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In response to increasing concentrations of atmospheric CO2, high-
end general circulation models (GCMs) simulate an accumulation
of energy at the top of the atmosphere not through a reduction in
outgoing longwave radiation (OLR)—as one might expect from
greenhouse gas forcing—but through an enhancement of net
absorbed solar radiation (ASR). A simple linear radiative feedback
framework is used to explain this counterintuitive behavior. It is
found that the timescale over which OLR returns to its initial value
after a CO2 perturbation depends sensitively on the magnitude of
shortwave (SW) feedbacks. If SW feedbacks are sufficiently posi-
tive, OLR recovers within merely several decades, and any subse-
quent global energy accumulation is because of enhanced ASR
only. In the GCM mean, this OLR recovery timescale is only 20 y
because of robust SW water vapor and surface albedo feedbacks.
However, a large spread in the net SW feedback across models
(because of clouds) produces a range of OLR responses; in those
few models with a weak SW feedback, OLR takes centuries to
recover, and energy accumulation is dominated by reduced OLR.
Observational constraints of radiative feedbacks—from satellite
radiation and surface temperature data—suggest an OLR recovery
timescale of decades or less, consistent with the majority of GCMs.
Altogether, these results suggest that, although greenhouse gas
forcing predominantly acts to reduce OLR, the resulting global
warming is likely caused by enhanced ASR.
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Global conservation of energy is a powerful constraint for
understanding Earth’s climate and its changes. Variations in

atmospheric composition that result in a net positive energy
imbalance at the top of atmosphere (TOA) drive global warm-
ing, with the world ocean as the primary reservoir for energy
accumulation (1). In turn, increasing global surface temperature
enhances emission of longwave (LW) radiation to space (the
Planck response). A schematic of the global energy budget re-
sponse to a step change in greenhouse gas (GHG) concen-
trations is illustrated in Fig. 1A: outgoing LW radiation (OLR)
initially decreases because of enhanced LW absorption by higher
GHG levels; as energy accumulates in the climate system, global
temperature rises and OLR increases until the TOA energy
balance is restored—when OLR once again balances the net
absorbed solar radiation (ASR). In this canonical view of global
warming, the net energy accumulation (shaded green area in Fig.
1A) is a consequence of decreased OLR driven by GHG forcing.
In contrast, consider a hypothetical step change in solar in-
solation (Fig. 1B): ASR is increased, and energy accumulates
until the climate warms sufficiently that OLR balances the ASR
perturbation. In this case, the net energy accumulation (shaded
red area in Fig. 1) is a consequence of increased ASR and op-
posed by the increased OLR (hatched green area in Fig. 1).
Is the present global warming caused by reduced OLR (as in

Fig. 1A) or enhanced ASR (as in Fig. 1B)? Anthropogenic ra-
diative forcing is dominated by LW active constituents, such as
CO2 and methane, and shortwave (SW) forcing agents, such as
sulfate aerosols, are thought to be acting to reduce ASR com-
pared with their preindustrial levels (2). Reduced OLR, thus,

seems the likely cause of the observed global energy accumula-
tion, although the limited length of satellite TOA radiation
measurements precludes determination of the relative con-
tributions of ASR and OLR by direct observation. Trenberth and
Fasullo (3) considered global energy accumulation within the
ensemble of coupled general circulation models (GCMs) par-
ticipating in phase 3 of the Coupled Model Intercomparison
Project (4) (CMIP3). They report that, under the Special Report
on Emission Scenarios A1B emissions scenario, wherein in-
creasing radiative forcing is driven principally by increasing GHG
concentrations, OLR changes little over the 21st century and
global energy accumulation is caused nearly entirely by enhanced
ASR—seemingly at odds with the canonical view of global
warming by reduced LW emission to space (outlined in Fig. 1A).
Here, we seek insight into this surprising result. In particular,

we examine CO2-only forcing scenarios as simulated by the
CMIP5 ensemble of state of the art GCMs (5). Perturbing CO2
alone permits a clean partitioning of radiative forcing and radi-
ative response into their respective SW and LW components and
allows an investigation into the relative contributions of reduced
OLR and enhanced ASR to global energy accumulation. The
CMIP5 multi-GCM mean response to a compounding 1% per
year CO2 increase (hereafter, 1% CO2) is shown in Fig. 1D.
Although CO2 radiative forcing increases approximately linearly
in time for 140 y (dotted lines in Fig. 1D), OLR changes little
from its preindustrial value, and global energy accumulation is
accomplished nearly entirely by increased ASR, consistent with
the multi-GCM mean results in the work Trenberth and Fasullo
(3). Perhaps even more striking is the response to an abrupt
quadrupling of CO2 (hereafter, 4× CO2), which is shown in Fig.
1C: OLR initially decreases, like in Fig. 1A, but recovers to
its unperturbed (preindustrial) value within only two decades;
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beyond this initial adjustment period, energy is lost due to en-
hanced OLR and gained solely by enhanced ASR.
Here, we propose a simple physical mechanism for this be-

havior. We show that the simulated global mean OLR and ASR
responses (Fig. 1 C and D) and the short recovery time for OLR
in particular can be understood in terms of a linear radiative
feedback analysis. Moreover, the diversity of feedbacks across
the CMIP5 GCMs explains the range in behavior across the
models: in a majority of models, OLR recovers within several
decades, and the subsequent global energy accumulation is
caused by enhanced ASR; in a minority of models, OLR remains
diminished for centuries, and global energy accumulation is
driven by reduced OLR. Finally, we show that recent satellite
observations constrain radiative feedbacks to be within the regime
of relatively fast (approximately decades) OLR recovery under
GHG forcing, similar to the majority of CMIP5 GCMs. Altogether,
these results suggest that, although GHG forcing acts primarily in
the LW, the resulting global warming is fundamentally a conse-
quence of enhanced SW energy accumulation.

SW and LW Contributions to Energy Accumulation
We first consider in more detail the global radiative response of
the CMIP5 GCMs to an abrupt GHG forcing (4× CO2) (shown
in Fig. 2). The evolution of OLR anomalies differs remarkably
between GCMs (Fig. 2D). We characterize this range of re-
sponses by the time ðτcrossÞ that it takes for OLR to return to its
unperturbed value*; τcross ranges from 2 to 231 y, with an en-
semble mean of 19 y (see Fig. 4A).

To interpret these findings, we employ a commonly used lin-
earization of the global TOA energy budget:

dðC  TSÞ
dt

=FSW +FLW + ðλSW + λLW ÞTS; [1]

where TS is the global mean surface temperature anomaly, and C
is the time-dependent global heat capacity. Eq. 1 relates the rate
of global heat content change to the rate of global TOA energy
accumulation, which is given by the sum of SW and LW radiative
forcings (FSW and FLW) and radiative responses (λSWTS and λLWTS)
(6). Anomalies in OLR and ASR can further be expressed as

ASR=FSW + λSWTS

and

−OLR=FLW + λLWTS: [2]

The radiative feedbacks (λSW and λLW ) can be estimated for
each GCM by linear regression of ASR and OLR (Fig. 2 C and
D) with TS (Fig. 2A) over the period after 4× CO2, wherein ra-
diative forcing is approximately constant (7, 8). Moreover, the
LW and SW components of CO2 forcing (FLW and FSW) can be
estimated by the TS = 0 intercept of the regression.† Forcing and
feedback values for the CMIP5 GCMs (Table S1) are consistent
with those estimated by Andrews et al. (10).
As defined by Eq. 1, the effective heat capacity C (Fig. 2B) is

the time-integrated TOA energy accumulation divided by TS. It
has long been recognized that there is no single heat capacity
(or characteristic relaxation time) of the climate system (11).
Indeed, C increases with time as heat penetrates below the
surface mixed layer and into the ocean interior (12–15). For the
CMIP5 GCMs, C corresponds to an equivalent ocean depth of
50 m in the first decade after 4× CO2 and increases over time,
reaching an equivalent depth of several hundred meters after
a century (Fig. 2B). The time evolution of C together with values
of SW and LW feedbacks and forcing permit an iteration of
Eq. 1 that accurately reproduces the surface temperature response
TS of each GCM (Fig. 2A). ASR and OLR predicted by Eq. 2 are
in excellent agreement with their respective responses following
4× CO2 (Fig. 2 C and D) and account for the vast majority (99%)
of the variance in τcross across the models. Thus, a simple repre-
sentation of climate feedbacks (Eqs. 1 and 2) is all that is needed
to understand the response of ASR and OLR under GHG forcing.
Insight into the GCM behavior can be gained by considering

the values of ASR and OLR required to reach TOA energy
balance (equilibrium) with an imposed GHG forcing. If forcing
and feedbacks acted only in the LW (as in Fig. 1A), the OLR
anomaly would increase from a value of −FLW = 0 after 4× CO2
(Eq. 2), and global energy accumulation would be driven entirely
by reduced OLR. In the multi-GCM mean, however, there is
a substantial positive SW feedback of λSW = 0:6 W m−2 K−1 in
addition to the negative LW feedback of λLW =−1:7 W m−2 K−1

(Fig. 3A). As a result, ASR increases with warming, contributing
to global energy accumulation. Moreover, the positive λSW amplifies
the equilibrium temperature response by a gain factor‡ (GλSW )
of ∼1.5 relative to a system with LW feedbacks only, where

GλSW ≡ 1=ð1+ λSW=λLW Þ: [3]

The multi-GCM mean OLR must, therefore, increase by 1.5FLW
after 4× CO2 (from −FLW to 0.5FLW) to reach equilibrium
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Fig. 1. (A) Idealized response of global mean radiation at the TOA to an in-
stantaneous GHG forcing (green dots) assuming no SW feedback and a radiative
adjustment e-folding time of 20 y. The green line shows the OLR response
(anomaly from preindustrial), and the shaded green area shows the LW energy
accumulation. (B) The same as in A but in response to an instantaneous SW
forcing (red dots), with the red line showing the ASR response. In this case, the
net energy accumulation is the difference between the SW energy accumulation
(the shaded red area) and the LW increase (the hatched green area, where the
hatching indicates that the LW response leads to a cooling of the climate system).
(C) The ensemble average radiative response in the CMIP5 4× CO2 simulations.
The shaded area represents the energy accumulation by SW (red) and LW
(green) anomalies, and the hatched area indicates energy loss by enhanced OLR.
The dashed red and green lines show the predicted ensemble average ASR and
OLR responses from the linear feedback model (Eqs. 1 and 2). (D) The same as in
C but for the CMIP5 ensemble average radiative response in the 1% CO2 increase
per year simulations (with linear increase in forcing as shown by dotted lines).

*Note that, if OLR remains below its unperturbed value for the entirety of the 150-y
simulation, we estimate τcross by linear extrapolation over the final century of the sim-
ulations. In this case, τcross should be considered a metric for the GHG forcing amelio-
rated by the response, because it is possible that OLR may never return to its
unperturbed value.

†Radiative forcing by this method includes both the direct radiative forcing by the GHG and
the effect of any tropospheric adjustments that occur on timescales of days to weeks (9).

‡We note that this gain factor differs from the commonly used feedback gain defined as the
amplification of the equilibrium temperature response by radiative feedbacks (e.g., water
vapor and surface albedo) relative to the response with the Planck feedback only (16, 17).
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(Eq. 2). Thus, OLR returns to its unperturbed value when
1FLW=1:5FLW ≈ 66% of the equilibrium temperature response
has been realized. We estimate this timescale below. If we as-
sume, for the moment, that the warming over the first several
decades can be approximated with a constant heat capacity C,
Eq. 1 can be readily solved for the time evolution of the surface
temperature, giving

TS =GλSW
FLW

λLW

!
e
−t
τ − 1

"
; [4]

where

τ=−
C

λLW + λSW
: [5]

From Eq. 4, the ∼66% of the equilibrium temperature change
required for OLR to recover to preindustrial values will be
achieved at approximately time τ; that is, τcross is approximately
equal to τ in the ensemble average. If we take the ensemble
mean of C over the first century of the 4× CO2 simulations as
an upper bound on its value over the first several decades
(C≈ 250 m from Fig. 2B), then Eq. 5 provides an upper bound
on τ. For ensemble mean feedback values (Table S1), Eq. 5 gives
τ≈ 29 y, which is in good agreement with the CMIP5 ensemble
mean OLR recovery timescale τcross = 19 y. For all times after
τcross, energy is lost through enhanced LW emission, and energy
accumulation is solely due to enhanced ASR. Thus, the relative
contributions of SW and LW anomalies to the total energy ac-
cumulation depend directly on the time that it takes for OLR to
return to and cross its unperturbed value ðτcrossÞ. In the multi-
GCM mean, OLR takes only two decades to recover, and thus,
energy accumulation is due primarily to enhanced ASR.
What, then, sets the large range of τcross across the CMIP5

GCMs? While a substantial fraction of equilibrium warming is
achieved within the first several decades in all GCMs (15, 18)—
due to the fast response of the surface components of the climate

system (12)—the ASR and OLR responses to warming (and τcross)
depend on the SW and LW feedbacks, which vary substantially
(Fig. 3A). The dependence of τcross on the feedback parameters
can be seen explicitly by solving the linear feedback model for τcross
(under the assumption that FSW = 0). Substituting Eq. 4 into
Eq. 2 and identifying t= τcross as the time when OLR = 0 gives
FLW =FLWGλSW ðeτcross=τ − 1Þ, which has the solution

τcross =−τ ln
#
1−

1
GλSW

$
: [6]

Eq. 6 reveals that the OLR recovery time is proportional to
(i) the radiative e-folding timescale τ, which is on the order of
several decades, and (ii) a factor lnð1− 1=GλSW Þ= lnð−λSW=λLW Þ,
which is ≈ 1 in the multi-GCM mean but varies by two orders of
magnitude across the GCMs. A positive SW feedback amplifies
warming, and thus enhances the OLR response and decreases
the timescale for OLR recovery. Moreover, τcross is far more
sensitive to changes in λSW than λLW over the parameter space
realized in the GCMs (curves in Fig. 3A), suggesting that the
intermodel differences in τcross are primarily controlled by var-
iations in SW feedbacks. This result arises from a fundamental
asymmetry in the dependence of OLR on λSW and λLW : a more
positive λSW acts to amplify warming, which enhances OLR and
decreases τcross; a less negative λLW similarly acts to amplify
warming, which enhances OLR, but it also diminishes the OLR
response per degree TS change (Eq. 2), altogether driving only
small changes in τcross.
Despite its many simplifications, Eq. 6 provides a reasonable

estimate of τcross as simulated by the GCMs, explaining 66% of
the variance across models (Fig. 3A). In particular, it broadly
captures the short OLR recovery time in the CMIP5 models with
large and positive λSW values and the long OLR recovery time in
models with a near-zero λSW . There are a few notable exceptions,
however, where Eq. 6 predicts a substantially smaller τcross than is
realized. τcross is underestmated in these models because we have
not yet accounted for the SW component of CO2 forcing, which
is substantial in a few GCMs because of the rapid cloud
adjustments that occur on timescales faster than surface tem-
perature changes. Analogous to the SW feedback case discussed
above, SW forcing amplifies the equilibrium temperature re-
sponse by an SW forcing gain factor, GFSW , relative to the system
with LW forcing only:

GFSW ≡ 1+
FSW

FLW
: [7]

A positive SW forcing amplifies warming, enhancing the OLR
response and decreasing τcross, whereas a negative SW forcing
reduces warming, diminishing the OLR response and increasing
τcross. Including the effects of SW feedbacks and forcing together
gives a simple extension of Eq. 6, wherein the gains are multi-
plicative (SI Text):

τcross =−τ ln
#
1−

1
GλSW  GFSW

$
: [8]

In the multi-GCM mean, FSW is relatively small (Table S1),
giving GFSW ≈ 1:1 and modifying τcross little from that predicted
by Eq. 6. However, in some models, FSW is a substantial fraction
of the total CO2 forcing (Fig. 3B), and thus, it has a large impact
on τcross. With FSW taken into account, Eq. 8 provides an excel-
lent estimate of τcross as simulated by the GCMs, explaining 78%
of the variance across models.
If a constant value τ≈ 29 y is used in Eq. 8, the dependence of

τcross on the feedback and forcing gains can be visualized (curves
in Fig. 3B). τcross has very steep gradients in the region where the
product of GλSW and GFSW approaches one, leading to a bimodal
distribution of τcross, with OLR returning to unperturbed values
either over a couple decades or at timescales longer than a century.
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Fig. 2. (A) Time series of global mean surface temperature change in the
CMIP5 4× CO2 simulations. The individual models are indicated by the colored
lines and color-coded by the temperature change at year 150 (the color bar is
provided in the middle of the figure). The ensemble average is shown by the
dashed black line. (B) The heat capacity of the climate system defined as the
global time-integrated energy accumulation divided by surface temperature (Eq.
1) given in units of the effective depth of a column of ocean (left axis) and units
of radiative e-folding timescale (negative of heat capacity divided by the en-
semble mean net radiative feedback λLW + λSW = −1:1 W m−2 K−1; right axis).
(C) Time series of the ASR response, where the solid lines are the GCM values and
the dashed lines are the predictions of the linear feedback model (Eqs. 1 and 2)
using the GCM-specific heat capacity, forcings, and feedbacks. The solid black
line is the ensemble mean of the GCM, and the dashed black line is the pre-
diction of the linear feedback model using the ensemble average heat capacity,
forcings, and feedbacks. (D) The same as in C except for the OLR response.
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Although GλSW and GFSW contribute equally to τcross, GλSW varies by
a greater amount than GFSW across the GCMs. Thus, it is SW
feedback that most strongly controls the range of τcross and the
relative contributions of OLR and ASR to global energy ac-
cumulation. However, in models with a sufficiently negative
FSW ðGFSW < 0Þ, τcross can be on the order of centuries, even with
a large and positive λSW ðGλSW > 0Þ. In general, OLR recovers
on timescales of centuries in models with either weak SW
feedbacks or weak (or negative) SW forcing, and OLR recovers
on timescales of several decades in models with moderate SW
feedbacks and SW forcing. This result can be further seen by
varying only λSW and FSW in the linear feedback model (Eq. 1)
and setting λLW , FLW , and C equal to their ensemble mean values.
The predicted values of τcross are in excellent agreement ðR2 =
0:98Þ with those simulated by the GCMs (Fig. 4A), except for two
models with C much larger than the ensemble mean value. Im-
portantly, allowing only λSW and FSW to vary between models is
sufficient to capture the clear separation between (i) those models
with τcross on the order of centuries (black circles in Fig. 4A),
where global energy accumulation is dominated by reduced OLR,
and (ii) those models with τcross on the order of decades (colored

circles in Fig. 4A), where global energy accumulation is dominated
by enhanced ASR and opposed by enhanced OLR.
With these insights in mind, we return to the relative roles of

ASR and OLR in driving global energy accumulation under the
1% CO2 increase per year scenario, where GHG concentrations
increase slowly over time, as in nature, rather than abruptly
quadrupling. To quantify the relative roles of enhanced ASR and
reduced OLR in transient energy accumulation, we define the
SW energy accumulation ratio (SWEAR) to be the ratio of time-
integrated energy accumulation via enhanced ASR to the time-
integrated net radiative imbalance (ASR − OLR) over the 140 y
of the 1% CO2 simulations:

SWEAR=

Z
ASRdt

Z
ðASR−OLRÞdt

: [9]

Values of SWEAR vary considerably across the GCMs (Fig. 4B),
from near zero (energy accumulated primarily by reduced OLR)
to near three (energy accumulated by enhanced ASR and lost by
enhanced OLR). SWEAR between 0 and 1 indicates energy
accumulation through both enhanced OLR and reduced OLR,
whereas SWEAR above 0.5 indicates that ASR contributes more
than one-half of global energy accumulation. In the multi-GCM
mean, SWEAR is 1.1, indicating that OLR changes little and
that net energy accumulation is accomplished entirely by en-
hanced ASR (Fig. 1D).
This range of GCM behavior under slowly increasing GHG

forcing follows directly from the range of OLR recovery time-
scales τcross identified above under an abrupt change in GHGs,
which, in turn, is set by intermodel differences in SW feedbacks
and forcing. Indeed, the linear feedback model (Eqs. 1 and 2
with parameters estimated from 4× CO2 as described above)
iterated forward under 1% CO2 captures the multi-GCM ASR
and OLR response (dashed lines in Fig. 1D) and their variations
across models. The linear feedback model, thus, also captures
the inter-GCM variance in SWEAR (95%), where the vast ma-
jority (85%) of the inter-GCM variance can be explained by
varying λSW and FSW only (with λLW , FLW , and C set to their
ensemble means as above) (Fig. 4B).
Fig. 4B shows a clear separation between models with

SWEAR ≤0:5 (OLR-dominated) and models with SWEAR ≥1
(ASR-dominated). Furthermore, models with SWEAR ≤0:5 are
those with τcross on the order of centuries (Fig. 4B, black circles),
and models with SWEAR ≥1 are the same as those with τcross on
the order of decades (Fig. 4B, colored circles). This strong de-
pendence of SWEAR on τcross can be understood by considering
the response to 1% CO2 as the superposition of many responses
to an instantaneous CO2 forcing, each initiated at a different
time. More formally, the time ðτrampÞ at which OLR returns to its
unperturbed value in response to a linear increase in CO2 forcing
can be approximated by (SI Text)

τramp =
τ

1−
1

GλSW  GFSW

= τeτcross=τ: [10]

For models with τcross on the order of decades, τRAMP is also on
the order of decades, and SWEAR is large. For models with τcross
on the order of a century, τRAMP is on the order of several cen-
turies, and SWEAR is small. Altogether, τcross explains 83% of
the inter-GCM variance in SWEAR.

Observational Constraints on SW and LW Energy
Accumulation
Global mean surface temperature has increased by about 0.85 K
since the pre-industrial period (19) due to a global TOA energy
accumulation driven by anthropogenic GHG emissions. Estimates
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Fig. 3. (A) Contours show the sensitivity of τcross to LW and SW feedback
parameters (λLW and λSW ) in the linear feedback model (Eq. 6) assuming the
forcing is all in the LW and using a time-invariant heat capacity of 250-m
ocean depth equivalent—the GCM mean over the first century. The shaded
black region is the parameter space over which no equilibrium solution
exists, and the shaded pink region is the parameter space over which the
OLR never returns to its unperturbed value. The individual GCM results are
given by the circles, which are color-coded by τcross (the color bar is provided
in the middle of the figure). The gray ellipse and the dashed lines represent
the observational estimates of λLW and λSW ± 1 SD (σ). (B) The sensitivity of
τcross to the SW forcing gain ðGFSW Þ and SW feedback gain ðGλSW Þ assuming τ ∼
29 y (the GCM mean over the first century) in Eq. 8.
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of the rate of global heat content change based on ocean
temperature measurements indicate that the current TOA
energy accumulation is on the order of 0.5–1 W m−2 (20, 21). Is
the observed energy accumulation caused by reduced OLR or
enhanced ASR? The limited accuracy and length of continuous
satellite measurements of Earth’s radiative budget (22–24) pre-
clude direct determination of anomalies in OLR and ASR.
However, the covariance of SW and LW radiation fluxes with
global mean surface temperature over the satellite era permits
an estimate of λSW and λLW (25). Moreover, given the arguments
developed above, these feedback parameters can be used to es-
timate the relative contributions of ASR and OLR anomalies to
the present day global energy accumulation.
Murphy et al. (25) estimated λSW and λLW using 6 y of data

(2000–2005) from the Clouds and the Earth’s Radiant Energy
System Energy Balance Filled Project (24). Here, we extend these
calculations with the now 14 y (2000–2013) of continuous satellite
data and further account for changes in the global radiative
forcing of stratospheric aerosols (26) and GHGs (27) over this
period§ (details in SI Text); λSW and λLW are calculated from the
linear regression of monthly anomalies in forcing-adjusted ASR and
OLR on monthly surface temperature anomalies (Fig. S2) from
three different datasets: (i) the National Centers for Environment
Prediction reanalysis surface air temperature (31), (ii) the Goddard
Institute for Space Studies Surface Temperature Analysis (32), and
(iii) the adaptation by Cowtan and Way (33) of the Climactic Re-
search Unit of the United Kingdom Met Office’s Hadley Center
(34) surface temperature (version 4). The average of all calculations
gives λSW = 0:8± 0:4 and λLW =−2:0± 0:3 W m−2 K−1, where
uncertainties represent 1 SD (additional details in SI Text). These
feedback values are in good agreement with those simulated by the

CMIP5 models, although λSW is at the upper end of the GCM range
(Fig. 3A).
We can further estimate the effective global heat capacity C

from observations by regressing global heat content anomalies
[from ocean temperature measurements (35)] onto global mean
surface temperature anomalies over the period 1970–2013 (Fig.
S3), of which reliable ocean observations exist (20). This calcula-
tion gives an average value of C= 90± 30 m of equivalent ocean
depth, consistent with previous estimates (ref. 36 and references
therein) and values over the first few decades of the CMIP5
simulations (Fig. 2B). Together, these observational estimates of
the feedbacks and heat capacity can be used to estimate the
Earth’s natural timescale for radiative damping (τ) and OLR re-
covery ðτcrossÞ after a CO2 increase: from Eqs. 5 and 6, τ≈ 9 y and
τcross ≈ 10 y, respectively, consistent with but at the low end of the
CMIP5 models because of an SW feedback that is at the high end
of the model range. Despite the uncertainties in λSW and λLW ,
observations constrain the OLR recovery timescale to be on the
order of decades (Fig. 3A), and thus, global warming in response
to CO2 forcing is expected to be a consequence of enhanced ASR.
We note that the above analysis assumes that CO2 forcing acts

predominantly in the LW. Although there are currently no direct
observations of the SW component of CO2 forcing induced by
rapid cloud adjustments, Eq. 8 suggests that this SW forcing
component would have to cancel a substantial fraction (>40%)
of the LW component of CO2 forcing before τcross becomes
greater than several decades. If we use the CMIP5 GCMs as
a guide to the range of possibilities, the SW component of CO2
forcing cancels at most about 20% of the LW component and is
more likely to substantially add to the total forcing (Fig. 3B),
which would further reduce the timescale for OLR recovery and
contribute to energy accumulation by enhanced ASR.
The short timescale τcross suggests that, if anthropogenic ra-

diative forcing had acted predominantly in the LW and increased
somewhat linearly over the last century, OLR would have re-
covered within a decade or so (Eq. 10), beyond which time global
energy accumulation would continue because of enhanced ASR.
However, given a present GHG forcing of about 2.8 W m−2 (37),
the increase in global surface temperature of about 0.85 K above
preindustrial temperatures, and the observational estimate of
λLW , Eq. 2 suggests an anomalous OLR of ≈−0:8 W m−2, im-
plying that OLR is still contributing to global energy accumula-
tion. This apparent discrepancy can be attributed to the effects of
tropospheric aerosols, which are acting to reduce global warming
(and thus, OLR) through a negative SW radiative forcing on the
order of 1 W m−2 (although with large uncertainty) (37). Eq. 2
and our observational estimate of λSW then suggest an anoma-
lous ASR of ≈−0:2 W m−2 in the current climate. Altogether,
these estimates imply that the current global energy accumula-
tion is still dominated by decreased OLR. However, they also
suggest that a transition to a regime of global energy accumu-
lation dominated by enhanced ASR could occur with only 0.5 K
global warming above present—by the middle of the 21st century
if warming trends continue as projected.

Discussion and Conclusions
We have shown that, in most climate models, the OLR reduction
associated with GHG forcing is alleviated within only a few
decades and that the subsequent energy accumulation (and thus,
global warming) is caused entirely by enhanced ASR. However,
in some models, the OLR response is much slower. The range of
model behaviors is readily understood in terms of a simple, linear
feedback framework: positive SW feedbacks demand that ASR
increases with warming and that OLR must ultimately become
greater than its unperturbed value to achieve global energy
balance with an imposed radiative forcing. The OLR recovery
timescale is typically on the order of decades due to the fast re-
sponse timescale of the surface components of the climate system
and the negative LW feedbacks that strongly increase OLR with
warming. Observational constraints also suggest an OLR re-
covery timescale on the order of decades. However, the current
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§We do not account for changes in the radiative forcing of tropospheric aerosols since
they have not changed substantially over this time (28–30).
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global energy imbalance seems to be dominated by reduced OLR
because of the substantial SW forcing associated with anthro-
pogenic tropospheric aerosols, which have directly reduced ASR
and indirectly reduced OLR by curtailing global warming.
The feedback analysis used here ignores time dependence (38)

and other nonlinearities in climate feedbacks (39). Although
both may be important for the details of the response, our results
show that the OLR recovery timescale and the relative con-
tributions of ASR and OLR to energy accumulation are largely
governed by linear feedbacks (Fig. 4). At times, we simplified the
analysis by assuming a constant effective global heat capacity (C)
and associated single timescale of temperature response to
forcing (τ). Although C increases over time (Fig. 2B) and there
are, of course, multiple timescales of climate response (12, 15),
accounting for these details (e.g., by representing a deep ocean
heat capacity) makes no substantive changes to our results and
conclusions. Indeed, surface temperature increases quickly after
a CO2 perturbation—much of the equilibrium temperature re-
sponse is realized within the first few decades in all of the GCMs
(Fig. 2A)—and the timescale of OLR recovery is most sensitive
to the relative magnitudes of λSW and λLW . Moreover, when
using a constant C, we have chosen a value that leads to a slight
overestimate (underestimate) of τcross when τcross is small (large),
providing an overall conservative estimate of τcross (Fig. 4A).
Although the differences in λSW across the CMIP5 models are

primarily caused by differences in SW cloud feedbacks (40), the
ensemble average value λSW = 0:6 W m−2 can be attributed to

two robust and well-understood consequences of a warmer world:
(i) the enhanced SW absorptivity of a moistened atmosphere
(41) and (ii) the enhanced SW reflection associated with less-
extensive snow and sea ice cover. SW absorption in the atmo-
sphere leads to enhanced ASR by reducing the downwelling
radiation incident on the top of clouds and the surface (42).
Using radiative kernels (43, 44) and the changes in specific hu-
midity in the CMIP5 4× CO2 forcing experiments, we calculate
an SW water vapor feedback of +0.3 ± 0.1 W m−2 K−1. The SW
surface albedo feedback has a value of +0.3 ± 0.1 W m−2 K−1

(43, 45). Thus, the positive λSW of the CMIP5 ensemble average
and the resulting energy accumulation by enhanced ASR under
GHG forcing can be expected based only on the robust physics of
the water vapor feedback and the surface albedo feedback in the
absence of any changes in clouds. Only if the SW cloud feedback
is large and negative could the λSW become small and the resulting
energy accumulation be dominated by reduced OLR. Instead,
observations constrain λSW to be at the upper end of the CMIP5
range, implying that OLR recovers quickly in response to GHG
forcing and that global warming is driven by enhanced ASR.
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SI Text
Here, we derive the analytical solutions to the OLR recovery time
in response to an instantaneous and linearly increasing GHG
forcing (τcross in Eq. 6 and τramp in Eq. 8). We also elaborate on
the observational calculations of the linear feedback parameters
(λSW and λLW ) and the climate system heat capacity (C).

Derivation of Eqs. 6 and 8. The time evolution of global mean
surface temperature from the solution of Eq. 1 under an in-
stantaneous greenhouse forcing and with a time-invariant C is

TS =
FLW +FSW

λLW + λSW

!
e
−t
τ − 1

"
: [S1]

The time evolution of the OLR is found by substituting Eq. S1
into Eq. 2:

OLRðtÞ=−FLW +
ðFLW +FSW ÞλLW
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Identifying OLRðt= τcrossÞ= 0 in expression S2b and solving for
τcross gives Eq. 6 in the text.
The ramped forcing in the 1% CO2 runs can be thought of as

the summation of many heaviside functions, each starting at a
different time step, in the limit that the step size goes to zero.
Therefore, the surface temperature response to a ramped forcing
in the linear feedback model is equal to the sum of the responses
to an instantaneous forcing (Eq. S1), each starting at a different
time after the forcing has started:

TS;ramp =
Z t

0

dF
dt

1− e−tτ
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as shown by Kim et al. (1). _F is the time derivative of the forcing,
which is constant in this experiment. The first term in expression
S3b represents the long-term response to the ramped forcing, in
which the temperature increases linearly in time, and the second
term represents the transient response, which decays on the
same e-folding timescale found in the analysis of the 4× CO2
runs. We note that the long-term temperature change is not
equal to the time-integrated forcing divided by the feedback
(which is the case for the equilibrium response to instantaneous
forcing) but is offset from this solution by the equivalent of τ y of
integrated forcing. In this case, the TOA energy balance is never
achieved, but rather, the TOA energy imbalance becomes con-
stant in time and drives a constant surface temperature tendency
(surface temperature increases linearly in time), such that _F is
balanced by the surface temperature tendency times the sum of

the feedback parameters. We note that, after several e-folding
timescales (>50 y), the system nearly asymptotes to the steady
linear increase.
The time evolution of the OLR can be found by substituting

expression S3b into Eq. 2:
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wherewe have ignored the transient term in the approximation. Iden-
tifying t= τramp when the left-hand side of expression S4c = 0 and
solving for τramp gives Eq. 10.

Observational Estimates of λSW and λLW . The covariability of the
global mean forcing adjusted ASR and OLR with the global
average surface temperature is used to estimate λSW and λLW .
Radiation data are from the Clouds and the Earth’s Radiant
Energy System Energy Balanced and Filled Product (2) and span
the period 2000–2013. Monthly anomalies are used, because the
seasonal cycle of reflected SWs is primarily because of the spatial
distribution of insolation and planetary albedo (3) and thus,
not a consequence of radiative feedbacks. Insolation variability
(global mean 2σ = 0.2 W m−2) is removed from the Clouds and
the Earth’s Radiant Energy System Energy Balanced and Filled
Product data, because this solar variability leads to variations
in TOA radiation that are externally forced and unrelated to
climate feedbacks. The impact of insolation anomalies on the
reflected SW radiation is also removed by subtracting the
anomalous insolation times the climatological planetary albedo
from the upwelling SW. This method is equivalent to calculating
anomalies in planetary albedo and multiplying by the climato-
logical insolation to convert to watts meter−2.
We calculate the observed SW forcing caused by stratospheric

aerosols and the observed LW forcing associated with increased
GHGs as follows. The interannual variability of stratospheric
aerosol forcing is calculated from the aerosol optical depth by
Solomon et al. (4), who used combined satellite observations
from the Stratospheric Aerosol and Gas Experiment II (1990–
2005), Global Ozone Monitoring by Occulation of Stars (2002–
2009), and the Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observations (2006–2010) to produce a continuous re-
cord of aerosol optical depth above 15 km between 50 S and 50
N. We convert the aerosol optical depth to TOA SW forcing
using a conversion factor of 25 W m−2 (5). GHG forcing is
calculated separately for CO2, CH4, and N2O. Monthly, global
mean CO2 concentrations from the National Oceanic and At-
mospheric Administration Earth System Research Laboratory
(6) are converted to radiative forcing using

FLWCO2
= 5:57 W m−2 ln

#
CO2

CO2;REF

$
; [S5]

where CO2;REF is the reference concentration, taken here as the
time average over the analysis period. CH4 and N2O forcings are
taken from the National Oceanic and Atmospheric Administration
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Annual Greenhouse Gas Index (http://esrl.noaa.gov/gmd/aggi/
aggi.html). The annual mean radiative forcing data are linearly
interpolated to monthly resolution. The GHG forcings are con-
verted to anomalies over the observational period and subtracted
from the global mean OLR anomalies before our analysis of the
feedback factor λLW .
Three different sets of surface temperature data are considered

here: (i) National Centers for Environment Prediction (NCEP)
reanalysis surface air temperature (7), (ii) the Goddard Institute
for Space Studies Surface Temperature Analysis (GISTEMP)
(8), and (iii) the modification by Cowtan and Way (9) of the Met
Office Hadley Centre surface temperature dataset (10) version 4
(HadCRUT4). All data are converted to anomalies from the
climatological annual cycle over the period 2000–2013. Grid
points with missing data at any time over the analysis period are
excluded. We use globally (spatially weighted) averaged data in
our analyses. In all three datasets, the global average tempera-
ture exhibits a significant (95% confidence interval) upward
trend. The amplitudes of the trend—quantified by the regression
coefficient times one-half of the 13-y analysis period—are 0.08,
0.02, and 0.07 K for the NCEP, GISTEMP, and Hadley Centre
data, respectively. The amplitudes of the detrended, monthly,
and globally averaged temperatures (2σ) are 0.28, 0.22, and
0.25 K, respectively, in the NCEP, GISTEMP, and Hadley Centre
data. In all cases, the amplitude of variability in the detrended
data exceeds the amplitude associated with the trend; the in-
terannual variability of global average temperature exceeds the
global warming signal associated with increasing GHGs over the
13-y analysis period. We note that we do not detrend the data
before our analysis, because the signals that we wish to capture
are the (forcing-adjusted) radiation changes as the planet warms
(either because of global warming or internal variability).
The regression slope between global averaged OLR and global

averaged surface temperature anomalies, which we equate with
λLW , ranges from −2:2± 0:3 W m−2 K−1 (uncertainty is 1σ)
with the GISTEMP data (Fig. S1A) to −1:7± 0:2 W m−2 K−1

with the NCEP reanalysis surface temperature data (Table S2).
For all three temperature datasets, the net SW radiation at the
TOA (forcing and insolation-adjusted) increases with global
mean temperature, consistent with the positive SW feedback
found previously (11). We find λSW to be +0:8± 0:4, + 0:7± 0:4,
and + 0:9± 0:4 W m−2 K−1 using the GISTEMP (Fig. S1B),
NCEP reanalysis, and Hadley Centre temperature data, re-
spectively. Averaging across all three analyses yields λSW = + 0:8±
0:4 W m−2 K−1 and λLW =−2:0± 0:4 W m−2 K−1. These val-
ues place the SW feedback within the range spanned by the
CMIP5 models but are somewhat greater than the ensemble
average λSW of +0.6 W m−2 K−1. The observed LW feedback is
slightly more stabilizing than the CMIP5 model’s ensemble av-
erage λLW of −1.7 W m−2 K−1.
For all three temperature datasets, correlation between tem-

perature and each of the radiation components is significant at the
99% confidence interval, despite the small fraction of variance
explained (r2 averages 0.28 for OLR and 0.05 for ASR). The
uncertainty in the feedback parameters ðσλÞ is estimated by way
of the SD of each time series σ, the correlation coefficient be-
tween the time series r, and the degrees of freedom N* using the
approximation (12)

σλSW =
σASR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− r2ASR;TS

q

σTS

ffiffiffiffiffiffi
N*

p : [S6]

A similar expression holds for the uncertainty in λLW , with ASR
replaced by OLR. The degrees of freedom (N*) are calculated
from the lag 1-mo autocorrelation, r(Δt), of TS and OLR/ASR
and the number of months in the record (N) (13):

N * =N
1− rðΔtÞTS

  rðΔtÞASR
1+ rðΔtÞTS

  rðΔtÞASR
: [S7]

The 1-mo lag autocorrelation of TS ðrðΔtÞTS
Þ averaged over the

three temperature datasets is 0.61. The 1-mo lag autocorrela-
tions in ASR and OLR are significantly lower (0.10 and 0.31,
respectively). As a result, the effective degrees of freedom in the
160-mo record used to calculate the regression of temperature
with ASR are N* = 143, whereas those for temperature with
OLR are N* = 113. Eq. S6 lends insight into why the error
bounds ðσλÞ on λSW and λLW are relatively small, despite the
weak correlation between the TOA radiation and the surface
temperature. In the limiting case of no physical relationship
between ASR and TS, one would expect a regression coefficient
of zero with some variation because of random chance correla-
tions within the sample realized. The maximum possible re-
gression is equal to σASR=σTS = 4 W m−2 K−1, which would be
realized if the variables were perfectly correlated, in this hypo-
thetical example by random chance. Random correlations are
less likely with larger samples, and thus, the regression co-
efficient converges to its true value as the sample size increases.
In our case, with order of 100 independent data, it is unlikely
(1σ) to get a random correlation coefficient that exceeds 0.1
ð1=

ffiffiffiffiffiffiffi
N*

p
Þ in magnitude. Therefore, the regression coefficient

caused by random noise should not exceed (4 W m−2 K−1/10 =)
0.4 W m−2 K−1. Hence, the calculated λSW of 0.8 W m−2 K−1 is
statistically significant. The feedback parameters are statistically
significant, because it is highly unlikely to find values of this
magnitude in the absence of a true feedback process, even if
processes other than temperature feedbacks make a larger
contribution to the TOA radiation variance. To further see this
point, we randomly subsample the surface temperature and
TOA radiation data and create 10,000 estimates of the feedback
parameters using a (bootstrapped) Monte Carlo simulation. For
each estimate, we create a time series of each dataset with 160
monthly values by randomly sampling the full dataset with re-
placement. The resulting probability distribution function for
λSW and λLW agrees very well with that expected from Eq. S6
(Fig. S1C). We emphasize that it is highly unlikely that λSW < 0;
fewer than 1% of the Monte Carlo realizations give negative
values for λSW .

Observational Estimate of Climate System Heat Capacity. Here, we
estimate the heat capacity of the climate system from observations
for the period 1970–2012. As defined by Eq. 1, the heat capacity
is the time-integrated global energy accumulation divided by the
resulting global mean surface temperature change. The changes
in the energy content of the atmospheric column, land surface,
and cryosphere are negligible compared with the changes in
energy content in the ocean. Hence, the time-integrated energy
accumulation in the climate system is equal to the ocean heat
content anomaly. The latter is provided by data from the World
Ocean Atlas (14) (Fig. S2A). The regression coefficient between
ocean heat content anomalies (relative to the 1970–2012 period)
and global mean surface temperature anomalies from NCEP
reanalysis, GISTEMP, and the Hadley Centre datasets give three
estimates of the climate system heat capacity, C. These values
range from 10 ± 2 to 14 ± 3 W m−2 y K−1 between the NCEP
reanalysis and HadCRUT4 (Fig. S2B), with a central estimate of
12 ± 3 W m−2 y K−1 or 90 ± 30 m equivalent ocean depth. (An
equivalent ocean depth is defined by the heat capacity of an
ocean covering the entire surface area of the Earth.) We note
that the maximum value of C determined from any specific 10-y
period in all temperature datasets is 150-m equivalent ocean
depth, which sets an upper bound on the radiative e-folding
timescale (τ) of 15 y given our estimates of λSW and λLW .
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Fig. S1. (A) Scatterplot of the (forcing-adjusted) anomaly in net LW radiation at the TOA (negative OLR) from the Clouds and the Earth’s Radiant Energy
System Energy Balanced and Filled (CERES EBAF) Product and the global mean surface temperature anomaly from GISTEMP. The circles are monthly anomalies
from climatology (2000–2013), and the dashed line is the linear best fit with slope equal to λLW (the value and the uncertainty are shown). (B) The same as in A
except for ASR (ordinate) with the resulting estimate of λSW . (C) Histogram of observational feedback parameters calculated from a 10,000-member (boot-
strapped) Monte Carlo resampling of the CERES EBAF radiation data and GISTEMP temperature data (shaded blocks). LW estimates are shown in green, and SW
estimates are shown in red. The solid lines are the analytical probability distribution functions derived from the full record (Eqs. S6 and S7). The mean of the
Monte Carlo estimate is shown by the dashed vertical line, and the regression coefficient derived from the full record is shown by the solid vertical line (the
lines are on top of one another).
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Fig. S2. (A) Time series of global ocean heat content anomaly (black line; left axis) and global mean surface temperature anomaly (TS, right axis) from NCEP
reanalysis (NCEP TS; blue line), Goddard Institute for Space Studies Surface Temperature Analysis (GISSTEMP red line), and Office Hadley Centre surface tem-
perature dataset verison 4 (HADCRUTv4; purple line) datasets. (B) Scatterplot of heat content and surface temperature anomaly. Each circle is an annual
average anomaly, and the dashed line is the linear best fit that represents the climate system heat capacity (values given); 1 W m−2 y K −1 equals 7.6 m
equivalent ocean depth.

Table S1. CMIP5 GCMs used in this study and the LW and SW feedbacks and forcings in the 4× CO2 simulations

Model λSW λLW FSW FLW τcross SWEAR

CSIRO (Commonwealth Scientific and Industrial Research Organisation, Australia), and
BOM (Bureau of Meteorology, Australia) ACCESS 1.0

0.8 −1.5 −0.6 6.3 32 1.0

Beijing Climate Center, China Meteorological Administration BCC CSM1.1 0.5 −1.7 0.4 6.3 22 1.2
Canadian Centre for Climate Modelling and Analysis CCCma canESM2 0.4 −1.4 1.5 6.1 16 1.4
National Center for Atmospheric Research NCAR CCSM4 0.6 −1.9 0.5 6.8 19 1.2
Centre National de Recherches Meteorologiques CNRM CM5 0.5 −1.6 2.1 5.1 7 1.8
Commonwealth Scientific and Industrial Research Organisation in collaboration with the

Queensland Climate Change Centre of Excellence CSIRO MK3.6
1.3 −1.9 −1.3 6.3 16 1.2

LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences LASG-IAP FGOALS 0.5 −1.3 −0.9 8.4 149 0.6
National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory

GFDL CM3
1.2 −2.0 0.0 5.8 12 1.4

National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory
GFDL ESM2MG

−0.1 −1.4 0.9 5.7 157 0.2

National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory
GFDL ESM2M

0.1 −1.4 0.3 6.1 158 0.1

National Aeronautics and Space Administration Goddard Institute for Space Studies
NASA-GISS E2 R

−0.3 −1.3 0.3 6.9 231 0.0

Institute for Numerical Mathematics INM CM4 0.5 −2.0 −0.8 7.0 166 0.2
Institut Pierre-Simon Laplace IPSL CM5A 1.2 −1.9 2.9 3.4 2 3.0
Institut Pierre-Simon Laplace IPSL CM5B 0.9 −1.9 1.2 4.0 6 2.0
Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for

Environmental Studies, and Japan Agency for Marine-Earth Science and Technology
MIROC 5

0.3 −1.9 2.0 6.5 13 1.0

Max Planck Institute for Meteorology MPI ESM 1.5 −1.6 1.9 6.4 11 1.4
Meteorological Research Institute MRI CGCM3 1.0 −2.2 0.1 6.4 11 1.6
Norwegian Climate Centre NCC NorESM1 0.7 −1.8 0.3 5.8 29 0.9
ENSEMBLE MEAN 0.6 −1.7 0.6 6.1 19 1.1
Observations 0.8 ± 0.4 −2.0 ± 0.3

Also shown is the SWEAR over the 140-y 1% CO2 simulations. The units are as follows: λSW and λLW (watts meter−2 Kelvin−1), FSW and FLW (watts meter−2),
and τcross (years).
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Table S2. Estimates of radiative feedbacks using interannual regressions between forcings
adjusted the Clouds and the Earth’s Radiant Energy System Energy Balanced and Filled Product
radiation data and various surface temperature datasets

Temperature data λSW λLW λ

NCEP reanalysis TS 0.7 ± 0.4 −1.7 ± 0.2 −1.0 ± 0.3
GISTEMP 0.8 ± 0.4 −2.2 ± 0.3 −1.4 ± 0.4
Hadley Centre surface temperature dataset verison 4–CW

HadCRUT4
0.9 ± 0.5 −2.0 ± 0.4 −1.1 ± 0.4

Average 0.8 ± 0.4 −2.0 ± 0.3 −1.2 ± 0.4

All values are in watts meter−2 Kelvin−1. Uncertainties are assessed as 1 SD of the regression coefficient un-
certainty.
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