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ABSTRACT

The temporal characteristics of Arctic sea ice extent and area are analyzed in terms of their lagged cor-

relation in observations and a GCM ensemble. Observations and model output generally match, exhibiting

a red-noise spectrum, where significant correlation (or memory) is lost within 2–5 months. September sea ice

extent is significantly correlated with extent of the previous August and July, and thus these months show

a predictive skill of the summer minimum extent. Beyond this initial loss of memory, there is an increase in

correlation—a reemergence of memory—that is more ubiquitous in the model than observations. There are

two distinct modes of memory reemergence in the model. The first, a summer-to-summer reemergence arises

within the model from the persistence of thickness anomalies and their influence on ice area. The second,

which is also seen in observations, is associated with anomalies in the growth season that originate in the melt

season. This reemergence stems from the several-month persistence of SSTs. In the model memory re-

emergence is enhanced by the sea ice albedo feedback. The same mechanisms that give rise to reemergence

also enhance the 1-month lagged correlation during summer and winter. The study finds the least correlation

between successive months when the sea ice is most rapidly advancing or retreating.

1. Introduction

Sea ice has long been recognized as a key player in

global climate (e.g., Budyko 1969). Through its high

albedo, it reflects large amounts of incident solar radi-

ation to outer space that would otherwise be absorbed,

thus cooling the surface. It regulates the fluxes of tur-

bulent heat between the ocean and atmosphere, acting

as an insulating cap between both mediums (Maykut

1982). It also plays an important role in the makeup of

ocean currents by modulating the production of North

Atlantic Deep Water (NADW; Dickson et al. 1988).

Reduced sea ice volume (thickness and areal extent) is

expected to contribute to the polar amplification of

twenty-first-century greenhouse warming (e.g., Manabe

and Stouffer 1980), and thus it has long been suggested

that trends in the extent and thickness of sea ice are

likely to be among the early indicators of greenhouse

warming (Walsh 1983).

The unique aspects of sea ice that are important for

Arctic climatology and the greenhouse warming problem

also ought to influence climate variability at seasonal to

interannual time scales. Such effects on the atmosphere

have been investigated by, for example, Alexander et al.

(2004) and Bhatt et al. (2008). Nonetheless, predicting

seasonal to interannual variability of the sea ice cover has

only recently received much attention by the scientific

community (e.g., Drobot 2007; Lindsay et al. 2008), and

little work has been done to explore the inherent pre-

dictability of Arctic sea ice (e.g., Döscher et al. 2010;

Mikolajewicz et al. 2005). Using a linear empirical model

of sea ice with a range of predictors, including atmo-

spheric circulation indices, ocean temperature, and sea ice

data, Lindsay et al. (2008) found that, except for the trend,

much of the predictive information in the ice–ocean sys-

tem is lost for lead times greater than about 3 months.

Predicting sea ice cover on seasonal time scales in the

Arctic may be of use to many, and the cumulative gains

in observing sea ice and advances in modeling are
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making it possible to assess how predictable sea ice is at

seasonal to interannual time scales. For example, ad-

vanced knowledge of the opening of the northwest and

northeast passages could offer faster and cheaper ship-

ping between the Atlantic and Pacific Oceans (Hassol

2004). Growing ecotourism in the Arctic is also likely to

benefit.

Climate change has proven problematic for local Inuit

communities, whose elders are no longer able to reliably

predict the weather and sea ice for hunting from tradi-

tional means, thus having an effect on those commu-

nities’ hierarchical systems (Fox 2003). This raises the

question of how predictability might change with green-

house warming. One might reason that thinner ice is

more variable in areal coverage and thickness. Indeed

Holland et al. (2008) and Goosse et al. (2009) found the

variability of sea ice area increased significantly over the

twenty-first century, which suggests predictability may

decline.

Persistence of Arctic sea ice can offer some degree

of predictability even without the use of a numerical

model. High persistence may also indicate times when

predictability with numerical models is most promising.

Lemke et al. (1980) found that the main patterns of

Arctic sea ice area variability showed a decorrelation

time scale (or loss of persistence) of 2–5 months, yet they

did not specify whether these relaxation times varied

throughout the year. This time scale was found to be

associated with heat storage in the marginal ice zone

mixed layer. Subsequent work has focused on calculat-

ing relaxation times for sea ice volume (and by proxy

thickness) using sea ice models. Flato (1995) calculated

a relaxation time of 7 yr for total Arctic sea ice volume

in a model forced by observed monthly air temperature

anomalies. Bitz et al. (1996), using a single column sto-

chastic model of sea ice, found relaxation time scales

fell from 15 to 6 yr for Arctic sea ice volume when ac-

counting for ice export through Fram Strait.

Lindsay et al. (2008) note the importance of properly

predicting thickness to improve predictions of area. The

lack of consistent observations of ice thickness (Kwok

and Rothrock 2009) point to a role for climate modeling

to extend predictions of ice area beyond the initial 2–

5-month decorrelation time scale found by Lemke et al.

(1980).

In this study we reexamine the persistence properties

and inherent predictability of Arctic sea ice in both ob-

servations and one advanced climate model. Satellite ob-

servations of sea ice extent and area exist now for slightly

more than 30 yr. Prior measurements are available from

ship records, yet they are of questionable spatial and

temporal resolution for meaningful statistical studies in

the context of this study. We evaluate mechanisms for

persistence with the more comprehensive sea ice model

output and evaluate their plausibility by comparing their

character with observations. Given the key influence of

Arctic sea ice on climatically relevant time scales, it is

of paramount importance for climate models to suc-

cessfully characterize such mechanisms that give rise to

sea ice persistence so models may be used to make sea-

sonal to annual forecasts.

2. Data

We use output from the Community Climate System

Model, version 3 (CCSM3) Large Ensemble Experi-

ment, a 30-member ensemble run for the period 2000–61

under the Intergovernmental Panel on Climate Change

(IPCC) Special Report on Emissions Scenarios (SRES)

A1B. The CCSM3 in general is described by Collins

et al. (2006), and the sea ice component and polar cli-

mate are described by Holland et al. (2006). The atmo-

spheric component of the model employs T42 spectral

truncation, consisting of a roughly 2.88 3 2.88 latitude–

longitude grid. The ocean component is simulated with

the Parallel Ocean Program (POP), which is run on

a nominally 18 grid with the grid pole displaced into

Greenland, leaving a smooth, singularity-free grid in the

Arctic Ocean of substantially higher resolution than the

T42 grid. The sea ice component employs the same grid

as the ocean.

At T42, the resolution of the atmosphere is half that

of the majority of CCSM3 integrations in the World

Climate Research Programme’s Coupled Model Inter-

comparison Project phase 3 (CMIP3; Meehl et al. 2007)

data archive, which were run at T85 (e.g., see analysis

of Arzel et al. 2006; Gerdes and Köberle 2007). Com-

pared to the T85 integrations, the sea ice in the T42 in-

tegrations is thicker on average by approximately 0.75 m

and more extensive by approximately 1 million km2

(Holland et al. 2006). The thickness and extent at T85 in

the Climate of the Twentieth-Century Climate in Cou-

pled Model (20C3M) integrations were found to com-

pare well with observations by Stroeve et al. (2007) and

Gerdes and Köberle (2007). Thus, the bias in the T42

model makes the output from 2000 to 2030 be in fairly

good agreement with the observed sea ice over last three

decades (see Fig. 1).

There remains in the model, however, a positive bias in

sea ice thickness along the East Siberian shelf, where ice

thicker than 3 m is found. We find that our results are not

influenced by this spatial bias, given its comparatively

small area (when considering the whole of the Arctic) and

the fact that this area has little variability, because it re-

mains mostly frozen throughout the year.
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Each ensemble member is initialized from the same

sea ice, land, and ocean conditions, which are taken from

the end of a 20C3M integration with the same coupled

model. The initial conditions of the atmosphere are dif-

ferent for each ensemble member and correspond to the

state of the atmosphere at 12 a.m. on days drawn from

1 December 1999 to 15 January 2000 of the 20C3M

integration.

Monthly output from the large ensemble is used for

this study. We calculate the total Arctic sea ice area by

integrating the ice concentration over Northern Hemi-

sphere grid cells. Sea ice extent is calculated as the sum

of gridcell areas wherever the sea ice concentration is

greater than 15%. Both area and extent are analyzed

because they offer slightly different information about

the system. Sea ice area is a useful index of the Arctic

climate (Flato 1995) and arguably more relevant than

extent when considering the influence of sea ice on sur-

face albedo and heat fluxes. However, sea ice extent in

observations is arguably of better quality than area

(Parkinson and Cavalieri 2008). We discard the first year

of model output data in the ensemble (2000) to allow for

spinup of the sea ice component (to achieve consistency

between the state of the atmosphere and sea ice con-

centration). Monthly anomalies are calculated for each

ensemble member by subtracting the ensemble mean

from each ensemble member, which effectively detrends

the data. For example, the anomaly for January 2001 for

each member has the 30-member ensemble mean for

January 2001 removed. The large number of ensemble

members allows us to satisfactorily estimate and elimi-

nate the anthropogenically forced response from the

variability. We compare the two halves of the period

to determine if the variability depends on the forced

response.

We use monthly observed Arctic sea ice extent and area

from the satellite period (November 1978–December

2008), which we obtained from the National Snow and Ice

Data Center (NSIDC; Fetterer et al. 2002). Sea surface

temperature (SST) data are obtained from the Met Office

Hadley Centre Sea Ice and Sea Surface Temperature

(HadISST) dataset (Rayner et al. 2003) over the period

1978–2008. Anomalies in the observations are calculated

by taking each month of data and removing the mean and

the long-term linear trend in that month’s time series.

3. Results

a. Lagged correlation of total ice area and extent

We begin with an analysis of the persistence of North-

ern Hemisphere total sea ice area and extent. Figure 2

shows the monthly lagged correlation of total Northern

Hemisphere sea ice area for all ensemble members for the

first half of the run period (2001–30), the average of all 30

members, and observations from 1978 to 2008. Figure 2a

shows all Januaries correlated with themselves at 0 lag,

Januaries correlated with Februaries at lag 1, and Marches

at lag 2, and so on up to a lag of 15 months. We assess the

significance of the lagged correlations using a Student’s t

distribution statistic.

1) INITIAL DECLINE OF MEMORY

In each panel the lagged correlation coefficients drop

rapidly within the first few months in the model and

in observations. The ensemble mean drops below 0.3

(when the original anomaly explains less than 9% of

subsequent anomalies) within 3–6 months. For at least

the first 6 months, the lagged correlation plots roughly

decay exponentially, and thus approximate a red-noise

process, with an e-folding time that varies seasonally

from 2 to 5 months both for ensemble mean and obser-

vations. The extent to which they depart from an expo-

nential decay will be explained in section 3. This initial

e-folding (or relaxation) time scale is thus comparable

to that found by Lemke et al. (1980). Lagged correlations

of the observations are generally within the envelope of

all ensemble runs or slightly outside, yet they also tend to

drop faster than the ensemble mean of the lagged cor-

relation values and often lose all memory within a few

months.

2) REEMERGENCE OF MEMORY

After the initial drop in correlation with increasing

lag, the correlation rises again in every panel of Fig. 2

in the ensemble mean of the lagged correlation from

the model. Such an increase in correlation after some

time has been described as a reemergence of memory

FIG. 1. Mean sea ice area in September (red) and March (blue) in

observations (thin line) and the ensemble mean (thick line).
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(Alexander et al. 1999), and it signals a return of per-

sistence after a gap. Hence, the reemergence is manifest

as a secondary peak in the lagged correlation. Reemer-

gence is seen only in winter month anomalies in obser-

vations. Beyond 15 months’ lag, all correlations drop to

values near zero (not shown).

This secondary (or reemergence) peak is significant

following anomalies that originate in every month in the

model ensemble mean. The time when the peak occurs

varies seasonally in roughly two repeating patterns. First,

following anomalies that originate in late winter and

spring (January–May), the reemergence peak is weakest

and latest (lagged up to 12 months) following anomalies

that originate in January. The reemergence peak then

occurs progressively earlier following anomalies that

originate in March and May. This pattern is nearly re-

peated following anomalies that originate in summer

and fall (July–November) and that reemerge about a year

later. A noteworthy feature in the ensemble mean

following these anomalies that originate in summer and

fall is the reemergence always peaks in September, yield-

ing a summer-to-summer persistence. The reemergence

peak is largest for September-to-September persistence in

the model. Mechanisms to describe these patterns of re-

emergence are offered below at which time the seasonally

distinct behaviors will become more apparent.

In observations the reemergence is significant follow-

ing anomalies that originate in January and March and

peak in the following late fall. Although the September-

to-September lagged correlation is slightly peaked (Fig.

2e) mirroring the reemergence seen in the model, the

peak is not statistically significant at the 95% threshold.

While the period for which this analysis is performed

is not the same (1979–2008 in the observations versus

2001–30 in the model), and the overlap is just 8 yr, there

are two reasons we believe our comparison is valid. First,

as explained in the data section, there is a positive bias in

sea ice extent and thickness in the T42 CCSM3 model,

FIG. 2. Monthly lagged correlations of total sea ice area for every other month for the Northern Hemisphere in the

observational record and CCSM ensemble. The ensemble mean (thick black curve) is the mean of the individual

ensemble members (blue curves). The broken line in (e) indicates the 95% significance level for a single 30-yr run.
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such that the average September sea ice extent in the

early twenty-first century in the model is comparable to

that in observations in the late twentieth century. Second,

Fig. 3 shows results for the same analysis as Fig. 2 but for

the ensemble means of the periods 2001–30 and 2031–60.

Despite a diminished sea ice environment, both in terms

of area and thickness in the second half of the model

ensemble—summer sea ice area is reduced by 50% with

respect to the first half—the model shows similar pat-

terns of lagged correlation. This result is discussed fur-

ther below. Additionally, the 20C3M control run also

shows similar patterns of lagged correlation (not shown).

Our analysis shows that extent anomalies (not shown)

for both model and observations generally have even

shorter initial persistence and weaker reemergence. For

example, spring and early summer (April–June) sea ice

extent yields no information on the following summer’s

minimum extent in September, and July is the earliest

month in the melt season that is significantly correlated

with the late-summer minimum.

Figure 4 shows lagged correlations for anomalies that

originate in every month (predictor) up to and including

a lag of 23 months (predictand). In the model ensemble

mean (Figs. 4a and 4b), two main features appear that

correspond to reemergence of memory. One is a ‘‘sum-

mer limb’’ of relatively high lagged correlation values

extending out from the initial 1-month-lag primary corre-

lation peak in late summer and representing predictor–

predictand persistence pairs from August to Septem-

ber, July to October, June to November, and May to

December. The second feature is a ‘‘winter limb’’ of

relatively high lagged correlation extending out from the

initial 1-month-lag primary correlation peak in late

winter. Anomalies that originate in late fall/early winter

reemerge at increasingly shorter lags and smaller mag-

nitude, while anomalies that originate in late-summer/

early-fall months are seen to reemerge in the following

September. The winter limb is considerably longer than

the summer limb. This presentation of the lagged cor-

relation (in Fig. 4) highlights the timing of the

FIG. 3. As in Fig. 2, but for ensemble mean of the first half (2001–30; black) and second half (2031–60; red) of the

model run.
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reemergence and confirms the distinct behaviors that

were noted in Fig. 2. It further illustrates that the re-

emergence branches into ‘‘limbs’’ from the initial decline

of memory, and hence we can expect the same mecha-

nisms that give rise to reemergence to also enhance the

initial persistence during certain seasons, namely, at

the peak and trough of the seasonal cycle of sea ice area.

We examine in detail the seasonality of the initial per-

sistence in the following section. Sea ice extent in the

model ensemble has consistently lower lagged correla-

tion values than sea ice area (Fig. 4b versus Fig. 4a), yet

the same patterns of memory reemergence are present.

The observational data, while much noisier, have sim-

ilar patterns to the model data where the limbs branch

from initial 0-lag primary peak correlation (especially

for extent). Thus, both the summer limb and winter limb

may only be present for short lags (August–September

and July–October for the summer limb and January–

March for the winter limb). However, there is a signi-

ficant reemergence of winter anomalies originating in

January, February and March at 1-yr lags that is subtler

in the model. As discussed by Bitz et al. (2005), the lo-

cation of the mean winter ice edge is strongly related to

ocean heat flux convergence, which owing to its relatively

long time scales causes a significant winter-to-winter

memory in the location of the winter ice edge and thus

the total Arctic sea ice area and extent.

3) THE CONNECTION BETWEEN THE INITIAL

DECLINE OF MEMORY AND MEMORY

REEMERGENCE

The peak values of lagged correlation in the summer

limb of memory reemergence correspond to pairs of

months that share a similar amount of mean sea ice

cover. For the winter limb, this relationship is not as

strong. Figure 5 shows the annual cycle of mean sea ice

area in the CCSM3 ensemble for the period 2001–30.

The arrows indicate predictor–predictand persistence

pairs that share a high degree of lagged correlation rel-

ative to other pairs of months with identical lag. The

black arrows indicate months that represent the summer

limb of high lagged correlation values, whereas the gray

FIG. 4. Correlations values for all months and all lags. Months along the x axis indicate the month whose anomaly

(predictand) is correlated with the month’s anomaly along the y axis (predictor), from lags of 0 months (thus values of

1 along the diagonal) to 23 months. Shown are (a) model sea ice area, (b) model sea ice extent, (c) observed sea ice

area, and (d) observed sea ice extent. The model results are the ensemble mean correlation of the individual en-

semble members. January and February data have been duplicated for ease of following structures through winter.

Figure repeats what is shown in Fig. 2 for lags up to and including 15 months.
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arrows indicate months that represent the winter limb of

high lagged correlation values in Fig. 4. The results from

Fig. 4 hint that the degree of similarity in the expanse of

the Arctic sea ice, and likely the collocation of the sea

ice edge between certain months, is one of the main

factors driving the overall memory in the sea ice.

To investigate this further we have calculated the

correlation between absolute change in sea ice area and

extent for both model and observations and the 1-month

lag correlation for all months. In the model the abso-

lute change in month-to-month sea ice extent explains

63% of the 1-month lagged correlation (32% for area).

The relationship in observations is not significant at the

95% level, yet the sign of the correlation agrees with the

model. This behavior is even clearer at lags of 2–3 months.

For a 3-month lag, absolute value of the 3-month change

in mean area (extent) explains 70% (72%) of the 3-month

lagged correlation in the model and extent explains 35%

of the 3-month lagged correlation in the observations.

Thus, during the part of the annual cycle in which there is

a rapid change (freeze up in fall, melt in spring) 1-month

lagged correlations tend to be lower. Therefore, the sea-

sonality in the initial decline of persistence is driven by

the seasonal cycle in sea ice area.

Figure 6 shows the 1-month-lag squared correlations

of sea ice area and extent for all months of the year

(January correlated with February, February with March,

and so on) in both model and observations. In the model,

area and extent have similar annual cycles of 1-month-lag

squared correlations: low values occur during spring and

fall, separated by a peak during late summer, with August

having the highest 1-month-lag squared correlation in

the annual record. During winter, values are halfway be-

tween the summer peak and spring/fall valley. The same

measure of near-term persistence in observations of sea

ice is in reasonable agreement with the model ensemble

mean outside the winter months, although the summer

peaks are broader. In all four curves in Fig. 6, the differ-

ence between the high (August) and low values (spring

and fall) in 1-month-lag squared correlation is signifi-

cant at the 95% confidence level [assuming an first-order

autoregressive (AR1) model; e.g., von Storch and Zwiers

1999]. The 1-month-lag squared correlation is consis-

tently higher for area than extent in the model, and the

same is true for most months in the observations. Our

results suggest that extent is not as valuable as area for

predicting sea ice behavior, and thus we focus on area

as we attempt to identify mechanisms of persistence and

reemergence. Later we discuss why. In the next two sec-

tions, we describe in detail the physical mechanisms

driving this seasonally varying pattern in persistence

and the reemergence of memory.

b. SSTs as source of persistence and reemergence
in sea ice area

A possible mechanism for the increased lagged cor-

relation and persistence between months in the melt and

growth season with similar ice area comes from per-

sistence within the ocean. Our hypothesis is that SST

FIG. 5. Mean annual cycle of sea ice area in millions of square

kilometers in the CCSM ensemble run for 2001–30. The arrows are

used to illustrate pairs of months that show high correlation values

in their sea ice area (and extent) anomalies. The black arrows show

pairs of months during the summer limb of memory seen in Fig. 4:

(1) August–September, (2) July–October, (3) June–November,

and (4) May–December. The gray arrows represent pairs of months

with memory reemergence in the winter limb: (A), January with

April; (B), December with June; (C), November with July; and (D)

late summer (July–October) with the following September.

FIG. 6. Squared correlation at 1-month lag for area and extent

in observations and the CCSM3 ensemble for 2001–30. Along the

x axis, ‘‘J’’ refers to January correlated with February, ‘‘F’’ refers

to February correlated with March, and so on.
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anomalies that accompany sea ice coverage anomalies,

and their characteristic behavior in terms of time and

spatial scales, are the key player in the context of the

summer limb of memory in Fig. 4. In this case SST

anomalies provide the memory from the months during

the melt season to the subsequent months during the

growth season with similar mean sea ice coverage (see

Fig. 5). SST anomalies extend throughout the oceanic

mixed layer, which gives rise to a relatively large heat

capacity compared to sea ice or the atmosphere (White

and Walker 1974). As a result, SST anomalies are rather

persistent, with a typical e-folding time of 3–6 months

(e.g., Frankignoul and Hasselmann 1977), although this

persistence is scale dependent, being longer for large-

scale patterns of SST variability. Additionally it has been

shown that SST anomalies may reemerge at later times

than their initial relaxation time (e.g., Alexander et al.

1999).

A negative (positive) sea ice anomaly at a certain lo-

cation during the melt season is associated with positive

(negative) SST anomalies in that vicinity, which persists

for a number of months. If within this timeframe the

sea ice edge returns to this vicinity, the SST anomaly

‘‘inherited’’ from the original sea ice area anomaly will

have an influence on the rate at which sea ice forms

again in that vicinity.

The total July sea ice area for all ensemble members for

the first half of the model run is correlated in Fig. 7 with

SSTs at each grid cell during July and the follow-

ing months. The SSTs in the Barents and Beaufort Seas

from July to October are negatively correlated with July

sea ice area (high area is correlated with low SSTs). The

regional pattern of variability in sea ice concentration

changes little from July to October (a consequence of

being in the ‘‘trough’’ of the seasonal cycle of Arctic sea ice

area). The regions of high variability are collocated with

high correlations between SST and July total sea ice area.

The SST remains highly correlated with the previous July

sea ice area for at least 3 months, which provides a means

of maintaining the initial sea ice anomaly. After October,

the regions of SST that were highly correlated with July

sea ice area experience freeze up (note especially the

Beaufort sea) and thus the SST correlation signal disap-

pears, leading to a fast decline in persistence of July sea ice

area anomalies beyond the month of October (see Fig. 4).

The persistence of SST anomalies and its influence on

sea ice area is more peculiar following sea ice/SST

anomalies initiated in May. This is easily seen when the

total May sea ice area is correlated in Fig. 8 with SSTs at

each grid cell during the subsequent months. As in Fig. 7,

SSTs correlations are especially negative in the Barents

and Bering Seas but now for a much longer period. May

sea ice area anomalies in the model are mainly a result of

variability in the ice concentration of the Barents and Be-

ring Seas. From May to September, the sea ice edge re-

treats and with it the region of maximum variability in the

sea ice concentration moves poleward, beyond the vicinity

where the SST anomaly persists. By the time of the sea ice

area minimum in September, the region of large variability

in the sea ice concentration is almost entirely within the

Arctic Ocean Basin, well separated from the anomalous

SSTs in the Bering and Barents Seas. During the autumn

freeze up, the sea ice edge advances southward and returns

to the region of anomalous SSTs where the sea ice edge

advance is modulated by the SST anomaly, thus giving rise

to memory reemergence of sea ice area anomalies.

In summary, an anomaly in the sea ice area in May

will, on average, be followed by an anomaly of the same

sign in fall. The memory of the May sea ice area anomaly

persists over the summer as an SST anomaly. The sea ice

edge retreats poleward of the SST anomalies at the

height of summer but returns to feel its influence in fall,

and so the previous May’s anomaly reemerges.

This mechanism to explain the correlation, and hence

reemergence of memory between melt and growth

months in CCSM3 is supported by results found using the

same atmosphere and sea ice component models but with

the dynamic ocean replaced by a slab mixed layer (see

section 3d).

In observations, evidence for the SST-driven persis-

tence and reemergence of sea ice area anomalies can be

seen at two different times. First, October sea ice area

anomalies are correlated with the previous July sea ice

area anomalies, which explains a greater part of the var-

iance in October sea ice area anomalies than August or

even September sea ice area anomalies do (see section 4b).

Second, we find that the reemergence of winter sea

ice area anomalies in the following fall/winter (indi-

cated by the strengthening of the lagged correlation at

10–12 months’ lag in January and March in Fig. 1) is

produced by the reemergence of SST anomalies in the

Barents and Okhotsk regions (these are the two regions

in which sea ice concentration is highly correlated with

total Arctic sea ice area, and thus variability of sea ice

area in these regions accounts for a large fraction of

the variability of total Arctic sea ice). Anomalous SSTs

in these regions in late winter correlated with the orig-

inal sea ice anomaly reemerge in the following late fall

(not shown) in a manner analogous to the reemergence

of late winter/spring SST anomalies in the following fall/

winter found by Alexander et al. (1999).

Given the key role played by the persistence of SST

anomalies in forcing the reemergence of sea ice area

anomalies, we have compared the SST e-folding times

in the CCSM3 and in the HadISST datasets and found

them to be of similar magnitude (not shown). We note,
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FIG. 7. Correlation (colored above 95% significance levels, values are shown in color bar at bottom of figure) of

total July sea ice area with SSTs by grid cell in July and subsequent months. The standard deviation of sea ice

concentration is shown (contours, black are 10%, blue are 20%, and red are 30%) for the same months. All panels are

ensemble averages of the statistics of individual ensemble members in CCSM3 for 2001–30.
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however, that there are important discrepancies in the

autocorrelation of SST anomalies across different ob-

servational datasets (Rayner et al. 2003).

c. Sea ice thickness as source of persistence
and reemergence in sea ice area

The SST anomaly cannot persist in winter past freeze

up, and hence the SST persistence mechanism cannot

explain the correlation from growth to melt months or

the summer-to-summer memory reemergence of the

winter limb. An alternative mechanism to explain re-

emergence is for area anomalies to impart thickness

anomalies that persist in the seasonal ice zone through

spring. The timing of freeze up (i.e., sea ice edge advance)

at a certain location alters sea ice thickness at that loca-

tion through the following spring, particularly where sea

FIG. 8. As in Fig. 7, but correlation (colored, values are shown in color bar at bottom of figure) of total May sea ice

area with SSTs by grid cell in May and subsequent months.
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ice velocities are low. For example, a positive sea ice area

anomaly in January is associated with an earlier date of

freeze up, creating anomalously thick ice in the vicinity of

the climatological sea ice edge. The sea ice edge sub-

sequently advances toward its March maximum, its rate

of advance not significantly affected by the anoma-

lously thick ice in the region of the January ice edge. As

the sea ice edge starts to retreat poleward in spring, it

will slow anomalously in April, when the edge reaches

the anomalously thick ice in the vicinity of the January

ice edge. The thicker sea ice imparted by a positive sea ice

anomaly in January will tend to create a positive sea ice

area anomaly in April.

The negative feedback between ice growth and ice

thickness [thinner ice grows faster than thick ice, see,

e.g., Bitz and Roe (2004)], however, ensures that thick-

ness anomalies tend to decay in time.

The role of sea ice thickness on the persistence of area

in CCSM3 is illustrated in Fig. 9, which shows January

total sea ice area correlated with sea ice thickness by grid

cell during January and the following months. Thick-

ness anomalies persist in the Barents and Okhotsk re-

gions for several months after January. The spatial and

temporal distribution of thickness anomalies imparted

by earlier area anomalies varies throughout the year.

Analysis similar to Fig. 9 indicates that only sea ice area

in late-summer months (August, September, and to a

lesser extent October) is correlated with sea ice thick-

ness at subsequent lags of up to 12 months. These highly

persistent thickness anomalies occur in the central Arctic

Basin. For example, Fig. 10 shows total September sea

ice area correlated with sea ice thickness by grid cell in

September through the following August. One can see

that although sea ice thickness anomalies remain within

the central Arctic, the sea ice edge expands southward

(shown by the regions of high variability in sea ice con-

centration shifting southward), and only during the fol-

lowing summer does the sea ice edge return into the

region of thickness anomalies that were imparted in

September of the previous year. This interchange be-

tween sea ice area and thickness anomalies provides

a mechanism for the 1-yr summer-to-summer memory

seen in the model. During the rest of the year (i.e., at

times of greater mean sea ice coverage than August–

October), total sea ice area and thickness are correlated

over the marginal sea ice zones, and these correla-

tions generally are indistinguishable from 0 within ;6

months.

Given the key role played by ice thickness anomalies

in the reemergence of sea ice area anomalies, we next

investigate the temporal characteristics of ice thickness

anomalies across the Arctic. Figure 11 illustrates ice

thickness in the central Arctic has an e-folding time of

approximately a year, while ice in the seasonal ice zone

has an e-folding time of a few months. We find that the

e-folding time at the regional scale (i.e., at the gridcell

level) is significantly shorter than the e-folding time of

the total Arctic sea ice volume, which is ;4 yr (not

shown). This is likely a result of advection moving floes

in and out of a region and disrupting the persistence of

anomalies. We also find that the e-folding times at the

regional scale are nearly identical during the first and

second half of the runs (Fig. 11a versus Fig. 11b), despite

a 40% reduction in the mean sea ice thickness. In-

terestingly, the e-folding time of the total Arctic sea ice

volume is reduced significantly in the second half com-

pared to the first (not shown). These results are remi-

niscent of Bitz et al. (1996), who found a strong thickness

dependence on the e-folding time of total Arctic volume

anomalies. Their estimates were generally much longer,

as they were from a one-dimensional model that lacked

explicit transport. When Bitz et al. parameterized di-

vergent transport out of the Arctic Basin, the e-folding

time fell considerably.

Our results suggest that the regional pattern of e-

folding time in sea ice thickness anomalies is dictated

primarily by thickness gradients and advection, and it is

therefore little affected by the overall sea ice thinning. It

is important to recognize that summer-to-summer per-

sistence in total Arctic sea ice area anomalies depends on

the regional-scale thickness anomalies, not on the total

Arctic sea ice volume; thus, the summer-to-summer area

persistence is also only modestly influenced by thinning.

Modest as it is, the difference in September-to-September

area persistence between the first and second half of the

runs (see Fig. 3e) is significant. Further, we find this same

measure in 10-yr intervals of the runs (2001–10, 2011–20,

and so on) decreases monotonically.

Significant biases in atmospheric circulation in the

CCSM3 model have been shown to occur over the

Arctic Basin in all seasons (DeWeaver and Bitz 2006).

In particular, anticyclonic (convergent) surface flow is

common over the central Arctic about the North Pole as

opposed to more cyclonic circulation seen in observa-

tions. Biases in surface winds yield biases in ice thick-

ness and ice velocities. We note that in the model, the

mean annual ice velocities in the Beaufort region are

just 1–2 cm21, which amounts to ;500 km of advection

annually. In observations, however, ice velocities are

estimated at 5–10 cm21 (e.g., Fig. 1 of Lindsay and Zhang

2005), making it possible for sea ice in nature to be ad-

vected away from regions where the ice thickness is

overly persistent in the model. Thus, we speculate that

wind and subsequent sea ice motion biases might be a

source of the discrepancy in summer-to-summer memory

between the model and observations.
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d. The role of sea ice albedo and ocean dynamical
feedbacks in the reemergence mechanism

An additional factor that may account for the increase

in memory throughout the summer may be the sea ice

albedo feedback (SIAF; e.g., see Curry et al. 1995). To

investigate the effect of the SIAF on memory, we ran

a sensitivity experiment with the CCSM3 model with the

surface albedo within the sea ice zone held fixed to a

climatological value (i.e., climatological SIAF). Specifi-

cally, a positive (negative) sea ice concentration anomaly

is compensated with a reduction in sea ice albedo (in-

crease in ocean albedo) to maintain the climatological

mean annual cycle of ice and ocean surface albedo. This

way the deviation from climatology in the climatolog-

ical SIAF run does not experience a sea ice albedo

feedback. The atmosphere, land, and sea ice compo-

nents were otherwise identical to the CCSM3 version of

the large ensemble, while for efficiency the ocean was

a slab mixed layer rather than the full ocean general

circulation model. The ocean heat transport was pre-

scribed from a climatological monthly-mean annual cy-

cle taken from the fully coupled run. A run with variable

SIAF in this model configuration is used for comparison.

The fixed and variable SIAF runs are 200 yr long. For

our analysis we discard the first 50 yr of output to allow

for spinup in the model. These runs, which we refer to as

slab ocean CCSM3 runs, are discussed further in Bitz

(2008).

Figure 12 shows the monthly lagged correlations of

total sea ice area in the slab ocean runs as in Fig. 4. Both

runs have the summer-to-summer memory reemergence

FIG. 9. As in Fig. 7, but correlation (colored, values are shown in color bar at bottom of figure) of anomalous total January sea ice area with

sea ice thickness by grid cell in January–December.
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in lagged correlations, as seen in Fig. 4, indicating that

SIAF is not solely responsible for the reemergence

associated with thickness persistence. However, the

summer-to-summer reemergence is significantly weaker

with climatological SIAF in almost every predictor–

predictand month pair in Fig. 11, so clearly SIAF is

a factor. In addition, the initial decline in persistence of

anomalies in the summer is more rapid in the climato-

logical SIAF run, indicating that SIAF contributes to the

high persistence during the summer months.

We note that the summer limb in the slab ocean runs

in Fig. 12 appears only as strengthening in persistence

following anomalies in July. This indicates that SST

persistence is diminished in the slab ocean configuration

of CCSM3. Analysis of these runs in the same manner

as Fig. 8 is illustrative. Figure 13 shows the correlation

of total sea ice area in May with SST by grid cell in

November (the first month that shows reemergence of

May sea ice area anomalies) in the CCSM3 ensemble

and in the slab ocean runs. Compared to the ensemble,

the SST anomalies in the slab ocean CCSM3 are shorter

lived in the Barents region (one of the two regions of

memory storage for this reemergence mechanism; see

Fig. 8); therefore, by freeze up, the SSTs in the Barents

are uncorrelated with total sea ice area in the previous

spring. Additionally, sea ice area variability in the Lab-

rador Sea gains importance in driving total Arctic sea ice

area variability in autumn in the slab ocean CCSM3 runs.

However, Labrador Sea SSTs are not correlated with

May total sea ice area, which precludes much possibility

FIG. 10. As in Fig. 7, but correlation (colored, values are shown in color bar at bottom of figure) of anomalous total September sea ice area

with sea ice thickness by grid cell in September–August. Statistics are as in Fig. 9.
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for reemergence. Conversely, Bering Sea SSTs are cor-

related with May total sea ice area; however, the sea ice

concentration varies too little there to cause reemergence

of total Arctic sea ice area anomalies.

e. Sea level pressure persistence

Sea ice concentration responds to winds on the weekly

to monthly time scale (Fang and Wallace 1994), and

recent studies (e.g., Ogi et al. 2008) have shown that

summer sea level pressure (SLP) in the Arctic may ac-

count for a large degree of the variability in the summer

minimum sea ice. If the atmospheric patterns that force

sea ice area anomalies persist, then one could expect this

atmospheric persistence to cause persistence in the sea

ice. There is some evidence that atmospheric patterns of

circulation in the Arctic may have some persistence at

the monthly time scale. For example, Ogi et al. (2004)

showed that the persistence of their seasonally varying

northern annular mode (SV-NAM) was significant in

adjacent months in winter and summer but not in spring

and early fall.

Motivated by these findings, we have calculated the

1-month lag correlation of the time series that charac-

terizes the atmospheric SLP pattern that best explains

the loss in sea ice extent in the satellite record between

May and September found by Ogi et al. (2008) (see their

Fig. 3a). The squared correlation of this time series for

May with June, June with July, and July with August is

FIG. 11. Ensemble mean sea ice thickness (m, colored) and e-folding times of sea ice thickness anomalies in months

(months, contours) for (a) 2001–30 and (b) 2031–60.

FIG. 12. As in Fig. 4, but for (left) total sea ice area in CCSM3 slab ocean with variable SIAF and with (right)

climatological SIAF.
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small (r2 5 0.09–0.15) and varies little over summer. This

leads us to dismiss this SLP pattern as a source for the

significant increase in persistence of sea ice between

May and August (see Fig. 6). We have performed the

same analysis on the GCM data and found that there is

no robust SLP signal that forces summer sea ice loss—

unlike in observations. This makes it even less likely for

hypothetical patterns of SLP persistence to have an im-

print on patterns of sea ice persistence.

4. Discussion of sea ice predictability

Even though the reemergence of sea ice area anom-

alies is much clearer in the 30-member ensemble of the

CCSM3 model than it is in observations, we present

an in-depth analysis of the reemergence mechanisms in

the model for three reasons. First, it is possible that the

observations of sea ice area are too inaccurate to reliably

exhibit reemergence. Because sea ice extent is thought to

be more accurately observed than area, we have also

shown results for sea ice extent in Figs. 4 and 6. We have

noted that extent tends to be less persistent than area, so

extent cannot serve as a substitute. We return to this

issue below to explain why this may be. Second, a more

compelling motivation for examining the reemergence

mechanism in CCSM3 is that we found the same mech-

anisms also enhance persistence during the initial re-

laxation of sea ice area anomalies, when model and

observations agree quite well. We end this section with a

discussion of whether measurements of thickness might

improve predictability of area and the prospect for

future predictability. And third, we note that nearly all

models from CMIP3 (Meehl et al. 2007) have significant

September-to-September correlation in sea ice area (not

shown). This analysis developed herein is thus a con-

structive way to diagnose behavior common among

models and will be the subject of a future study.

a. Sea ice area versus extent

The differences in persistence and reemergence behav-

ior for sea ice area and extent arise from the different

response of these two variables to dynamical forcing.

Conceptually, under a divergent wind field, sea ice floes

are likely to diverge without any change in total area but

decreasing concentration and increasing extent. Under

a convergent wind field, leads may close, again without

any change in total area but increasing concentration

and decreasing extent. If the sea ice should deform, then

area will decrease as well but often at a lesser rate than

the extent. These behaviors argue that sea ice extent is

more sensitive to high-frequency wind forcing than sea

ice area and is thus more variable and less persistent, as

our results show.

b. Seasonal predictability of total Arctic sea ice area

We have shown that persistence of total sea ice area

anomalies for the 1–5-month time scale in the model

agrees well with observations. The correlation of sea ice

area between months in this time range also tends to be

largest (see Figs. 2 and 4). We are thus motivated to ask

how well the area in a given month can be predicted

from knowledge of the area in earlier months, which

FIG. 13. Correlation (colored, values are shown in color bar at bottom of figure) of anomalous total May sea ice area with November

SSTs by grid cell. The standard deviation of sea ice concentration (contours, black are 10%, blue are 20%, and red are 30%) is shown for

November. (a) Repeat of Fig. 7e. From integration with the slab ocean version of CCSM3, with (b) variable SAIF and (c) climatological

SAIF.
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months are predictable the earliest in advance, and

which months offer the most value for predicting later

months. These questions are most easily answered by

reformatting the results in Figs. 2 and 4 so that the 0-lag

correlation is lined up for every month. We also square

the correlations to give the explained variance r2 and

emphasize shorter lags and higher correlations. This

presentation of predictability for both area and extent in

the model and observations is given in Fig. 14.

Many of the curves in Fig. 14 bear a strong resem-

blance to an exponential decaying away from 0 lag,

which is characteristic of red noise (AR1 process). How-

ever, significant departures occur in the explained vari-

ance for September and October. It can be seen that

area anomalies in July explain as much of the variance in

the following October as the area anomalies in August

or September. This is a result of the SST persistence

mechanism described in section 3b, and the fact that this

mechanism not only affects reemergence but also en-

hances the near-term persistence in summer months. It

further suggests that intensive accurate measurements

of July area would offer the most value for predicting

future months, with a bonus that it is also a good pre-

dictor of the September area minimum, which has cap-

tured so much attention. Anecdotal evidence of the value

of July occurred in 2007 and 2008, years with similar

anomalies in July and October. There was an unusually

early episode of high melt back in late June 2007, lead-

ing to large negative sea ice area and positive SST

anomalies by July. Unusually high SSTs and low sea ice

area continued through fall 2007, whereas in 2008, the

main episode of anomalous melt back occurred during

August, which did not allow the SSTs to warm up as

much as in the previous summer, and thus July and

October sea ice areas were closer to normal. In both

years, however, August and September had anomalously

low areas.

Figure 14 also shows March–June sea ice area anom-

alies are largely uncorrelated with September values,

and alone they are not useful predictors of the summer

area minimum, in agreement with Lindsay et al. (2008).

c. Interseasonal to interannual predictability of total
Arctic sea ice area

The reemergence mechanisms invite the possibility

of predicting sea ice area anomalies beyond approxi-

mately 4 months in the future. The persistent SST anom-

alies induced by area anomalies in spring and summer

yield significant predictability in the model up to approx-

imately 10 months (deductible from the summer limb in

FIG. 14. Squared correlation value for a given month at lags shown in the x axis for model and observed sea ice

area and extent.
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Fig. 4). The persistent sea ice thickness anomalies in-

duced by area anomalies in summer and fall yield

significant predictability in the model for even longer,

up to approximately 15 months (deductible from the

summer-to-summer memory in Fig. 4). Even though

reemergence is not significant in observations, we found

evidence to suggest that these mechanisms influence sea-

sonal predictability in observations. Therefore, we suspect

that these mechanisms also influence longer time-scale

predictability in nature, even though the observations are

unable to verify it.

The summer-to-summer reemergence of area anom-

alies via memory that is stored in the sea ice thickness

in the central Arctic raises the possibility of using thick-

ness as a predictor of the summer area minimum. Again,

we turn to the model output for our analysis because

detailed spatial and temporal observations of sea ice

thickness are lacking. The model may yield insights

applicable to future observational thickness-based ap-

proaches for predicting the summer area minimum.

Figure 10 shows that sea ice thickness in the Beaufort

Sea holds most of the memory of sea ice area anomalies

from one September to the next. Based on this result, we

created an index of sea ice thickness over the Beaufort

sector (758–908N, 1808–908W). Figure 15a shows the

lead-lag squared correlation of the thickness index and

the September sea ice area. The correlation is signifi-

cant from when the thickness index leads by 4 months

through a lag of 12 months. Included in Fig. 15 is the

lead-lag squared correlation of total Arctic sea ice area

in each month, with September and the multiple regres-

sion using both variables (thickness index and total Arctic

sea ice area) to explain the variance of September sea ice

area. While sea ice thickness offers some degree of pre-

dictability during the winter and spring months prior to

September when extent or area are not useful metrics,

the values obtained (r 5 0.4–0.5) indicate that September

sea ice coverage is weakly dependant on the previous

winter’s thickness and coverage. These results gener-

ally agree with those of Lindsay et al. (2008), who found

no skill (r2 values below 0.5) in predicting detrended

September total sea ice extent from a range of atmo-

spheric, oceanic, and sea ice variables (including total sea

ice extent and thickness) for lead times greater than about

3 months.

d. Changes in predictability in a greenhouse
warming climate

Recent work (e.g., Holland et al. 2008; Goosse et al.

2009) has shown that the natural variability of simulated

summer sea ice extent increases in the twenty-first cen-

tury because of the thinning ice cover. Holland et al.

(2008) speculate that higher variability will cause

a reduction in predictability. This increase in variability

of summer sea ice extent (and area) is seen in the

CCSM3 large ensemble used in this study. Additionally,

Holland et al. (2010) found that ice extent in a thicker

sea ice regime generally exhibited higher potential pre-

dictability by comparing experiments initialized with dif-

ferent mean ice conditions.

We find that the September-to-September persistence

of total Arctic area anomalies does decline as the ice

thins over from 2001 to 2060, in broad agreement with

Holland et al. (2010). However, we characterize the de-

cline as modest—especially in contrast with the strong

decline in persistence of the total Arctic ice volume.

e. September lagged correlation and the extended
observational sea ice record

The brief satellite record of Arctic sea ice is one of the

obvious shortcomings in the present work. One of the

more interesting aspects of the satellite record—both for

its scientific and societal effects—is the evolution of the

summer minimum extent. A longer sea ice record has

been constructed by the Hadley Centre (Rayner et al.

2003) by combining ship- and airborne-based observa-

tions with the satellite record. We use the adjusted

Hadley time series of total September sea ice area since

1953 following the analysis and modification by Meier

et al. (2007) of the dataset. This shows a somewhat

strengthened September-to-September correlation (r 5

0.22), yet still not significant at the 95% level.

5. Conclusions

Arctic sea ice area decorrelates exponentially over

a time scale of 2–5 months in observations and in the

CCSM3 model. This persistence time scale is variable

throughout the year, with longer values in winter and

summer and shorter values during the spring and fall. To

a large degree, this range is accounted for by the rate of

ice edge retreat/advance, with a longer decorrelation

time scale at the peak/trough of the seasonal cycle of

area. We find that sea ice area at the summer minimum

(September) is only significantly correlated with area in

the previous two months, July and August, both in the

model and observations.

We found that the persistence of SST and sea ice

thickness anomalies is a means of storing memory of

Arctic sea ice area anomalies, even at times when the

area anomalies themselves appear uncorrelated. There-

fore, memory of an area anomaly can return after a pe-

riod when all memory appears to have been lost. We

borrow the term reemergence from the midlatitude

mixed layer ocean dynamics literature to describe this

phenomena.
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There are two modes of reemergence of memory in

the Arctic sea ice area in the model and at least one in

observations. These reemergence modes are intrinsi-

cally linked with the seasonal variability in the initial

persistence. The first reemergence mode common to

model and observations is between pairs of months that

share a similar mean sea ice coverage from melt-to-

growth seasons (i.e., August–September, July–October,

June–November, and so on), while the second one is

reemergence from one summer to the next. The melt-to-

growth season reemergence patterns can be explained

through the imprint of sea ice anomalies on SST in the

vicinity of the sea ice edge. The anomaly persists in the

SST after the sea ice edge moves away to the north, and

it is regained by sea ice area when the sea ice edge returns

to the vicinity in the fall. A similar exchange of anomalies

between area and thickness gives rise to the summer-to-

summer reemergence.

We find little change in the persistence of Arctic sea

ice area anomalies as the ice thins in a future greenhouse

warming scenario. There is only a weak, albeit signifi-

cant, loss in correlation of September-to-September area.

This is in striking contrast to a substantial reduction in

the persistence of total Arctic sea ice volume anomalies

in the future scenario. The former relationship is weak

because area anomalies depend on the persistence of

regional sea ice thickness anomalies, which changes lit-

tle in the future scenario.

A sensitivity study with sea ice albedo feedback elim-

inated from the models shows that sea ice albedo feed-

back lengthens the persistence of SST and sea ice area

anomalies in summer. Our diagnostic analysis finds little

persistence in the atmospheric circulation patterns most

correlated with the ice area.

Our results are relevant to the Sea Ice Outlook Pro-

ject (available online at http://www.arcus.org/search/

seaiceoutlook/index.php), which gathers and summarizes

estimates of the September sea ice extent 1–3 months in

advance. We note, for example, that winter sea ice ex-

tent has been used as a predictor for the 2010 outlook by

a number of working groups. In this work we show that

winter sea ice extent is uncorrelated with the following

summer sea ice extent minimum and thus should not be

used. Our results indicate the summer minimum area

FIG. 15. Mean correlation of Beaufort sea ice thickness and total Arctic sea ice (a) area and (b) extent with

respective September values in the ensemble, and multiple regression using both variables in each panel for lags from

212 to 112 months.
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may be predictable from regional thickness anomalies

up to a year in advance.
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