL-CM5A-MR 300

IPSL-CM5B-LR 300

MIROC5 670

MIROC-ESM 630

MPI-ESM-LR 1000

MPI-ESM-MR 1000

MRI-CGCM3 500

NorESM1-M 501

NorESM1-ME 252
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Fig. 2   The annual- and zonal-mean zonal wind stress anomaly at 
the ocean surface [τ ′x] [10−2 N/m2] associated with a 1σSAMEns SAM 
event: individual model curves rescaled by σSAMEns/σSAM (gray) and 
the ensemble mean (black)
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to the SAM index. Following Hasselmann et al. (1993), we 
represent the temperature timeseries as a convolution of G 
with a previous history of the SAM forcing:

where SAM(t) is the SAM index normalized by its standard 
deviation σSAM, τ is the time lag in steps of years, τmax is an 
imposed maximum cutoff lag, and ε is residual noise. The 
underlying assumption in Eq. (1) is that the ocean responds 
to SAM forcing as a linear system, and that the SO SST 
does not exert a large local feedback on the SAM on the 
relevant interannual and interdecadal timescales. In addi-
tion to the SAM, other modes of natural variability also 
influence the SO very strongly (e.g., see Langlais et  al. 
2015), and this impact is captured by the nonnegligible 
residual term ε. We discretize (1) to obtain

where coefficients G(τi) represent the response at differ-
ent time steps after an impulse perturbation of magnitude 
σSAM . Each time interval ∆τ is equal to 1 year.

We then use a multiple linear least-squares regres-
sion of the SO SST signal against the lagged SAM index 
to estimate G(τi) for i = 0, . . . , τmax. When performing 
the regression, we divide the annual SAM timeseries into 
overlapping segments, each of length τmax. We then rescale 
the estimated impulse response functions for each GCM, 
where we multiply G(τ ) by the corresponding nondimen-
sional ratio σSAMEns/σSAM.

By selecting multiple shorter SST and SAM timeseries 
from the full control simulation and by varying the cutoff 

(1)

SST(t) =

∫ +∞

0

G(τ )SAM(t − τ)dτ + ε

≈

∫ τmax

0

G(τ )SAM(t − τ)dτ + ε,

(2)SST(t) ≈

I
∑

i=0

G(τi)SAM(t − τi)∆τ + ε, with τI = τmax ,

lag τmax, we obtain a spread of estimates for the impulse 
response function G(τ ) in a given model. Table  2 lists 
our fitting parameters and their values. For each model, 
we have more than 350 individual fits corresponding to 
different parameter choices. We use the residuals ε to 
quantify the uncertainty σImpulseFit(t) on each of these 
least squares regressions. Figure  4a shows examples of 
impulse response estimates for three CMIP5 models, 
rescaled by σSAMEns/σSAM. Multiple fits span envelopes 
of uncertainty, while vertical bars denote the error mar-
gins σImpulseFit(t) on each fit. Note that in our analysis 
we use annual-mean SST. Hence the estimated Year 0 
response is not zero, as it represents an average of the 
SST anomaly over the first months after a positive SAM 
impulse.

We integrate the impulse response function fits to obtain 
a spread of estimates for the SO step response function:

where t ≤ τmax and ∆τ = 1 year.
Each of the estimates corresponds to a different combi-

nation of start and end times for the timeseries, as well as 
different choices of τmax. We calculate the mean SSTStep(t) 
and the standard deviation σSpread(t) which characterize 
our envelope of step response functions for a given model. 
We furthermore use the σImpulseFit(t) values to constrain the 
margin of error σStepFit(t) on each individual estimate in our 
spread. We then combine σStepFit(t) and σSpread(t) in quad-
rature in order to quantify the total uncertainty σSSTstep(t) 
on the mean SSTStep(t) for a given GCM. Figure 4b shows 
example step response functions calculated for the three 
models presented in Fig. 4a.

The step response results are integral quantities, and 
hence they are smoother than the corresponding impulse 
response functions. However, a drawback is that the 

(3)SSTStep(t) =

∫ t

0

G(τ )dτ ≈

t
∑

i=0

G(τ )∆τ ,

Fig. 3   Timeseries from the 
control simulation of model 
CCSM4: the SAM index in gray 
and the Southern Ocean (SO) 
SST anomaly averaged between 
55°S and 70°S in black. Each 
index is detrended and rescaled 
by its standard deviation. The 
SST scale is shown on the left 
vertical axis, and the reversed 
scale for the SAM index is 
shown on the right. The SO 
SST is negatively correlated 
with the SAM index at a lag of 
1 year (R = −0.37)
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integrated errors grow larger in time. Nevertheless, Fig. 4b 
demonstrates that even with generous envelopes of uncer-
tainty and large error bars on the individual fits, we can still 
distinguish the estimated step response functions of differ-
ent CMIP5 models.

We use synthetic noisy signals and artificially con-
structed systems with known step responses in order to test 
our methodology. The verification procedure is described 
and illustrated in detail in “Appendix” section. Multiple 
tests confirm the validity of our approach for estimating the 
SO response functions.

3 � Results

 Our estimated step response functions suggest nota-
ble intermodel differences in the SO SST response to 
SAM across the CMIP5 ensemble (Fig.  5). Although all 
GCMs show initial cooling, many of them transition into 
a regime of gradual warming. If forced with a positive 
step increase in the SAM, a number of CMIP5 models—
such as CanESM2, CCSM4, and CESM1(CAM5)—are 
expected to show positive SST anomalies in the SO within 
a few years. In contrast, other ensemble members, includ-
ing CNRM-CM5 and GFDL-ESM2M, do not exhibit such 
nonmonotonic response to a poleward intensification of 

Fig. 4   Annual-mean response 
of the Southern Ocean SST 
anomaly [°C] to: a a positive 
impulse perturbation in the 
SAM index of magnitude equal 
to σSAMEns; b a positive step 
increase in the SAM index of 
magnitude equal to σSAMEns.  
Different colors are used 
to distinguish the response 
functions in the three CMIP5 
models shown: CCSM4, MPI-
ESM-MR, and CNRM-CM5. 
For each model, we have shown 
only 100 different fits to illus-
trate the envelopes of uncer-
tainty, and we have not spanned 
the full parameter space laid out 
in Table 2. Vertical error bars 
denote the margin of error for 
each fit
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Table 2   Fitting parameters

We vary the maximum cutoff lag τmax(years). Note that we use only 
τmax = 50 years and τmax = 75 years for models whose control simu-
lation is shorter than 350 years. We use four different values of τmax 
where longer simulations are available. We also select shorter SST 
timeseries from the full control simulations by removing a certain 
percent of time steps from the beginning and the end of each model 
run

Fitting parameter Parameter space

τmax (years) 50, 75, 100, 150

Offset from the beginning of the full 
timeseries [% of simulation length]

0, 2.5, 5, 7.5, 10, 15, 
20, 25, 30, 35, 40

Offset from the end of the full timeseries 
[% of simulation length]

0, 2.5, 5, 7.5, 10, 15, 
20, 25, 30
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the westerlies and instead maintain negative temperature 
anomalies persisting for longer than a decade. What sets 
this intermodel diversity in the way the SO reacts to SAM 
on short and long timescales?

Following Ferreira et  al. (2015), we examine whether 
the fast cooling regime is related to northward wind-driven 
transport, advecting colder water up the climatological SO 
SST gradient. We expect that on short timescales the SAM-
induced anomalous SST tendency dSST ′/dt in [°C/year] is 
dominated by horizontal advection and scales as

where [τ ′x] is the zonally averaged zonal component of the 
anomalous surface wind-stress associated with SAM, ρ0 is 
a reference density, f is the Coriolis parameter, ZEk is the 
thickness of the Ekman layer, ∂y[SST ] is the meridional 
gradient of the zonally averaged climatological SST, and F 
denotes an anomalous air–sea heat flux forcing on the SST. 
As in Ferreira et  al. (2015), we have assumed that eddy 
compensation in the thin Ekman layer is much smaller 
than the anomalous northward wind-driven transport. Since 
we have rescaled each SST response function by the non-
dimensional ratio σSAMEns/σSAM, we can assume that the 
hypothetical SAM step-increase is the same for all mod-
els in our ensemble. Thus we have eliminated some of the 
intermodel spread due to different [τ ′x] across the ensemble.

For a 1σ SAM event in these CMIP5 models, the typi-
cal zonal wind-stress anomaly [τ ′x] around 60°S is approxi-
mately 1.4× 10−2 N/m2 (Fig. 2), and a typical meridional 
SST gradient ∂y[SST ] is approximately 0.35  °C/100 km 

(4)
dSST ′

dt
≈

[τ ′x]

ρ0fZEk
∂y[SST ] + F,

with a range between 0.26 and 0.43 °C/100 km across the 
ensemble. If we neglect F in (4), and assume a ZEk = 30 
m deep Ekman layer, a reference density of ρ0 =1027.5 
m/kg3, and a Coriolis parameter f corresponding to 60°S, 
we estimate a scaling for the Year 1 response of approxi-
mately −0.3± 0.06 ◦C. This is very similar to the typical 
fast response of SST ′ ≈ − 0.15 ◦C for our CMIP5 ensemble 
(Fig. 6a).

We then perform a weighted least squares linear regres-
sion of the estimated Year 1 cooling anomalies from our 
step responses against ∂y[SST ] averaged between 55° and 
70°S, where we weight each datapoint by 1/σ 2

SSTstep. We 
see a strong anticorrelation with a Pearson’s R = −0.72 
(Fig.  6a). This result is significant at the 5  % level with 
p < 0.01 and highlights the importance of horizontal 
Ekman transport for the fast cooling regime during a posi-
tive phase of the SAM.

We also consider the role of Ekman upwelling for influ-
encing the slow response to a step increase in the SAM 
index. Following Ferreira et al. (2015), we take an Ansatz 
that on longer timescales the anomalous SST tendency 
dSST ′/dt in [°C/year] scales as

where T ′
sub is a subsurface temperature anomaly entrained 

into the mixed layer on a timescale γ−1, and � is a coef-
ficient of air–sea damping. In turn, as in Ferreira et  al. 
(2015), we assume that the subsurface anomaly T ′

sub is 
dominated by the anomalous upwelling along the SO verti-
cal temperature inversion,

(5)
dSST ′

dt
≈ γT ′

sub − �SST ′
,
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Fig. 5   Annual-mean responses of the Southern Ocean SST [°C] to a step increase in the SAM index of magnitude σSAMEns—comparison across 
the CMIP5 ensemble. For each model we have shown only the mean estimate SSTStep(t)
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where ∆z[θ ] in °C is the inversion (i.e., the maximum verti-
cal contrast) in the time-mean ocean potential temperature 
within a layer of thickness Zsub. Parameter δ is a nondimen-
sional factor 0 ≤ δ ≤ 1 that indicates whether we have full 
(δ = 0), partial (0 < δ < 1), or no (δ = 1) compensation 
of the anomalous Ekman upwelling by the eddy-induced 
circulation.

On timescales tlin ≪ �
−1, we can assume that the slow 

SO SST response rate evolves approximately linearly,

In the CMIP5 models, a 1σ SAM event is typically asso-
ciated with an anomalous meridional gradient in the zonal 
wind stress curl at 60°S of approximately [τ ′x] ≈ 7.0× 10−4 
N/m2 per degree latitude (Fig.  2). The typical SO 
potential temperature inversion in the zonal average is 
∆z[θ] ≈ 1.5 ◦C over a depth range of Zsub ≈ 450 m, with 
variations between 0.6 and 2.5  °C across the ensemble. 
We assume an eddy compensation with δ = 30%. We 
then use f and β = df /dy characteristic of 60°S, as well as 
ρ0 = 1027.5 kg/m3, to obtain a scaling for the subsurface 
warming rate 

dT ′
sub

dt
≈ 0.16 °C/year. Assuming a mixed layer 

entrainment timescale of γ−1 ≈ 1.5 years, we estimate 
that in the Year 3 after a 1σ step-increase in the SAM, the 
SST warming rate is approximately dSST ′/dt ≈ 0.04 ◦C/
year with a range of 0.02–0.06 °C/year. This value is on the 
same order of magnitude as the estimated slow responses 
between Year 1 and Year 7 in the CMIP5 ensemble (Fig. 6b)

If the slow response on these timescales is indeed gov-
erned by upwelling of warmer water below the mixed 
layer, the bolus circulation cannot be neglected (Ferreira 
et  al. 2015). As discussed by Ferreira et  al. (2015), local 
eddy compensation at depths of hundreds of meters may 
be much larger than in the thin Ekman layer. Moreover, the 
fraction of eddy compensation (1− δ) is model dependent. 
The representation of mixed layer entrainment processes 
also differs across the CMIP5 ensemble. We therefore 
expect that both δ and γ may contribute to the intermodel 
spread in the slow SST response, along with the climato-
logical SO temperature inversion ∆z[θ ].

Using Eq. (7) as an Ansatz, we test the importance of the 
background thermal stratification ∆z[θ ] for contributing to 
differences in the slow response among CMIP5 GCMs. We 
calculate the average slope Λ [°C/year] of the step response 
functions between Year 1 and Year 7 after a step increase in 
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Fig. 6   a Relationship between the models’ climatological meridi-
onal SST gradients ∂y[SST ] [°C/100  km] in the Southern Ocean 
(55°–70°S) and the Year 1 SST response SSTStep(t = 1) [°C] to a step 
perturbation in the SAM index. The vertical error bars correspond 
to σSSTstep(t = 1). b Relationship between the climatological tem-
perature inversion ∆z[θ] [°C] in the Southern Ocean (depth levels 
67–510 m) and the SST warming rate Λ [°C/year] which character-
izes the slow response to a step increase in the SAM index. Legend: 
both a and b use the same color code and alphabetical order as in 
Fig. 5 to distinguish the CMIP5 models analyzed. Straight lines indi-
cate linear fits to the scatter where each data point in the regression 
analysis is weighted by the inverse of the SE squared. The yellow 
stars denote estimates for the response of the real Southern Ocean 
based on observed climatological meridional SST gradients between 
55°S and 70°S [NOAA Reynolds Optimum Interpolation, Reynolds 
et al. (2002)] and the climatological ∆z[θ] inversion [Hadley Centre 
EN4 dataset, Good et al. (2013)]
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the SAM and the standard error (SE) for each model esti-
mate. In many models this slope is predicted to be positive, 
corresponding to a slow warming. We compare Λ against the 
vertical temperature inversion ∆z[θ ] for the area-averaged 
water column between 55°S and 70°S and between depths 
of 67 and 510 m. Above 67 m the models in our ensemble 
exhibit no SO temperature inversion. We have chosen a ver-
tical range extending down to 510 m because this encom-
passes the winter maximum mixed layer depths in the SO 
climatology of CMIP5 models (Salleé et al. 2013). We per-
form a least squares regression of Λ against ∆z[θ ], where 
each data point is weighted by the inverse of the SE squared. 
We find that the slow response rates Λ across models are 
positively correlated with ∆z[θ ], with R = +0.45 (Fig. 6b). 
This result is statistically significant with p < 0.05. It 
emphasizes that Ekman upwelling acting on the background 
temperature gradients contributes substantially to the inter-
model spread in the slow SST responses to SAM.

The correlation between the rate Λ and the vertical tem-
perature inversion ∆z[θ ] is not as strong as our result link-
ing the rapid cooling response to the meridional SST gradi-
ents. We propose that the slow regime is more complicated 
than the fast one due in part to air–sea heat exchange (Fer-
reira et al. 2015) but also due to multiple diverse processes 
within the ocean domain such as eddy compensation and 
mixed layer entrainment represented by coefficients δ and 
γ in Eq. (7).

We acknowledge that the data points in our intermodel 
correlation analysis of the fast and slow response (Fig. 6a, 
b) do not necessarily represent independent samples. Some 
CMIP5 ensemble members are in fact multiple versions 
of the same GCM with a different horizontal resolution 
(e.g., MPI-ESM-LR and MPI-ESM-MR). Other ensem-
ble members have been developed by the same institution 
(e.g., GFDL-CM3, GFDL-ESM2G, and GFDL-ESM2M) 
or belong to the same family of models and hence share 
common code or parameterizations (Knutti et  al. 2013). 
Thus it is possible that we are inflating our sample size by 
redundantly including interdependent GCMs. On the other 
hand, we cannot know a priori which models may exhibit 
similarities or differences solely on the basis of their com-
mon genealogy. For instance, models MIROC-ESM and 
MIROC5 are related, but their predicted fast SST responses 
to SAM are statistically different (Fig. 6a).

Nevertheless, comparing groups of models with differ-
ent fast and slow responses to SAM provides further evi-
dence to support the results of our correlation analysis. We 
consider the 10 models in our ensemble that are expected 
to show the strongest (weakest) cooling in their Year 1 
response and composite their annual-mean SST clima-
tology (Fig. 7a, b). Consistent with Fig. 6a, we see that a 
colder fast response is associated with larger meridional 
gradients in the background SST. Moreover, models which 

exhibit a weak fast response have SO SST gradients that 
are too small compared to the observationally-based 1982–
2014 SST climatology (Fig.  7c) from the Reynolds Opti-
mum Interpolation Dataset (Reynolds et al. 2002).

Analogously, we composite the zonally-averaged 
annual-mean potential temperature climatology of the 10 
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Fig. 7   Climatological annual-mean SST, with contours spaced 
0.75  °C apart, from: a a composite of the 10 models expected to 
show the strongest cooling in Year 1; b a composite of the 10 mod-
els expected to show the weakest cooling in Year 1; c observations 
(Reynolds et al. 2002). The dark gray contour delimits continents and 
islands
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models with the greatest (smallest) estimated slow response 
rates (Fig.  8). A greater warming rate on slow timescales 
is associated with a larger vertical temperature inversion in 
the SO climatology. Models which show little or no slow 

surface warming response generally underestimate the 
temperature inversion seen in the Hadley EN4 1979–2013 
observations (Good et  al. 2013). In addition, the CMIP5 
models as a whole show an inversion that is too close to 

Fig. 8   Zonal- and annual-mean 
potential temperature climatol-
ogy (the contour interval is 
0.25 °C apart). a A composite 
of the 10 models expected to 
show the smallest rate of SST 
increase in their slow response 
(dashed blue) contrasted against 
a composite of the 10 models 
expected to show the largest 
slow response (red); b, c same 
as in a but with gray contours 
denoting observations (Good 
et al. 2013)
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the surface compared to the real SO. This bias in the inver-
sion depth may be causing models to overestimate the rate 
at which the SAM-induced subsurface warming signal is 
communicated to the mixed layer.

Our composite analysis provides a simple but use-
ful framework for comparing groups of CMIP5 models 
and contrasting them against observations of the SO. The 
results illustrate the relationship between the background 
temperature gradients and the SO response to SAM in 
agreement with our correlation analysis.

4 � Connecting our model‑based results to the real 
Southern Ocean

While acknowledging the limitations of our regression 
analysis (Fig. 6), we attempt to extend our CMIP5 results 
to the real SO and place an observational constraint on 
the SST response to SAM. We calculate the climatologi-
cal meridional SST gradients ∂y[SST ] using data from the 
Reynolds Optimum Interpolation (Reynolds et  al. 2002) 
and compute a metric for time-mean vertical contrast in 
potential temperature ∆z[θ ] using the Hadley Centre EN4 
product (Good et  al. 2013). We use these observationally 
based climatological SO temperature gradients and the lin-
ear relationships found among CMIP5 models (Fig.  6) to 
estimate the fast and slow responses in the real SO (denoted 
with stars in Fig.  6a, b). Our results suggest an expected 
cooling of −0.13  °C with an SE of 0.01  °C, 1 year after 
a step increase in the SAM index. This is likely to be fol-
lowed by a gradual SST warming at a rate of 0.014 °C/year 
with an SE of 0.003 °C/year.

We then calculate a range of model-based estimates for 
the real SO response following the bias-correction method-
ology of DeAngelis et al. (2015) as follows. We first quan-
tify the bias that each model exhibits with respect to the 
observed ∂y[SST ] and ∆z[θ ] in the SO. Then we use the 
linear relationships from Fig. 6 to quantify how a deviation 
from the observed ∂y[SST ] or ∆z[θ ] introduces an expected 
bias in the models’ fast and slow responses, respectively. 
Finally, these biases for the estimated fast and slow time-
scales are subtracted from the corresponding ensemble 
member’s response (Fig. 9a, b). We assume that the uncer-
tainty in our initial model-specific estimates is not affected 
by this linear bias-correction. We calculate weighted means 
and weighted standard deviations (SD) of the bias-cor-
rected model spreads in the fast and slow responses, where 
we rescale each data point in our sample by the inverse 
of the SE squared. Note that the weighted bias-corrected 
ensemble means reproduce the same estimates for the real 
SO response as the linear relationships in Fig.  6: a fast 
cooling of −0.13  °C followed by slow warming at a rate 
of 0.014 °C/year. Finally, we use our results to constrain an 

envelope of uncertainty on the step response of the real SO 
to SAM (see schematic Fig. 9c). Our bias-corrected analy-
sis for the real SO suggest that the expected Year 1 cooling 
of −0.13 °C has an ensemble SD of ±0.027 ◦C, while the 
estimated slow response rate of 0.014 °C/year has an SD of 
±0.013 ◦C/year. Thus we infer from the observed climatol-
ogy that the step response function of the real SO crosses 
over from negative to positive SST anomalies on a time-
scale of at least 5 years, possibly several decades, after a 
hypothetical step-increase in the SAM. Using a more direct 
approach based on an observationally-constrained model of 
the upper SO, (Hausmann et al. 2016) evaluate the response 
of SO SST to SAM and also predict a long crossover time-
scale in agreement with our result.

5 � Discussion and interpretation of the results

In this study we have analyzed CMIP5 preindustrial control 
simulations and examined how SAM forces SO SSTs. In 
many GCMs the SST exhibits a two-timescale response to 
SAM: initial cooling followed by slow warming. As in Fer-
reira et al. (2015), we interpret the evolution of these tem-
perature anomalies in terms of the wind-driven circulation 
redistributing the background heat reservoir. We show evi-
dence that anomalous equatorward transport of colder water 
contributes to the fast cooling response south of 50°S. Our 
results also suggest that the slow warming regime found in 
many GCMs is affected by Ekman upwelling of warmer 
water in the haline stratified SO.

Across the CMIP5 ensemble, we find a notable inter-
model spread in the SO SST response to poleward inten-
sification of the westerlies. We relate part of the diversity 
in the step response functions to differences in the back-
ground thermal stratification among the models. GCMs that 
have small meridional and large vertical temperature gradi-
ents in their SO climatology tend to cross over faster from 
an initial negative to a long-term positive SST response. 
Our results suggest that a realistic ocean climatology is one 
of the important prerequisites for successfully simulating 
the SST response to SAM.

The model-specific results of our analysis have implica-
tions for attribution studies which evaluate the effects of 
greenhouse gas forcing and ozone depletion on the SO. For 
example, Sigmond and Fyfe (2014) analyze CMIP3 and 
CMIP5 output to determine the impact of the ozone hole 
on SO sea ice. Similarly, Solomon et al. (2015) design and 
conduct numerical experiments with CESM1(WACCM) to 
study how ozone depletion affects the circulation and sea 
water properties of the SO. Such in-depth attribution stud-
ies often employ a limited set of GCMs—for instance, only 
a few CMIP5 modeling groups provide output from ozone-
only simulations (Sigmond and Fyfe 2014). However, 
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individual GCMs have various biases in their mean ocean 
climatology (e.g., Meijers 2014; Salleé et al. 2013). Thus, 
we emphasize that the outcome of attribution experiments 
can be sensitive to the choice of models used. Realistic 
background temperature gradients are a prerequisite for 
simulating successfully the response of the SO to a pole-
ward intensification of the westerlies, as the one seen in 
numerical experiments with ozone depletion.

Our results also identify criteria for constraining and 
critically assessing future projections of the Southern Hem-
isphere SST anomalies. Under scenarios with extended 
greenhouse gas emissions and gradual ozone recovery, 
CMIP5 models predict a significant and lasting poleward 
intensification of the westerlies throughout the twenty-first 
century (Wang et al. 2014). Based on our analysis, we sug-
gest that those models which have smaller biases in their 

Fig. 9   a Scatter: estimated fast 
responses [°C] after correct-
ing for the model bias in the 
climatological meridional SST 
gradients relative to observa-
tions (same color code as in 
Fig. 6). Vertical error bars 
denote 2 SE. The horizontal 
black line is the weighted mean 
of the model estimates. The 
solid (dashed) gray lines denote 
one (two) weighted standard 
deviations (SD) of the spread. b 
Same as in (a) but for the slow 
response rates [°C/year] after 
correcting for the bias in ∆z[θ]. 
c. Solid black lines: a schematic 
for the estimated response of 
the real SO SST [°C] based 
on (a) and (b). We show the 
ensemble mean bias-corrected 
fast response ±1 SD. This is 
extended until Year 7 with lines 
matching the ensemble mean 
bias-corrected slow response 
±1 SD. Dashed lines show a 
linear extrapolation at a constant 
rate or a constant temperature. 
Gray lines replicate the Fig. 5 
SO SST step responses [°C]

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0

T Fa
st

  [
 o C

 ]

Individual Bias Corrected Model Estimates with 2σ bars

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Individual Bias Corrected Model Estimates with 2σ bars

[o C
 / 

ye
ar

 ]

0 5 10 15 20 25 30

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Years

S
S

T 
 [ 

o C
 ]

(a)

(b)

(c)



1606 Y. Kostov et al.

1 3

climatological stratification provide better estimates of 
future SST anomalies in the SO.

We point out that in our analysis we have neglected sea-
sonal variations in ocean stratification and their impact on 
the SO SST response to wind changes. Purich et al. (2016) 
emphasize that in the summer a warm surface lens caps the 
colder subsurface winter water. Therefore, during this sea-
son, anomalous Ekman upwelling may complement rather 
than counteract the cooling effect of northward Ekman 
transport.

Our study has further limitations in its ability to account 
for the multiple diverse processes that take place in the SO. 
For example, de Lavergne et  al. (2014) show that there 
are large differences among the CMIP5 models in their 
representation of deep convection around Antarctica. It is 
possible that certain GCMs which do not have strong SO 
convection, such as BCC-CSM1.1 and CNRM-CM5 (de 
Lavergne et al. 2014), may not be able to efficiently com-
municate a subsurface temperature signal into the mixed 
layer. This in turn may affect the slow warming response 
to SAM in these models. The recurrence of convective 
and nonconvective periods in GCMs can also modify the 
variability of SO stratification about its mean climatology 
and affect the transition between the fast and slow SST 
responses (Seviour et al. 2016, in prep.).

Another potential deficiency in our work pertains to 
our treatment of atmosphere–ocean coupling. We have 
not explored any possible intermodel differences in the 
response of SO surface heat fluxes represented by terms 
F and −�SST ′ in Eqs. (4) and (5). A recent estimate of 
the air–sea feedback strength in the SO by Hausmann 
et al. (2016) can provide guidance in the further assess-
ment of modeled air–sea feedbacks and the possible 
impact of inter-model differences on the response to 
SAM.

In our linear response function analysis, we have also 
neglected other potential implications of atmosphere–ocean 
coupling. We have assumed that the SAM wind pattern 
forces the SST but not vice versa. However, Sen Gupta and 
England (2007) suggest that SO SST anomalies may feed 
back on the atmospheric circulation and increase the per-
sistence of SAM. We treat such mechanisms as a source of 
error contributing to the uncertainty on our estimates of the 
step response functions.

It is also important to note that the CMIP5 ensemble 
members used in our analysis do not resolve eddies and 
rely on parameterizations to represent them. Therefore, 
these GCMs may be missing an important element of the 
ocean’s response to winds. Böning et  al. (2008) present 
observational evidence indicating that isopycnal slopes in 
the SO have not changed over the last few decades despite 
trends in the SAM. The Böning et  al. (2008) results are 

consistent with the eddy compensation phenomenon and 
support the possibility that unresolved eddy processes can 
strongly modulate anomalies in the wind-driven circula-
tion. Models that lack the ability to simulate realistic eddy 
compensation overestimate the magnitude of the anoma-
lous residual upwelling under a poleward intensification of 
the westerlies. This may be a source of SO warming bias 
in the response of low-resolution GCMs to SAM. Despite 
this shortcoming of our study, we reiterate that it is impor-
tant to understand how poleward intensifying westerlies 
impact the SO in the very same models that are widely 
used to analyze historical climate change and make future 
projections.

Finally, our analysis can be utilized to make a qualita-
tive estimate for the SST response to SAM in the real SO. 
Our results suggest that during a sustained positive phase 
of the SAM, SO SSTs can exhibit a non-monotonic evo-
lution. A strong and rapid transient cooling may be fol-
lowed by a gradual recovery. However, our results do not 
suggest a high warming rate during the slow response to 
SAM.

Our results have implications for surface heat uptake in 
the real SO and for the persistent expansion of the sea ice 
cover around Antarctica. The positive SAM trend over the 
last decades may have allowed a cooler SO to absorb more 
excess heat from the atmosphere in a warming world. Fur-
thermore, SAM-induced negative SST anomalies may have 
contributed to the observed increase in SO sea ice extent 
(Holland et al. 2016, in prep.; Kostov et al. 2016, in prep.). 
However, if the real SO exhibits a two-timescale response 
to SAM, the observed SST trends may eventually reverse 
sign. Hence a sustained poleward intensification of the 
westerly winds—due to ozone and greenhouse gas forc-
ing—could eventually contribute to a surface warming of 
the SO, a decreased rate of heat uptake, and a reduction in 
sea ice concentration. It is therefore important to constrain 
both the short-term and the long-term SO SST response to 
SAM.
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Appendix: Verification of the methodology

We test our methodology from Sect. 2 in order to ascertain 
its reliability. Our verification procedure involves applying 
the regression algorithm to systems with a known prescribed 
step response function. The latter is convolved with a ran-
domly generated order 1 autoregressive timeseries (AR(1)) 
that is 1000 years long and resembles a SAM forcing. The 
result of the convolution is our synthetic SST response, 
which is strongly diluted with a different AR(1) process 
characterized by longer memory. We choose parameters for 
the AR(1) models such that their autocorrelations resemble 

those of SAM and SO SST timeseries in the CMIP5 GCMs 
(for instance, Fig.  10a, c). We conduct multiple verifica-
tion tests with different choices of AR(1) parameters. We 
also vary the signal to noise ratio in our synthetic SST. 
Figure 10b and d show examples from two different tests.

Within every test we generate an ensemble of multiple 
synthetic SAM and SST signals with the same statistical 
properties but different random values. We apply our algo-
rithm separately to each realization in the same fashion as 
our analysis of CMIP5 control simulations. The verification 
tests confirm the validity of our method for estimating step 
response functions.

Fig. 10   Application of the 
regression algorithm to systems 
with a known prescribed step 
response function. On the top 
row we show a test case where 
we assume long memory in 
our SAM and SST signals. 
The SST signal is diluted such 
that 60 % of the variance is 
noise. In a on the left, we show 
the lagged autocorrelations 
of SAM and SST in CCSM4 
(gray dashed curves) and our 
synthetic artificially generated 
signals (solid black curves). 
In b we show applications of 
the regression algorithm. The 
thick black curve is the true 
prescribed step response func-
tion. The thin gray curves and 
the vertical bars denote the 
estimated step response function 
SSTStep(t) and the uncertainties 
σSSTstep(t) produced by apply-
ing our regression algorithm. 
The two gray curves in panel b 
result from analyzing separate 
realizations in which we use the 
same prescribed step response 
and AR timeseries with the 
same statistical properties 
(illustrated in a) but different 
random values. On the bottom 
row we show a test case where 
we assume shorter memory in 
the SAM and SST signals, but 
the SST signal is diluted with 
more noise, such that the forced 
response contributes only 20 % 
of the total variance. c, d Are 
analogous to a, b

0 2 4
−0.5

0

0.5

1.0

A
ut

oc
or

re
la

tio
n

Years

0 2 4
−0.5

0

0.5

1.0

A
ut

oc
or

re
la

tio
n

Years

SAM

SST
0 5 10 15 20 25 30

−0.2

−0.1

0

0.1

0.2

Years

S
S

T 
[ o C

 ]

0 2 4
−0.5

0

0.5

1.0

A
ut

oc
or

re
la

tio
n

Years

0 2 4
−0.5

0

0.5

1.0

A
ut

oc
or

re
la

tio
n

Years

SAM

SST
0 5 10 15 20 25 30

−0.2

−0.1

0

0.1

0.2

Years

S
S

T 
[ o C

 ]

(a) (b)

(c) (d)



1608 Y. Kostov et al.

1 3

References

Armour KC, Bitz CM (2016) Observed and projected trends in Ant-
arctic sea ice. US CLIVAR Var 13(4):13–19

Armour KC, Marshall J, Scott J, Donohoe A, Newsom ER (2016) 
Southern Ocean warming delayed by circumpolar upwelling and 
equatorward transport. Nat Geosc. doi:10.1038/ngeo2731

Bitz CM, Polvani LM (2012) Antarctic climate response to strato-
spheric ozone depletion in a fine resolution ocean climate model. 
Geophys Res Lett. doi:10.1029/2012GL053393

Böning CW, Dispert A, Visbeck M, Rintoul SR, Schwarzkopf FU 
(2008) The response of the Antarctic Circumpolar Current to 
recent climate change. Nat Geosci 1:864–869. doi:10.1038/
ngeo362

Ciasto LM, Thompson DWJ (2008) Observations of large scale ocean 
atmosphere interaction in the Southern Hemisphere. J Clim 
21:1244–1259. doi:10.1175/2007JCLI1809.1

de Lavergne C, Palter JB, Galbraith ED, Bernardello R, Marinov I 
(2014) Cessation of deep convection in the open Southern Ocean 
under anthropogenic climate change. Nat Clim Change 4:278–
282. doi:10.1038/nclimate2132

DeAngelis AM, Qu X, Zelinka MD, Hall A (2015) An observational 
radiative constraint on hydrologic cycle intensification. Nature 
528:249–253. doi:10.1038/nature15770

Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim rea-
nalysis: configuration and performance of the data assimilation 
system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

Fan T, Deser C, Schneider DP (2014) Recent Antarctic sea ice trends 
in the context of Southern Ocean surface climate variations 
since 1950. Geophys Res Lett 41:2419–2426. doi:10.1002/201
4GL059239

Ferreira D, Marshall J, Bitz CM, Solomon S, Plumb A (2015) Antarctic 
ocean and sea ice response to ozone depletion: a two-time-scale 
problem. J Clim 28:1206–1226. doi:10.1175/JCLI-D-14-00313.1

Fyfe JC, Saenko OA, Zickfeld K et  al (2007) The role of pole-
ward-intensifying winds on Southern Ocean warming. J Clim 
20:5391–5400. doi:10.1175/2007JCLI1764.1

Gillett NP, Thompson DWJ (2003) Simulation of recent Southern 
Hemisphere climate change. Science 302:273–275. doi:10.1126/
science.1087440

Good SA, Martin MJ, Rayner NA (2013) EN4: quality controlled 
ocean temperature and salinity profiles and monthly objective 
analyses with uncertainty estimates. J Geophys Res Oceans 
118:6704–6716. doi:10.1002/2013JC009067

Hall A, Visbeck M (2002) Synchronous variability in the South-
ern Hemisphere atmosphere, sea ice, and ocean resulting from 
the Annular Mode. J Clim 15:3043–3057. doi:10.1175/1520-
0442(2002) 015<3043:SVITSH>2.0.CO;2

Hasselmann K, Sausen R, Maier-Reimer E, Voss R (1993) On the cold 
start problem in transient simulations with coupled atmosphere–
ocean models. Clim Dyn 9(2):53–61. doi:10.1007/BF00210008

Hausmann U, Czaja A, Marshall J (2016) Estimates of air–sea feed-
backs on sea surface temperature anomalies in the Southern 
Ocean. J Clim 29:439–454. doi:10.1175/JCLI-D-15-0015.1

Hutchinson DK, England MH, Santoso A, Hogg AM (2013) Inter-
hemispheric asymmetry in transient global warming: the role of 
Drake Passage. Geophys Res Lett 40:1587–1593. doi:10.1002/
grl.50341

Hutchinson DK, England MH, Hogg AMcC, Snow K (2015) Inter-
hemispheric asymmetry of warming in an eddy permitting 
coupled sector model. J Clim 28:7385–7406. doi:10.1175/
JCLI-D-15-0014.1

Knutti R, Masson D, Gettelman A (2013) Climate model genealogy: 
generation CMIP5 and how we got there. Geophys Res Lett 
40:1194–1199. doi:10.1002/grl.50256

Langlais C, Rintoul S, Zika J (2015) Sensitivity of Antarctic cir-
cumpolar transport and eddy activity to wind patterns in the 
Southern Ocean. J Phys Oceanogr 45:1051–1067. doi:10.1175/
JPO-D-14-0053.1

Marshall J, Armour KC, Scott JR, Kostov Y, Hausmann U, Ferreira 
D, Shepherd TG, Bitz CM (2014) The ocean’s role in polar 
climate change: asymmetric Arctic and Antarctic responses 
to greenhouse gas and ozone forcing. Philos Trans R Soc A 
372:20130040. doi:10.1098/rsta.2013.0040

Marshall J, Scott JR, Armour KC, Campin J-M, Kelley M, Romanou 
A (2015) The ocean’s role in the transient response of climate 
to abrupt greenhouse gas forcing. Clim Dyn 44(7):2287–2299. 
doi:10.1007/s00382-014-2308-0

Meijers AJS (2014) The Southern Ocean in the Coupled Model 
Intercomparison Project phase 5. Philos Trans R Soc A 
372:20130296. doi:10.1098/rsta.2013.0296

Oke P, England M (2004) Oceanic response to changes in the latitude 
of the Southern Hemisphere subpolar westerly winds. J Clim 
17:1040–1054. doi:10.1175/1520-0442(2004)017<1040:ORTCI
T>2.0.CO;2

Purich A, Caj W, England MH, Cowan T (2016) Evidence for link 
between modelled trends in Antarctic sea ice and underestimated 
westerly wind changes. Nat Commun 7:10409. doi:10.1038/
ncomms10409

Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An 
improved in  situ and satellite SST analysis for climate. J Clim 
15:1609–1625. doi:10.1175/1520-0442(2002) 015<1609:AIISA
S>2.0.CO;2

Russell JL, Dixon KW, Gnanadesikan A, Stouffer RJ, Toggweiler JR 
(2006) The Southern Hemisphere westerlies in a warming world: 
propping open the door to the deep ocean. J Clim 19:6382–6390. 
doi:10.1175/JCLI3984.1

Salleé J-B, Shuckburgh E, Bruneau N, Meijers AJS, Bracegirdle TJ, 
Wang Z (2013) Assessment of Southern Ocean mixed layer 
depths in CMIP5 models: historical bias and forcing response. 
J Geophys Res Oceans 118:1845–1862. doi:10.1002/jgrc.20157

Sen Gupta A, England M (2006) Coupled ocean–atmosphere–ice 
response to variations in the Southern Annular Mode. J Clim 
19:4457–4486. doi:10.1175/JCLI3843.1

Sen Gupta A, England MH (2007) Coupled ocean–atmosphere feed-
back in the Southern Annular Mode. J Clim 20:3677–3692. 
doi:10.1175/JCLI4200.1

Sigmond M, Fyfe JC (2010) Has the ozone hole contributed to 
increased Antarctic sea ice extent? Geophys Res Lett 37:L18502. 
doi:10.1029/2010GL044301

Sigmond M, Fyfe JC (2014) The Antarctic sea ice response to 
the ozone hole in climate models. J Clim 27:1336–1342. 
doi:10.1175/JCLI-D-13-00590.1

Sigmond M, Reader MC, Fyfe JC, Gillett NP (2011) Drivers of past 
and future Southern Ocean change: stratospheric ozone versus 
greenhouse gas impacts. Geophys Res Lett. doi:10.1029/201
1GL047120

Solomon A, Polvani LM, Smith KL, Abernathey RP (2015) The impact 
of ozone depleting substances on the circulation, temperature, and 
salinity of the Southern Ocean: an attribution study with CESM1 
(WACCM). Geophys Res Lett. doi:10.1002/2015GL064744

Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 
and the experiment design. Bull Am Meteorol Soc 93:485–498. 
doi:10.1175/BAMS-D-11-00094.1

Thomas JL, Waugh DW, Gnanadesikan A (2015) Southern Hemisphere 
extratropical circulation: recent trends and natural variability. Geo-
phys Res Lett 42:5508–5515. doi:10.1002/2015GL064521

Thompson D, Solomon S (2002) Interpretation of recent South-
ern Hemisphere climate change. Science 296(5569):895–899. 
doi:10.1126/science.1069270

http://dx.doi.org/10.1038/ngeo2731
http://dx.doi.org/10.1029/2012GL053393
http://dx.doi.org/10.1038/ngeo362
http://dx.doi.org/10.1038/ngeo362
http://dx.doi.org/10.1175/2007JCLI1809.1
http://dx.doi.org/10.1038/nclimate2132
http://dx.doi.org/10.1038/nature15770
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.1002/2014GL059239
http://dx.doi.org/10.1002/2014GL059239
http://dx.doi.org/10.1175/JCLI-D-14-00313.1
http://dx.doi.org/10.1175/2007JCLI1764.1
http://dx.doi.org/10.1126/science.1087440
http://dx.doi.org/10.1126/science.1087440
http://dx.doi.org/10.1002/2013JC009067
http://dx.doi.org/10.1175/1520-0442(2002)%20015%3c3043:SVITSH%3e2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2002)%20015%3c3043:SVITSH%3e2.0.CO;2
http://dx.doi.org/10.1007/BF00210008
http://dx.doi.org/10.1175/JCLI-D-15-0015.1
http://dx.doi.org/10.1002/grl.50341
http://dx.doi.org/10.1002/grl.50341
http://dx.doi.org/10.1175/JCLI-D-15-0014.1
http://dx.doi.org/10.1175/JCLI-D-15-0014.1
http://dx.doi.org/10.1002/grl.50256
http://dx.doi.org/10.1175/JPO-D-14-0053.1
http://dx.doi.org/10.1175/JPO-D-14-0053.1
http://dx.doi.org/10.1098/rsta.2013.0040
http://dx.doi.org/10.1007/s00382-014-2308-0
http://dx.doi.org/10.1098/rsta.2013.0296
http://dx.doi.org/10.1175/1520-0442(2004)%20017%3c1040:ORTCIT%3e2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2004)%20017%3c1040:ORTCIT%3e2.0.CO;2
http://dx.doi.org/10.1038/ncomms10409
http://dx.doi.org/10.1038/ncomms10409
http://dx.doi.org/10.1175/1520-0442(2002)%20015%3c1609:AIISAS%3e2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2002)%20015%3c1609:AIISAS%3e2.0.CO;2
http://dx.doi.org/10.1175/JCLI3984.1
http://dx.doi.org/10.1002/jgrc.20157
http://dx.doi.org/10.1175/JCLI3843.1
http://dx.doi.org/10.1175/JCLI4200.1
http://dx.doi.org/10.1029/2010GL044301
http://dx.doi.org/10.1175/JCLI-D-13-00590.1
http://dx.doi.org/10.1029/2011GL047120
http://dx.doi.org/10.1029/2011GL047120
http://dx.doi.org/10.1002/2015GL064744
http://dx.doi.org/10.1175/BAMS-D-11-00094.1
http://dx.doi.org/10.1002/2015GL064521
http://dx.doi.org/10.1126/science.1069270


1609Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate...

1 3

Thompson DWJ, Solomon S, Kushner PJ et al (2011) Signatures of 
the Antarctic ozone hole in Southern Hemisphere surface climate 
change. Nat Geosci 4:741–749. doi:10.1038/ngeo1296

Wang G, Cai W, Purich A (2014) Trends in Southern Hemisphere 
wind-driven circulation in CMIP5 models over the 21st cen-
tury: ozone recovery versus greenhouse forcing. J Geophys Res 
Oceans 119:2974–2986. doi:10.1002/2013JC009589

Waugh DW, Primeau F, DeVries T, Holzer M (2013) Recent changes 
in the ventilation of the Southern Oceans. Science 339:568–570. 
doi:10.1126/science.1225411

Waugh DW (2014) Changes in the ventilation of the southern oceans. 
Philos Trans R Soc A 372:20130269. doi:10.1098/rsta.2013.0269

http://dx.doi.org/10.1038/ngeo1296
http://dx.doi.org/10.1002/2013JC009589
http://dx.doi.org/10.1126/science.1225411
http://dx.doi.org/10.1098/rsta.2013.0269

	Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models
	Abstract 
	1 Introduction
	2 Data and methods
	3 Results
	4 Connecting our model-based results to the real Southern Ocean
	5 Discussion and interpretation of the results
	Acknowledgments 
	References




