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The rate of recent global warming has been proposed as an “emer-
gent constraint” on equilibrium climate sensitivity (ECS) and tran-
sient climate response (TCR) – key metrics of the global climate
response to greenhouse-gas forcing. Using CMIP5/6 models, we
show that the inter-model relationship between warming and these
climate sensitivity metrics (the basis for the emergent constraint)
arises from a similarity in transient and equilibrium warming patterns
within the models, producing an effective climate sensitivity (EffCS)
governing recent warming that is comparable to the value of ECS
governing long-term warming under CO2 forcing. However, CMIP5/6
historical simulations do not reproduce observed warming patterns.
When driven by observed patterns, even high ECS models produce
low EffCS values consistent with the observed global warming rate.
The inability of CMIP5/6 models to reproduce observed warming pat-
terns thus results in a bias in the modeled relationship between re-
cent global warming and climate sensitivity. Correcting for this bias
means that observed warming does not exclude high values of ECS
and TCR. These findings are corroborated by energy balance model
simulations and coupled model (CESM1-CAM5) simulations that bet-
ter replicate observed patterns via tropospheric wind nudging or
Antarctic meltwater fluxes. Because CMIP5/6 models fail to simulate
observed warming patterns, proposed emergent constraints on ECS,
TCR, and projected global warming are biased low. The results re-
inforce recent findings that the unique pattern of observed warming
has slowed global-mean warming over recent decades, and how the
pattern will evolve in the future represents a major source of uncer-
tainty in climate projections.
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Equilibrium climate sensitivity (ECS) and transient cli-1

mate response (TCR) are key metrics of the global-mean2

surface temperature response to increasing greenhouse-gas3

concentrations. They represent the warming under a doubling4

of atmospheric carbon dioxide (CO2) at equilibrium and at the5

time of CO2 doubling, respectively. Model values of ECS and6

TCR are strongly correlated with projections of 21st century7

warming (1, 2). The recent IPCC Sixth Assessment Report8

(AR6) assessed the ranges of ECS and TCR to be substantially9

more narrow than in previous Reports (2) following advances10

in scientific understanding of several independent lines of ob-11

servational evidence (e.g., 3). Narrower ranges of ECS and12

TCR in turn translate to better-constrained projections of13

21st century warming compared to projections based on global 14

climate models (GCMs), which span wider ECS and TCR 15

ranges (4). 16

One major update in IPCC AR6 was a reinterpretation 17

of historical energy budget constraints on climate sensitiv- 18

ity based on observed warming since the 1800s. While the 19

historical energy budget was once thought to place strong 20

constraints on ECS (5–7), in IPCC AR6 it was assessed to pro- 21

vide relatively weak constraints, particularly at the high end 22

of the climate sensitivity range. This assessment was based 23

on (i) stubbornly-large uncertainty in the radiative forcing 24

that drove historical warming, owing primarily to uncertainty 25

in aerosol forcing, and (ii) work since AR5 showing that dif- 26

ferences between historical and future (centennial timescale) 27

sea-surface temperature (SST) trend patterns result in esti- 28

mates of ECS that are biased low (2, 3, 8–19). This SST 29

pattern effect occurs because the feedbacks governing Earth’s 30

global radiative response per degree of global warming depend 31

on the spatial pattern of that warming. In particular, warming 32
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since the 1800s has been relatively slow within key regions33

of positive (destabilizing) radiative feedbacks including the34

eastern tropical Pacific Ocean and Southern Ocean; in the long35

term, however, these regions are expected to warm more than36

the global mean, leading to a less-negative global feedback and37

thus an increase in the climate’s sensitivity to greenhouse-gas38

forcing (8, 9, 19–27). Thus, the value of the effective climate39

sensitivity (EffCS) governing historical warming is thought to40

be lower than the value of ECS governing equilibrium warming41

under CO2 forcing (2, 3).42

Another major advance in recent years has been the devel-43

opment of “emergent constraint” methods, wherein coupled44

GCMs are used to find a correlation between an observable45

quantity and something we wish to predict, and then the46

model-based relationship is combined with observations of that47

quantity to derive constrained predictions (28–31). Strong48

emergent constraints on ECS and TCR have been derived49

using the post-1970s rate of global-mean warming (18, 32–34):50

because GCMs with higher ECS and TCR values tend to51

overestimate the observed rate of warming, the implication52

is that high values of climate sensitivity are less likely. This53

emergent constraint was proposed to avoid the issues plaguing54

energy budget constraints based on warming since the 1800s55

(32): because global aerosol radiative forcing changes have56

been relatively small since the 1970s, the use of this period57

substantially reduces the impact of uncertainty in radiative58

forcing; and SST pattern effects are implicitly accounted for59

in the use of GCMs to derive the correlation between recent60

warming and ECS (or TCR).61

As summarized in Forster et al. (2), studies using post-1970s62

global warming as an emergent constraint produce narrow63

bounds on ECS (with best estimates of 2.6-2.8◦C and 5-95%64

ranges within 1.5-4.1◦C) and TCR (with best estimates of65

1.6-1.7◦C and 5-95% ranges within 1.0-2.3◦C). Collectively,66

these studies provided the strongest constraints on ECS and67

TCR of any of the main lines of evidence assessed in IPCC68

AR6, and were a primary justification for assessing the upper69

bounds on the ECS likely (2.5-4◦C) and very likely (2-5◦C)70

ranges to be lower than in previous Reports. These narrower71

ranges also suggest that GCMs with ECS values higher than72

about 5◦C, of which there are many (35) in the Coupled Model73

Intercomparison Project phase 6 (CMIP6, ref. 36), may be74

less valid for projecting future warming (e.g., 2, 37).75

For an emergent constraint to be robust, it must exhibit76

two key properties. First, because many spurious correlations77

between observable and predicted quantities of interest can78

be found by chance within GCMs (38), any correlation that79

is used as the basis for an emergent constraint must rest on80

sound physical principles (28, 29, 31, 39). Second, the GCMs81

used as the basis for an emergent constraint must not share82

a common bias, relative to nature, in their representation of83

this correlation (e.g., 28, 40).84

For emergent constraints on ECS and TCR based on post-85

1970s global warming, there is a strong physical basis for the86

modeled correlation: higher ECS and TCR correspond to a87

less-efficient radiative response per degree of global warming88

which, all else being equal, should lead to a faster rate of89

global warming under greenhouse-gas forcing. And the emer-90

gent constraints have been shown to produce similar results91

whether using CMIP5 or CMIP6 models (18, 32–34), providing92

confidence in their robustness.93

However, recent work has found that historical simulations 94

of CMIP5/6 models generally fail to simulate the observed 95

spatial pattern of post-1970s SST trends (16, 17, 41, 42). In 96

particular, the models produce relatively weak spatial gradi- 97

ents in SST trends, with somewhat enhanced warming in the 98

eastern tropical Pacific Ocean and at high latitudes, while 99

observations show strong spatial gradients in SST trends, with 100

cooling in the eastern Pacific and Southern Oceans. 101

These model-versus-observed discrepancies in SST trend 102

patterns influence the radiative feedbacks that govern climate 103

sensitivity: when atmosphere GCMs are forced with the ob- 104

served post-1970s SST trends, they generally produce global 105

radiative feedbacks that are substantially more negative (lower 106

EffCS) than feedbacks produced over this period by historical 107

simulations of the same coupled GCMs (16, 17). This suggests 108

that there is in fact a common bias across CMIP5/6 GCMs 109

that could affect the modeled relationship between post-1970s 110

warming and climate sensitivity metrics. It is possible, for in- 111

stance, that GCMs overestimate recent warming in part due to 112

their biases in simulated warming patterns, with relatively too 113

much warming in key positive feedback regions, rather than 114

simply having too-high values of ECS or TCR (as is assumed 115

by the emergent constraint). IPCC AR6 noted this possibility, 116

finding it more likely than not that emergent constraints on 117

ECS and TCR based on post-1970s global warming are biased 118

low (2); but without studies quantifying the magnitude of this 119

bias, no corrections could be made. 120

Here we evaluate the potential for SST pattern effects to 121

bias emergent constraints on ECS and TCR via their influence 122

on the CMIP5/6-based relationship between post-1970s global 123

warming and these climate sensitivity metrics. We first repro- 124

duce emergent constraints on ECS and TCR based on recent 125

warming and find similar results to the published literature. 126

We then analyze a subset of CMIP5/6 models that provide the 127

output necessary to accurately calculate radiative feedbacks 128

(and corresponding EffCS) over the historical period. We find 129

that CMIP5/6 models warm too much over recent decades 130

in large part due to their failure to replicate the observed 131

post-1970s SST trend patterns, and thus even high values 132

of climate sensitivity cannot be excluded based on observed 133

warming. We conclude that the proposed emergent constraints 134

on ECS and TCR based on the recent global warming rate 135

are biased low. We evaluate the robustness of our findings 136

using energy-balance model simulations and coupled-model 137

(CESM1-CAM5) simulations that better replicate observed 138

patterns via tropospheric wind nudging or Antarctic meltwater 139

fluxes. Finally, we discuss implications of these results for 21st
140

century warming. 141

The relationship between post-1970s warming and cli- 142

mate sensitivity 143

While several different time periods have been used to place 144

emergent constraints on climate sensitivity (32, 33), here we 145

focus on 1981-2014 following Tokarska et al. (34). We show 146

relationships between the rate of global-mean surface warming 147

over this period and ECS (Fig. 1a) for all GCMs that provide 148

the necessary output on the CMIP5/6 archives (21 CMIP5 149

models and 38 CMIP6 models; see Supplementary Information 150

for a list). While we focus on ECS in the main text, the full 151

analysis using TCR produces similar results (Supplementary 152

Information). We calculate warming rates by averaging over 153
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Fig. 1. Relationships between equilibrium climate
sensitivity (ECS), effective climate sensitivity (EffCS),
and the 1981-2014 warming rate in CMIP5/6 models. a,
CMIP5/6 ECS versus warming rate using averages of all
available ensemble members for each model (correlation
r = 0.68); colors correspond to values of ECS. b, Eight-
model subset ECS versus warming rate with ensemble
means shown as larger circles and ensemble members
shown as smaller dots. c, Eight-model subset ECS versus
EffCS over 1981-2014 with ensemble means shown as
larger circles and ensemble members shown as smaller
dots; diamonds show EffCS values from AGCM simula-
tions forced by observed SST and SIC trend patterns. d,
Eight-model subset EffCS over 1981-2014 versus warm-
ing rate with ensemble means shown as larger circles
and ensemble members shown as smaller dots; diamonds
show warming rates estimated based on EffCS values from
AGCM simulations using the regression between EffCS
and warming rate calculated from the eight-model subset
(blue line). In b-d, open circles show CESM1-CAM5 simu-
lations with wind nudging or meltwater fluxes as described
in the text. Blue lines show fits calculated using ordinary
least squares regression, with dashed blue lines showing
5-95% ranges of fit parameters (Methods). Gray shading
shows observational estimates (5-95% range) of observed
warming rate (HadCRUT5, ref. 45) and EffCS (19). See
Supplementary Information for a list of models used.

all available ensemble members of each model’s historical154

simulation (extended using RCP4.5 over years 2006-2014 for155

CMIP5 models), where each ensemble member is forced by156

identical historical greenhouse-gas, aerosol, volcanic, and solar157

forcings, and differ only in their phasing of internal variability.158

CMIP5/6 model values of ECS have been estimated using159

the standard approach of extrapolating to equilibrium the160

regression between global top-of-atmosphere energy imbalance161

and global temperature change over 150 years of abrupt CO2162

quadrupling simulations, scaled by a factor of a half to account163

for CO2 doubling (35, 43, 44).164

We find a strong correlation between the 1981-2014 global165

warming rate and ECS (Fig. 1a) or TCR (Fig. S1a). Us-166

ing this regression (Methods), the observed warming rate of167

0.18◦C dec−1 (0.15-0.21◦C dec−1, 5-95% range) calculated168

from HadCRUT5 (45) gives ECS = 2.7◦C (1.5-3.9◦C) and169

TCR = 1.6◦C (1.1-2.1◦C), in good agreement with previous170

studies (18, 32–34).171

To better understand the modeled relationship between172

global warming and climate sensitivity, we consider a subset173

of eight CMIP5/6 models representing all those that provide174

at least three historical ensemble members and the output175

necessary to accurately calculate radiative feedbacks over the176

historical period: CanESM5, CNRM-CM6-1, GISS-E2-1-G,177

HadGEM3-GC31-LL, IPSL-CM6A-LR, MIROC6, NorESM2-178

LM, and CESM1-CAM5. The relationships between 1981-2014179

global warming rate and ECS are similar for this eight-model180

subset (Fig. 1b) to those found in the full CMIP5/6 ensemble181

(Fig. 1a). For each model, there is substantial spread in182

warming rates across ensemble members due to internal climate183

variability (Fig. 1b), raising two key questions: (i) What factors184

control the variability in warming rates across model ensemble185

members? And, (ii) do CMIP5/6 models accurately represent186

how those factors were expressed in observations over the187

period 1981-2014?188

Each of the eight models in our subset has a corresponding189

CMIP6 piClim-histall simulation wherein the same atmosphere 190

GCM (AGCM) was run with fixed pre-industrial SSTs and sea- 191

ice concentrations (SICs) while all radiative forcing agents were 192

varied as in the corresponding CMIP6 historical simulations. 193

The piClim-histall simulations were performed as part of the 194

Radiative Forcing Model Intercomparison Project (RFMIP, 195

ref. 46) for CMIP6, while we perform our own piClim-histall- 196

style simulation for CESM1-CAM5 following the same protocol. 197

From these simulations, the historical effective radiative forcing 198

(ERF) can be diagnosed from top-of-atmosphere radiation 199

anomalies relative to pre-industrial conditions (17, 47), with a 200

small correction for land warming (2, 48) (Methods). Using 201

the standard model of global energy balance, 202

N = λT + ERF, [1] 203

whereN is the global top-of-atmosphere radiation anomaly and 204

T is the global near-surface air temperature anomaly (both 205

relative to pre-industrial), we diagnose the global effective 206

radiative feedback λ (< 0 for a stable climate) from linear 207

regression of N − ERF against T over the period 1981-2014 208

for each ensemble member (Methods). From this, we calculate 209

EffCS for the period 1981-2014 as, 210

EffCS = −ERF2×

λ
, [2] 211

where ERF2× is the effective radiative forcing from CO2 dou- 212

bling (35, 44) (Methods). EffCS is largely set by the value of 213

λ both because it is in the denominator in equation (2) and 214

because λ varies fractionally more than does ERF2× across 215

models (35). EffCS can be interpreted as the equilibrium 216

warming that would occur in response to CO2 doubling if the 217

value of λ calculated over the period 1981-2014 applied to that 218

equilibrium state. 219

We find that there is a large spread in EffCS for the period 220

1981-2014 across ensemble members of each GCM (small dots 221

in Fig. 1c). Moreover, differences in EffCS explain a large 222
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fraction of the variance (r2 = 0.61) in the 1981-2014 warming223

rate across all ensemble members of our eight-model subset;224

those with EffCS values near 2◦C tend to produce warming225

rates in line with observations, while those with higher values226

of EffCS warm too much (Fig. 1d).227

The high correlation between EffCS and the global warming228

rate can be understood by making the approximation N = κT229

in equation (1), where κ is the ocean heat uptake efficiency230

representing all processes setting the amount of global ocean231

heat uptake per degree of global warming (e.g., 49–51); a232

larger value of κ corresponds to a more efficient uptake of heat233

by the deep ocean and thus less surface warming. Then, the234

rate of warming can be approximated as (e.g., 52),235

dT

dt
= d(ERF)/dt

κ− λ
. [3]236

Calculating κ from regression of N against T over 1981-2014,237

and given d(ERF)/dt and λ as calculated above, equation238

(3) explains 83% of the variance in the 1981-2014 warming239

rate across all ensemble members of our CMIP5/6 model240

subset. Most of the explanatory power comes from variations241

in λ: holding κ and d(ERF)/dt fixed at ensemble-mean values,242

equation (3) still explains 58% of the variance across ensemble243

members. That is, variations in λ (and thus EffCS) largely244

govern the global warming rate, with variations in κ playing a245

secondary role. There is little correlation between λ and κ on246

the timescales considered here (Methods), so we treat them247

as independent for our purposes.248

Using the regression between EffCS and the 1981-2014249

warming rate derived from the eight-model subset (Fig. 1d),250

the observed warming rate of 0.18 (0.15-0.21) ◦C dec−1 im-251

plies EffCS = 2.3 (1.9–2.7)◦C. While on the low end of the252

CMIP5/6 models (Fig. 1d), this implied value of EffCS is in253

good agreement with a recent observational estimate (19) of254

EffCS = 2.0 (1.5–3.1)◦C based on global energy imbalance255

calculated from a merged satellite dataset (53) in combination256

with ERF estimates from IPCC AR6 (2) and HadCRUT5 tem-257

perature observations over 1985-2014. The CMIP5/6-based258

relationship between EffCS and warming rate thus compares259

well with observations.260

Importantly, EffCS may be different from ECS, which is261

given by262

ECS = −ERF2×

λ2×
, [4]263

owing to the fact that the radiative feedback λ governing264

recent warming may be different from the radiative feedback265

λ2× governing the equilibrium response to CO2 doubling if266

warming patterns differ between the two timescales. Given267

that ECS is a measure of the equilibrium climate response to268

CO2 forcing, it is worth considering why it is highly correlated269

with the rate of transient warming over 1981-2014 in CMIP5/6270

models (Figs. 1a,b). The reason appears to be that values of271

ECS and ensemble-mean EffCS are nearly identical for each272

of the CMIP5/6 models (Fig. 1c); EffCS is similar to but273

slightly smaller than ECS for most of the GCMs, with a high274

correlation between them (r2 = 0.70).275

These findings are consistent with the fact that the spa-276

tial patterns of historical warming (setting EffCS over 1981-277

2014) and equilibrium warming under abrupt CO2 forcing278

(setting ECS) are similar in CMIP5/6 models (Figs. 2a,b) (17);279

both are characterized by relatively weak spatial gradients280

in SST trends. That is, the relationship between ECS and 281

the 1981-2014 warming rate, which forms the basis for the 282

emergent constraint, reflects similar patterns of transient and 283

equilibrium warming within the coupled CMIP5/6 models, 284

corresponding to a relatively small pattern effect (i.e., values 285

of EffCS governing recent warming are comparable to values 286

of ECS governing long-term warming). 287

As noted in the introduction, the observed SST trend pat- 288

tern over 1981-2014 (Fig. 2c) is distinct from patterns sim- 289

ulated by the coupled CMIP5/6 models (17, 41, 42). With 290

strong warming in the western tropical Pacific Ocean (a region 291

of negative feedbacks) and cooling in the eastern Pacific and 292

Southern Oceans (regions of positive feedbacks), the observed 293

pattern should favor a low value of EffCS (8, 9, 14, 16, 17, 19– 294

27) and thus a reduced global warming rate (equation (3)). 295

This observed pattern of warming is also distinct from the 296

long-term warming pattern we expect under CO2 forcing (2), 297

suggesting that the relationship between EffCS (governing 298

recent warming) and ECS (governing long-term warming) in 299

nature may be different from that simulated by CMIP5/6 300

models. In the next section, we consider how model SST trend 301

biases may, in turn, bias the warming-sensitivity relationship 302

which forms the basis for the emergent constraint. 303

Impact of model SST trend biases on the warming- 304

sensitivity relationship 305

To quantify the impact of the SST trend pattern on global 306

warming rate, we make use of amip simulations wherein the 307

same subset of eight AGCMs are run with prescribed time- 308

evolving observed SSTs and SICs while all radiative forcing 309

agents are varied as in the corresponding historical simulations. 310

The amip simulations refer to the Atmospheric Model Inter- 311

comparison Project (AMIP II) DECK experiments performed 312

as part of CMIP6 (36); we perform our own amip-style simu- 313

lation for CESM1-CAM5. In combination with the RFMIP 314

simulations, these simulations allow us to calculate λ and Ef- 315

fCS using regression over the period 1981-2014 as described 316

above (see also refs. 14, 17, 19). 317

Across the eight AGCMs, the observed 1981-2014 SST 318

trend pattern produces an average value of EffCS = 2.1◦C 319

(range 1.3-3.2◦C) – in good agreement with EffCS derived 320

from observed energy budget constraints (19) and implied by 321

the observed global warming rate (Figs. 1c,d). This EffCS 322

value is lower than the average EffCS simulated by the same 323

coupled GCMs over 1981-2014. With identical atmospheric 324

physics in AGCM and coupled GCM versions of each model, 325

EffCS differences are due only to differences in observed and 326

simulated SST and SIC trend patterns (14, 17, 19). 327

For the coupled GCMs with low values of ECS (GISS- 328

E2-1-G, MIROC6, NorESM2-LM), 1981-2014 EffCS val- 329

ues are similar for AGCM and coupled GCM simulations 330

(Fig. 1c). However, for all other GCMs in our sub- 331

set (CanESM5, CNRM-CM6-1, HadGEM3-GC31-LL, IPSL- 332

CM6A-LR, CESM1-CAM5), 1981-2014 EffCS values in 333

AGCMs are substantially lower than they are in the same 334

coupled GCMs, with AGCM values being at the edge of or 335

even below the range of EffCS values generated by internal 336

variability in the coupled model historical simulations. This 337

suggests that the observed SST trend pattern (Fig. 2c) reflects 338

either (i) an extreme phase of internal variability and/or (ii) 339

a forced response not captured by the coupled GCMs (17, 42). 340
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in the Indo-Pacific Ocean and delayed warming in both the eastern Pacific Ocean and the Southern Ocean (e.g., 
Dong et al., 2020, 2019; Silvers et al., 2018; Zhou et al., 2016).

The historical pattern effect that leads to lower values of EffCShis may partially result from various non-CO2 
forcing agents that have operated in the historical period (e.g., Forster,  2016; Marvel et  al.,  2016). Gregory 
et al. (2020) suggest that volcanic forcing may bias estimate of EffCS from CO2 quadrupling by causing different 
surface warming patterns in CMIP5 models. Winton et al. (2020) find that a large portion of the EffCShis under-
estimate in GFDL-CM4 is attributable to its large efficacy of aerosol forcing. To test this possibility within other 
CMIP6 models, we make use of the DAMIP non-GHG forcing simulations, namely, hist-aer and hist-nat (Figure 
S2 in Supporting Information S1). Within all but one model, natural forcing alone produces even lower values of 
EffCShis than those from historical simulations (i.e., a larger historical pattern effect). In comparison, when forced 
by anthropogenic aerosol forcing alone, four models show a larger historical pattern effect while three models 
show a reduced pattern effect. These results suggest that non-GHG forcing may largely account for the historical 
pattern effect, though the impact of aerosol forcing is less robust across models.

Figure 2. Historical and equilibrium SST trend patterns. Annual-mean SST linear trends over (a) 1870–2014, (b) 1979–2014, and (c) 150 years of abrupt-4xCO2 
simulations. The observed SST trend patterns in (a), (b) are calculated using AMIPII dataset (Hurrell et al., 2008). Note that the color scales in (a) and (b and c) are 
different.
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Fig. 2. Sea-surface temperature (SST) trends in
CMIP5/6 models and observations. SST trend patterns
for a, CMIP5/6 models over years 1-150 following abrupt
CO2 quadrupling (CMIP5/6 abrupt-4xCO2 simulation from
which ECS is calculated). b, CMIP5/6 models over 1981-
2014 (CMIP5/6 historical from which EffCS is calculated).
c, Observations over 1981-2014 (from amip). d, CESM1-
CAM5 over 1981-2014. e, CESM1-CAM5 over 1981-2014
with Southern Hemisphere high latitude wind nudging. f,
CESM1-CAM5 over 1981-2013 with Antarctic meltwater
fluxes.

A possible reason for the larger differences between AGCM341

and coupled GCM values of EffCS in high-ECS models is that342

ECS differences across models stem largely from model differ-343

ences in cloud feedbacks in the eastern tropical Pacific and344

Southern Oceans (35). Thus, observed cooling in these regions345

over 1981-2014 reduces the value of EffCS more for models346

with higher ECS, while leaving the value of EffCS relatively347

unchanged for models with lower ECS. Further examination of348

CESM1-CAM5 shows that the regression of local SST trends349

onto either the global warming trend or EffCS over 1981-2014350

across ensemble members highlights the eastern tropical Pacific351

and Southern Oceans as key regions governing the warming352

rate and EffCS (Fig. S2).353

The larger values of EffCS in the coupled GCMs relative to354

AGCMs suggests that at least a portion of the reason the cou-355

pled GCMs overestimate warming over 1981-2014 is that they356

fail to simulate the observed SST trend patterns – rather than357

simply having too-high values of ECS (or TCR). Moreover,358

it suggests that if the coupled GCMs were able to correctly359

simulate the observed warming patterns, they would produce360

lower values of EffCS (as shown by their AGCM simulations)361

and thus reduced 1981-2014 warming rates. In other words,362

CMIP5/6 models share a common bias in their ability to sim-363

ulate the observed SST trend pattern which increases their364

values of EffCS and thus their rate of warming over recent365

decades – directly biasing their simulated relationship between366

warming rate and ECS on which emergent constraints are367

based.368

Correcting for SST trend pattern biases in emergent369

constraints370

We next estimate the global-mean warming each GCM would371

produce if it correctly simulated the observed 1981-2014 SST372

trend pattern. To do so, we multiply the value of EffCS de-373

rived from the AGCM simulations by the regression coefficient 374

between the EffCS and the 1981-2014 warming rate derived 375

from all ensemble members in the eight-GCM subset (dia- 376

monds in Fig. 1d; Methods). The results suggest that each 377

of the eight CMIP5/6 models would have produced warming 378

near the observed warming rate had it simulated the observed 379

SST trend pattern. Thus, once biases in SST trend patterns 380

are accounted for, there is little correlation between the 1981- 381

2014 warming rate and ECS (Fig. 3a). The average warming 382

rate correction across the eight GCMs is −0.09◦C dec−1, with 383

larger reductions in warming rates (and EffCS) for models 384

with higher ECS (Figs. 1c and 3a). 385

We conclude that observed warming does not exclude high 386

values of ECS, and that by failing to account for biases in 387

coupled GCM SST trend patterns, the proposed emergent 388

constraint biases estimates of ECS toward low values. Similar 389

results hold if we instead use the regression between 1981-2014 390

EffCS and warming rate derived from each GCM separately 391

to estimate the warming rate consistent with AGCM EffCS 392

values, but uncertainties are larger owing to larger uncertainty 393

in the regression, particularly for models with few ensemble 394

members (Figs. S3-4). 395

As another method to estimate warming rates in the eight 396

GCMs when correcting for biases in SST trend patterns, we 397

use equation (3) with values of λ derived from each model’s 398

AGCM simulation (Methods). Once again, the results suggest 399

that each of the eight CMIP5/6 models would have produced 400

warming near the observed warming rate had they simulated 401

the observed SST trend pattern, leaving little correlation 402

between the 1981-2014 warming rate and ECS (Fig. 3b). The 403

average warming rate correction across the eight GCMs is 404

−0.05◦C dec−1 with a larger impact for models with higher 405

ECS, once again. This supports our conclusion that observed 406

warming does not exclude high values of ECS, and that the 407
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Fig. 3. Relationships between equilibrium climate sensitivity (ECS) and the
1981-2014 warming rate with (diamonds) and without (circles) accounting for
observed warming patterns. ECS vs warming rate for a, CMIP5/6 eight-model
subset, with circles showing uncorrected warming rates (from Fig. 1b) and diamonds
showing corrected warming rates estimated using AGCM values of EffCS and the
relationship between EffCS and warming (Fig. 1d); horizontal lines show 5-95% confi-
dence ranges from uncertainty in the fit. b, CMIP5/6 eight-model subset, with circles
showing uncorrected warming rates (from Fig. 1b) and diamonds showing corrected
warming rates estimated using AGCM values of λ and equation (3), with horizontal
lines showing uncertainty ranges reflecting the spread in κ across ensemble mem-
bers. c, Relationship between ECS and warming rate in two-layer EBM simulations
with circles showing uncorrected warming rates and diamonds showing corrected
warming rates using observed values of EffCS (19) (Fig. S6), with a median of 2◦C
and horizontal lines showing 5-95% confidence ranges illustrating 1.5-3.1◦C. Gray
shading shows observational estimates (5-95% range) of observed warming rate
(HadCRUT5, ref. 45).

proposed emergent constraint biases estimates of ECS toward408

low values; similar results hold for constraints on TCR (Figs.409

S1,4). It also suggests that observed global warming has been410

slowed by the unique SST trend pattern over recent decades411

(Fig. 2c) and that warming would have been more rapid had412

the pattern been more similar to that simulated by CMIP5/6413

models (Fig. 2b).414

Simulations with a two-layer energy balance model (EBM).415

The results presented so far rely on diagnostic interpreta-416

tion of CMIP5/6 output and on inferences of GCM warming417

rates had they correctly simulated the observed 1981-2014418

SST trend pattern and associated EffCS. Here we evaluate419

the robustness of this interpretation within the context of a420

widely-used energy balance model (EBM, refs. 54–56) which421

represents the Earth as two interacting layers – one represent-422

ing all surface components of the climate system, including423

the near-surface atmosphere, ocean mixed layer, and land; and 424

one representing the ocean below the mixed layer. The EBM 425

predicts the surface temperature response to ERF through a 426

representation of the efficiency of radiative response (governed 427

by λ), the efficiency of ocean heat uptake, and the efficacy 428

of ocean heat uptake which allows feedbacks to change over 429

time as in coupled GCMs (Methods). This EBM was used 430

extensively in IPCC AR6, including for constraining global 431

temperature projections (see climate model “emulators” in refs. 432

2, 4). We fit the two-layer EBM parameters to the CMIP5/6 433

abrupt4xCO2 simulations of all models used in the analysis 434

above (Methods; Supplementary Information). 435

For each CMIP5/6 model parameter set, we run the EBM 436

over the period 1850-2014 using the timeseries of historical 437

ERF calculated as an average over the eight-model subset as 438

described above, and we calculate EffCS over 1981-2014 using 439

equations (1) and (2). We also run the EBM under an abrupt 440

increase in ERF representing CO2 quadrupling (to calculate 441

EBM values of ECS using regression over 150 years, as in the 442

CMIP5/6 models). 443

The EBM produces features similar to the CMIP5/6 anal- 444

ysis seen in Fig. 1. There is a strong correlation between 445

the 1981-2014 warming rate and ECS, with lower ECS values 446

being more consistent with observations (Figs. 3c and S5). 447

This correlation is explained by the fact that 1981-2014 EffCS 448

values, governing warming over that period, are similar to 449

ECS values (Fig. S5); EffCS tends to be slightly smaller than 450

ECS owing to the ocean heat uptake efficacy parameter being 451

larger than one for most CMIP5/6 models (Supplementary 452

Information), allowing feedbacks under transient warming to 453

be slightly more negative than at equilibrium. Differences in 454

EffCS explain a large fraction of the variance in the 1981-2014 455

warming rate (r2 = 0.88); values of EffCS near 2◦C tend to 456

produce warming rates in line with observations, while higher 457

values of EffCS produce too much warming (Fig. S5). The 458

remaining variations in EBM warming rates come from differ- 459

ences in ocean model parameters (Methods), but differences 460

in forcing do not contribute here because we have used the 461

same historical ERF for all parameter sets. The regression 462

between EffCS and the 1981-2014 warming rate also nearly 463

matches that found from the eight-model subset, and agrees 464

well with the relationship between EffCS and the 1981-2014 465

warming rate derived from observational constraints (Fig. S5). 466

We next consider how EBM simulations of the 1981-2014 467

warming rate change when we introduce a linear trend in λ 468

(Methods), representing an idealization of trends in λ over 469

recent decades as simulated by AGCMs forced by observed 470

warming patterns (8, 14, 17, 19, 25), such that EffCS over 1981- 471

2014 becomes equal to the value EffCS = 2.0◦C (with bounds 472

of 1.5 to 3.1◦C also tested) estimated from global energy 473

budget constraints (19). This produces a substantial decrease 474

in EffCS for high ECS models, but little change in EffCS for 475

low ECS models (diamonds in Fig. S5), similar to differences 476

seen in coupled GCM and AGCM versions of CMIP5/6 models 477

(Fig. 1c). The result is that the EBM produces warming near 478

the observed rate for all CMIP5/6 model parameter sets, in 479

line with expectations based on the regression between EffCS 480

and warming rate (Figs. 3c and S5). The average warming 481

rate correction across the subset of eight models is −0.06◦C 482

dec−1, with larger reductions in warming rates (and EffCS) 483

for models with higher ECS, similar to our analysis using 484
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CMIP5/6 models above.485

The relationship between ECS and the warming rate when486

imposing observed EffCS within the EBM is shown in Fig. 3c.487

Each CMIP5/6 model parameter set produces warming near488

the observed 1981-2014 warming rate, with little correlation489

between warming rate and ECS. These results show that the490

low value of EffCS produced by the observed 1981-2014 SST491

trend pattern implies warming in line with the observed global492

warming rate, regardless of the value of ECS. This supports493

our interpretation that observed warming does not exclude494

high values of ECS once accounting for the observed SST trend495

pattern and its associated low EffCS. Similar results hold for496

comparisons of warming rates and TCR (Fig. S5).497

Simulations with a coupled GCM nudged toward observed498

warming patterns. Finally, we evaluate the robustness of our499

results using two sets of CESM1-CAM5 simulations wherein500

the coupled model is nudged toward the observed 1981-2014501

SST trend pattern in physically-plausible ways. The first set of502

simulations, performed by Dong et al. (57) based on methods503

developed in Blanchard-Wrigglesworth et al. (58), involves504

nudging Southern Hemisphere tropospheric winds (above the505

boundary layer) poleward of 40◦S to match the ERA-Interim506

Reanalysis over the period 1981-2014; five ensemble members507

were run, which we average together for comparison to the508

CESM1-CAM5 ensemble mean response. The second set of509

simulations, performed by Dong et al. (52) and Pauling et510

al. (59), involves adding meltwater to the Southern Ocean511

subsurface to represent discharge due to mass imbalance of the512

Antarctic ice sheet over 1981-2013 (an effect not represented in513

CMIP5/6 historical simulations); nine ensemble members were514

run, which we average together for comparison to the CESM1-515

CAM5 ensemble mean response. In both sets of simulations,516

the SST trend pattern more closely matches observations, with517

some cooling in the Southern Ocean and eastern tropical Pa-518

cific Ocean and with warming in the western Pacific Ocean519

becoming relatively larger (Figs. 2e,f); see ref. (57) for a dis-520

cussion of the atmospheric teleconnection pathways by which521

these southern high latitude forcings influence tropical SST522

patterns.523

Using equations (1) and (2) as before, we find that both524

sets of simulations produce smaller values of EffCS than the525

ensemble mean of CESM1-CAM5 historical simulations (Fig.526

1c), bringing EffCS nearer to that estimated from observed527

global energy budget constraints (19). In turn, both sets of528

simulations show reduced global warming rates (Fig. 1d) that529

are more in line with observations. The relationship between530

EffCS and warming rate in these simulations also approxi-531

mately follows expectations based on the regression between532

EffCS and warming rate derived from either the eight-model533

subset (Fig. 1d) or CESM1-CAM5 (Fig. S3). However, despite534

similar changes to EffCS, Antarctic meltwater forcing produces535

a larger reduction in global warming rate than Southern Hemi-536

sphere wind forcing in this model owing to an increase in ocean537

heat uptake efficiency (κ) that works together with feedback538

(λ) changes to slow the warming (52). Similar results hold for539

comparisons of warming rates and TCR (Figs. S1,4). These540

findings support the interpretation above that EffCS (rather541

than ECS or TCR) governs the global warming rate over 1981-542

2014, and that when coupled GCMs more accurately replicate543

observed SST trend patterns, they produce lower EffCS and544

thus slower global warming, in line with observations.545

Discussion and conclusions 546

The results presented here suggest that high-sensitivity 547

CMIP5/6 models produce too much post-1970s warming in 548

part due to their failure to simulate observed SST trend pat- 549

terns, which in turn leads to model values of EffCS that are 550

too high compared to the observed EffCS of around 2◦C over 551

this period. Because GCMs with high values of ECS and TCR 552

are able to produce values of EffCS near 2◦C when forced by 553

observed SSTs over 1981-2014 (Figs. 1c, S1c), we estimate that 554

even those high-sensitivity GCMs could produce global warm- 555

ing rates in line with observations if they were able to better 556

simulate observed SST trend patterns (Figs. 1d, 3a,b). This 557

is a bias in the GCM-based relationship between post-1970s 558

warming and climate sensitivity metrics which causes the pro- 559

posed emergent constraints to be biased toward low values of 560

climate sensitivity. Published constraints (18, 32–34) may still 561

reflect useful lower bounds on ECS and TCR, but should not 562

be used to exclude high ECS and TCR values. While not a 563

focus here, model biases in historical radiative forcing (e.g., 60) 564

could also impart biases in the modeled warming-sensitivity 565

relationship on which the emergent constraint is based. 566

Important questions remain, including: (i) why do CMIP5/6 567

models fail to replicate observed warming patterns over recent 568

decades, and how can this model bias be corrected? And, (ii) 569

for how long will the observed pattern of warming over recent 570

decades continue into the 21st century? Model-observation 571

discrepancies may be due to model deficiencies in simulating 572

internal variability and/or historical forced responses. Paleocli- 573

mate proxy and instrumental data suggest that tropical Pacific 574

multidecadal variability may be substantially larger than that 575

produced by coupled GCMs (e.g., 61–63), which seems consis- 576

tent with the observed 1981-2014 SST trend pattern resembling 577

an extreme phase of the Interdecadal Pacific Oscillation mode 578

of variability (e.g., 41, 42, 63). Alternatively, several other 579

model deficiencies have been proposed to contribute to the 580

SST trend pattern over recent decades including: model biases 581

in trends in the Southern Annular Mode, potentially due to a 582

misrepresentation of ozone depletion (e.g., 57, 64, 65); missing 583

Antarctic meltwater fluxes (e.g., 52, 57, 59, 66); a misrepresen- 584

tation of tropospheric aerosol forcing, which can affect Pacific 585

trade winds (e.g., 67); model biases in Atlantic Ocean SSTs 586

that limit the ability of the Atlantic basin to affect Pacific 587

trade winds (68); and model biases in the transient response 588

of the tropical Pacific to CO2 forcing (e.g., 69, 70) or volcanic 589

forcing (16). The results presented here do not depend on the 590

source of the discrepancy between CMIP5/6-simulated and 591

observed warming patterns because radiative feedbacks and 592

EffCS depend only on SST and SIC patterns, regardless of 593

how those patterns arise (e.g., 71). 594

The results presented here suggest that changes in EffCS 595

have the capacity to substantially affect the global warming 596

rate and that a low value of EffCS driven by a unique SST trend 597

pattern has slowed global-mean warming over recent decades, 598

relative to what it would have been had the pattern been more 599

spatially uniform. However, more work is needed to determine 600

whether CMIP5/6 models with high ECS (above ∼ 4◦C) are 601

capable of producing the observed SST trend pattern and 602

associated low EffCS needed to bring their simulated global 603

warming rates in line with observations over recent decades. 604

It would be valuable to perform similar wind nudging and/or 605

Antarctic meltwater flux simulations, shown here for CESM1- 606
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CAM5, using high ECS models.607

These results reinforce previous findings that global warm-608

ing will depend on how the SST trend pattern evolves in609

the future (e.g., 52, 72, 73). Our findings suggest that if the610

observed 1981-2014 pattern continues over the 21st century,611

then the value of EffCS governing future warming will remain612

near 2◦C. This would produce 21st century global warming613

near the lower end of IPCC AR6 projections (Fig. S6), which614

assume a very likely range of ECS of 2-5◦C (2). However, if615

enhanced warming of the eastern tropical Pacific and Southern616

Oceans were to emerge in the future – a pattern projected617

by GCM simulations of the 21st century and supported by618

paleoclimate proxy evidence (e.g., 2, 74) – then EffCS would619

increase, resulting in an increase in the rate of global warming620

(Fig. S6). The degree to which EffCS could increase depends621

on the magnitude of the warming in the the eastern tropi-622

cal Pacific and Southern Oceans, and on the magnitude of623

the radiative feedbacks in those regions. Because observed624

post-1970s warming has a unique spatial pattern that does625

not appear to be representative of the long-term response to626

greenhouse-gas forcing, it does not preclude the possibility that627

high values of EffCS are possible for the future, potentially628

leading to future warming near or even above the upper end of629

IPCC AR6 projections if ECS turns out to be on the high end.630

How the pattern of warming will evolve in the future thus631

represents a major source of uncertainty in climate projections.632

Developing improved understanding of the causes of the633

observed SST trend pattern over recent decades and better634

constraints on how those patterns will evolve in the future is a635

major challenge for climate science with direct implications for636

how we interpret the historical warming record and project 21st
637

century warming. We could, for instance, see an increase in638

the climate’s sensitivity to greenhouse-gas forcing if SST trend639

patterns evolve to become more similar to those projected by640

models. For now, climate model biases in historical SST trend641

patterns suggest that caution is needed in the use of models642

to derive emergent constraints on climate sensitivity or future643

warming based on the observed rate of global warming over644

recent decades.645

Materials and Methods646

647

Linear regression methods. We use ordinary least squares (OLS)648

regression to calculate 1981-2014 warming rates and the regression649

of climate sensitivity metrics (ECS, TCR) against 1981-2014 warm-650

ing rates using ensemble-mean values (Figs. 1a,b and S1a,b). To651

estimate ECS and TCR from the warming-sensitivity relationships652

(Figs. 1a, S1a), we calculate a linear fit of ECS (or TCR) versus653

1981-2014 warming rate and use the parameters of that fit to esti-654

mate ECS (or TCR) given the observed warming rate (HadCRUT5,655

ref. 45) over 1981-2014. Uncertainties in ECS and TCR reflect656

5-95% confidence ranges of fit parameter values.657

For the calculation of the effective feedback λ from the regression658

of N − ERF against T (equation (1)), the presence of error in the659

predictor variable biases OLS regression toward zero (regression660

dilution). To correct for this, we use Deming regression, a total least661

squares regression method, to calculate λ. We estimate the ratio662

of error variances (variance of global average top-of-atmosphere663

radiation and variance in global average surface temperature) to be664

approximately 10 W2m−4K−2 based on AGCM simulations using665

sea-surface temperatures fixed at pre-industrial conditions. We666

use OLS regression for all regressions based on the two-layer EBM,667

which does not represent internal variability. Within CESM1-CAM5,668

high correlations between EffCS and warming rate over 1981-2014669

are found when using the CAM5 Green’s function (22) combined 670

with SST trend patterns to estimate radiative feedback and EffCS 671

(Fig. S2). 672

Effective radiative forcing. Historical effective radiative forcing 673

(ERF) is calculated for each of the eight models in our subset 674

using RFMIP (46) simulations. The historical ERF is diagnosed as 675

the global top-of-atmosphere radiation anomaly in piClim-histall 676

simulations (wherein SSTs and SICs are fixed to pre-industrial 677

values while all radiative forcing agents are varied as in the corre- 678

sponding CMIP6 historical simulations) relative to piClim-control 679

simulations (wherein SSTs, SICs, and all radiative forcing agents 680

are fixed to pre-industrial values). A small correction (2, 48) is 681

made to remove the radiative response to global near-surface air 682

temperature change T (mostly land warming) by subtracting λ2×T , 683

where λ2× is estimated from abrupt4xCO2 simulations (35). For all 684

RFMIP simulations, the ensemble mean is used when more than one 685

member of the simulation exist. CMIP5/6 model values of effective 686

radiative forcing for CO2 doubling (ERF2×) have been estimated 687

using the standard approach of extrapolating to zero global tem- 688

perature change the regression between global top-of-atmosphere 689

energy imbalance and global temperature change over 150 years of 690

abrupt CO2 quadrupling simulations, scaled by a factor of a half to 691

account for CO2 doubling (35, 44). 692

Correcting for SST trend pattern biases. For the first method of es- 693

timating the warming each GCM would produce if it correctly 694

simulated the observed 1981-2014 SST trend pattern (Fig. 3a), we 695

first calculate a linear fit (OLS regression) of EffCS versus 1981- 696

2014 warming rate from all ensemble members of the eight-GCM 697

subset (Fig. 1d). We then use that fit to estimate the warming 698

rate given EffCS derived from each AGCM simulation (diamonds 699

in Figs. 1d, 3a). Uncertainties (horizontal lines in Fig. 3a) reflect 700

5-95% confidence ranges of fit parameter values. 701

For the second method of estimating the warming each GCM 702

would produce if it correctly simulated the observed 1981-2014 SST 703

trend pattern (Fig. 3b), we use equation (3) with values of λ derived 704

from each model’s AGCM simulation. In the eight-model ensemble 705

considered here, the average correlation between λ and κ across 706

historical ensemble members is small (average r2 = 0.25), and 707

models disagree on the sign of the correlation. Without a deeper 708

understanding of how variations in λ and κ are related, we assume 709

they can be varied independently and use ensemble-mean values of 710

κ for each model in this estimate. To evaluate the degree to which 711

variations in κ could affect the results, uncertainties (horizontal 712

lines in Fig. 3b) are generated by using the highest and lowest values 713

of κ from the ensemble members of each model in this calculation. 714

Two-layer energy balance model. The two-layer energy balance 715

model (EBM, refs. 54–56) evolves surface temperature according to 716

the following equations: 717

C
dT

dt
= λT + ERF − εγ(T − T0),

C0
dT0

dt
= γ(T − T0),

[5] 718

where T is the temperature anomaly of the upper layer, represent- 719

ing the global surface temperature anomaly; T0 is the temperature 720

anomaly of the lower layer; ERF is the effective radiative forcing, 721

as above; C is the effective heat capacity of the upper layer (rep- 722

resenting the ocean mixed layer, land, and atmosphere); C0 is the 723

effective heat capacity of the lower layer (representing the ocean 724

below the mixed layer); γ represents the efficiency of vertical heat 725

transport between upper and lower layers; and ε is the efficacy 726

of ocean heat uptake, which allow effective radiative feedbacks to 727

change over time as represented by coupled GCMs. Note that in 728

the limit of C0 � C, such that deep ocean temperature T0 does not 729

change much, these equations reduce to equation (3) with κ = εγ. 730

We fit the two-layer EBM parameters to the abrupt4xCO2 sim- 731

ulations of all CMIP5/6 models used in the analysis above using 732

the fitting scheme developed by Lutsko and Popp (75), which was 733

based on Geoffroy et al. (56) (see Supplementary Information for 734

parameter values). To simulate historical warming consistent with 735

observational constraints on EffCS, we run the model using a wide 736
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range of linear trends in λ over the period 1981-2014 (starting from737

initial values of λ as fit to CMIP5/6 models and changing linearly738

with time) and calculate EffCS over this period (using equation739

(1)) for each. We then select the simulations that correspond to740

EffCS values of 2.0◦C, 1.5◦C, and 3.1◦C (50%, 5%, and 95% inter-741

vals of the observationally constrained EffCS from ref. (19). See742

Supplementary Information for details regarding the 21st century743

EBM simulations under different assumptions about how EffCS will744

evolve in the future.745
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Supporting Information Text14

Tables S1 and S215

Tables S1 and S2 show relevant parameters for CMIP5 and CMIP6 models, respectively. This includes the number of historical16

ensemble used in the analysis in the main text; equilibrium climate sensitivity (ECS); transient climate response (TCR); and17

two-layer energy balance model (EBM) parameter values. Also noted are which models are included in our eight-model subset.18

The relationship between post-1970s warming rate and transient climate response19

Fig. S1 shows the equivalent of Fig. 1 in the main text, but for the relationship between TCR and the 1981-2014 warming rate20

or effective climate sensitivity (EffCS). TCR values are calculated from the global temperature change near year 70 (time of21

CO2 doubling) of CMIP5/6 1%/yr CO2 ramping simulations (1pctCO2 ). See Fig. S4 for the relationships between TCR and22

the 1981-2014 warming rate when accounting for observed sea-surface temperature (SST) trend patterns.23

The relationship between SST trend patterns, EffCS, and global warming rate in the CESM1-CAM5 large ensemble24

Fig. S2 shows regressions between local SST trend patterns and either global warming rates or EffCS over 1981-2014. Also25

shown is the relationship between EffCS and warming rate over 1981-2014 when using the CAM5 Green’s function of Zhou et26

al. (22) combined with SST trend patterns to estimate radiative feedback and EffCS (Fig. S2c), rather than regression methods27

as in Fig. 1d of the main text.28

Correcting for warming rates using model-specific relationships between EffCS and warming rates over 1981-29

201430

Figs. S3 and S4c,d show the equivalent of Figs. 1d and 3a in the main text, but using model-specific relationships between31

EffCS and warming rates over 1981-2014 in the estimate of the warming rate in each model had it simulated the observed SST32

trend pattern.33

Two-layer energy balance model (EBM) simulations34

Figure S5 shows the equivalent of Fig. 1 in the main text, but for the EBM response to historical and RCP8.5 (to 2014) ERF as35

described in the Methods. Figure S6 shows the EBM response to historical and RCP8.5 ERF over 1850-2100 using parameters36

fit to CMIP5/6 models (see Methods, and Tables S1-2). We also run the EBM under a linear increase in ERF representing37

1%/yr CO2 ramping simulations (to calculate EBM values of TCR, as in the CMIP5/6 models).38

To evaluate the impact of changing EffCS on projected warming, we introduce a linear trend in the radiative feedback λ39

such that EffCS ≈ 2◦C over the period 1981-2020 for each CMIP5/6 parameter set, with this value of EffCS chosen to match40

observed energy budget constraints and amip simulations (see main text).41

We also perform several simulations with different evolutions of λ over the period 2021-2100. Figure S6b shows the EBM42

response when λ remains constant over the period 2021-2100, thus maintaining EffCS ≈ 2◦C. Figure S6c shows the EBM43

response when λ is linearly returned to CMIP5/6 model values by 2060 (reversing the linear λ trend applied over 1981-2020 in44

the same number of years). Figure S6d shows the EBM response when λ is linearly returned to CMIP5/6 model values by 206045

(more slowly reversing the linear λ trend applied over 1981-2020).46
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Table S1. CMIP5 model ECS, TCR, and two-layer energy balance model (EBM) parameter values. Number of historical ensemble members
used in the analysis listed in parentheses. Models included in the eight-model subset in the main text denoted by *.

Two-layer EBM parameters fit to abrupt4xCO2 simulations

Model ECS (K) TCR (K) C (W yr m−2K−1) C0 (W yr m−2K−1) λ (Wm−2K−1) γ (Wm−2K−1) ε ERF2× (Wm−2)
ACCESS1-0 (1) 3.90 1.77 8.9 83 -0.81 0.71 1.55 3.6
ACCESS1-3 (1) 3.63 1.60 10.1 114 -0.81 0.72 1.62 3.5
bcc-csm1-1 (1) 2.91 1.76 8.8 57 -1.28 0.58 1.27 3.6

CCSM4 (6) 2.94 1.80 7.8 72 -1.40 0.81 1.36 4.2
CESM1-CAM5* (40) 3.32 2.07 8.7 144 -1.22 0.60 1.19 4.3

CNRM-CM5 (1) 3.28 1.97 8.7 96 -1.12 0.51 0.92 3.5
CSIRO-Mk3-6-0 (10) 4.36 1.69 9.3 77 -0.66 0.71 1.80 3.4

CanESM2 (5) 3.71 2.30 8.3 77 -1.05 0.54 1.28 4.1
GFDL-CM3 (3) 4.03 1.76 9.9 76 -0.78 0.71 1.39 3.4

GFDL-ESM2G (1) 2.34 1.21 6.5 104 -1.48 0.80 1.17 3.5
GFDL-ESM2M (1) 2.46 1.37 8.9 113 -1.38 0.86 1.23 3.6

GISS-E2-H (5) 2.43 1.78 10.5 86 -1.64 0.70 1.27 4.1
GISS-E2-R (6) 2.28 1.48 6.1 135 -2.03 1.07 1.44 4.6

HadGEM2-ES (4) 4.64 2.43 8.3 99 -0.60 0.49 1.57 3.4
inmcm4 (1) 2.05 1.29 9.1 277 -1.57 0.69 1.82 3.0

IPSL-CM5A-LR (4) 4.05 1.97 8.6 100 -0.79 0.57 1.14 3.3
IPSL-CM5B-LR (1) 2.64 1.44 9.7 68 -1.07 0.63 1.43 3.0

MIROC5 (5) 2.70 1.47 9.7 163 -1.58 0.74 1.20 4.4
MPI-ESM-LR (3) 3.66 2.01 9.2 78 -1.20 0.62 1.43 4.7
MRI-CGCM3 (1) 2.61 1.52 10.1 70 -1.30 0.60 1.25 3.5
NorESM1-M (1) 2.93 1.39 9.9 122 -1.15 0.76 1.57 3.6
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Table S2. CMIP6 model ECS, TCR, and two-layer energy balance model (EBM) parameter values. Number of historical ensemble members
used in the analysis listed in parentheses. Models included in the eight-model subset in the main text denoted by *.

Two-layer EBM parameters fit to abrupt4xCO2 simulations

Model ECS (K) TCR (K) C (W yr m−2K−1) C0 (W yr m−2K−1) λ (Wm−2K−1) γ (Wm−2K−1) ε ERF2× (Wm−2)
ACCESS-CM2 (3) 4.72 2.10 9.0 93 -0.71 0.53 1.55 4.0

ACCESS-ESM1-5 (20) 3.87 1.95 9.0 97 -0.72 0.60 1.73 3.5
AWI-CM-1-1-MR (5) 3.16 2.06 8.3 57 -1.22 0.46 1.49 4.1
BCC-CSM2-MR (3) 3.02 1.72 6.5 64 -1.20 0.84 1.37 3.8

BCC-ESM1 (3) 3.26 1.77 8.9 98 -0.91 0.52 1.39 3.3
CAMS-CSM1-0 (7) 2.29 1.73 10.2 61 -1.87 0.47 1.29 4.4

CanESM5* (25) 5.64 2.74 8.0 80 -0.65 0.52 1.07 3.8
CESM2 (11) 5.15 2.06 8.7 75 -0.69 0.66 1.89 4.5

CESM2-WACCM (3) 4.68 1.98 8.5 89 -0.74 0.69 1.57 4.1
CMCC-CM2-SR5 (1) 3.52 2.09 8.9 79 -1.06 0.41 1.27 4.0
CNRM-CM6-1* (30) 4.90 2.14 7.6 147 -0.74 0.50 1.00 3.6

CNRM-CM6-1-HR (1) 4.33 2.48 8.2 95 -0.92 0.55 0.72 3.7
CNRM-ESM2-1 (10) 4.79 1.86 7.5 100 -0.63 0.59 0.91 2.9

E3SM-1-0 (3) 5.31 2.99 8.6 44 -0.63 0.35 1.50 3.7
EC-Earth3 (73) 4.10 2.30 8.1 37 -0.81 0.42 1.42 3.7

EC-Earth3-Veg (8) 4.33 2.62 8.4 40 -0.82 0.40 1.42 3.8
FGOALS-f3-L (3) 2.98 1.94 9.3 88 -1.41 0.53 1.58 4.7
FGOALS-g3 (5) 2.88 1.54 7.8 98 -1.30 0.69 1.30 4.0

GISS-E2-1-G* (12) 2.71 1.80 6.7 144 -1.47 0.84 1.10 4.1
GISS-E2-1-H (25) 3.12 1.93 8.9 86 -1.15 0.61 1.20 3.7

HadGEM3-GC31-LL* (5) 5.55 2.55 8.0 77 -0.63 0.51 1.22 3.7
HadGEM3-GC31-MM (4) 5.42 2.58 8.3 73 -0.66 0.58 1.03 3.6

INM-CM4-8 (1) 1.83 1.33 6.4 26 -1.68 0.78 1.31 3.1
IPSL-CM6A-LR* (32) 4.56 2.32 8.2 63 -0.75 0.41 1.33 3.7

KACE-1-0-G (3) 4.48 1.41 9.0 120 -0.71 0.74 1.31 3.8
MIROC-ES2L (11) 2.66 1.55 10.6 185 -1.56 0.67 0.93 4.1

MIROC6* (50) 2.60 1.55 8.9 175 -1.38 0.65 1.32 3.9
MPI-ESM-1-2-HAM (3) 2.96 1.80 9.5 113 -1.44 0.64 1.34 4.5
MPI-ESM1-2-HR (8) 2.98 1.66 8.9 84 -1.33 0.66 1.50 4.3
MPI-ESM1-2-LR (10) 3.00 1.84 9.5 114 -1.40 0.59 1.23 4.4

MRI-ESM2-0 (6) 3.13 1.64 8.7 96 -1.21 0.85 1.43 4.1
NESM3 (5) 4.77 2.72 5.6 105 -0.78 0.46 0.97 3.7

NorCPM1 (29) 3.05 1.56 9.9 108 -1.18 0.78 1.55 4.0
NorESM2-LM* (3) 2.56 1.48 5.6 119 -1.71 0.86 1.99 5.0
NorESM2-MM (3) 2.50 1.33 6.0 114 -1.74 0.79 1.66 4.8

SAM0-UNICON (1) 3.72 2.27 7.3 100 -1.09 0.79 1.24 4.3
TaiESM1 (1) 4.31 2.34 8.8 97 -0.93 0.63 1.34 4.4

UKESM1-0-LL (18) 5.36 2.79 8.0 80 -0.67 0.52 1.12 3.7
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Fig. S1. Relationships between transient climate response (TCR), effective climate sensitivity (EffCS), and the 1981-2014 warming rate in CMIP5/6 models. a,
CMIP5/6 TCR versus warming rate using averages of all available ensemble members for each model (correlation r = 0.68); colors correspond to values of ECS. b,
Eight-model subset TCR versus warming rate with ensemble means shown as larger circles and ensemble members shown as smaller dots. c, Eight-model subset TCR versus
EffCS over 1981-2014 with ensemble means shown as larger circles and ensemble members shown as smaller dots; diamonds show EffCS values from AGCM simulations
forced by observed SST trend patterns. In b,c, open circles show CESM1-CAM5 simulations with wind nudging or meltwater forcing as described in the main text. Blue lines
show fits calculated using ordinary least squares regression, with dashed blue lines showing 5-95% ranges of fit parameters. Gray shading shows observational estimates
(5-95% range) of observed warming rate and EffCS as described in the main text.
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in the Indo-Pacific Ocean and delayed warming in both the eastern Pacific Ocean and the Southern Ocean (e.g., 
Dong et al., 2020, 2019; Silvers et al., 2018; Zhou et al., 2016).

The historical pattern effect that leads to lower values of EffCShis may partially result from various non-CO2 
forcing agents that have operated in the historical period (e.g., Forster,  2016; Marvel et  al.,  2016). Gregory 
et al. (2020) suggest that volcanic forcing may bias estimate of EffCS from CO2 quadrupling by causing different 
surface warming patterns in CMIP5 models. Winton et al. (2020) find that a large portion of the EffCShis under-
estimate in GFDL-CM4 is attributable to its large efficacy of aerosol forcing. To test this possibility within other 
CMIP6 models, we make use of the DAMIP non-GHG forcing simulations, namely, hist-aer and hist-nat (Figure 
S2 in Supporting Information S1). Within all but one model, natural forcing alone produces even lower values of 
EffCShis than those from historical simulations (i.e., a larger historical pattern effect). In comparison, when forced 
by anthropogenic aerosol forcing alone, four models show a larger historical pattern effect while three models 
show a reduced pattern effect. These results suggest that non-GHG forcing may largely account for the historical 
pattern effect, though the impact of aerosol forcing is less robust across models.

Figure 2. Historical and equilibrium SST trend patterns. Annual-mean SST linear trends over (a) 1870–2014, (b) 1979–2014, and (c) 150 years of abrupt-4xCO2 
simulations. The observed SST trend patterns in (a), (b) are calculated using AMIPII dataset (Hurrell et al., 2008). Note that the color scales in (a) and (b and c) are 
different.
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Fig. S2. The relationship between SST trend patterns, EffCS, and 1981-2014 warming rate in the CESM1 large ensemble. a, Regression between local SST trends
and global warming rates across ensemble members. b, Regression between local SST trends and EffCS values (calculated as described in main text) across ensemble
members. c, Green’s function-estimated EffCS (calculated using the CAM5 Green’s function of Zhou et al. (22) convolved with SST trend pattern of each ensemble member )
versus warming rate over 1981-2014, with ensemble mean shown as larger circles and ensemble members shown as smaller dots (correlation r = 0.6). Blue lines show fit
calculated using ordinary least squares regression, with dashed blue lines showing 5-95% ranges of fit parameters. Gray shading shows observational estimates (5-95% range)
of observed warming rate and EffCS as described in the main text.
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Fig. S3. Relationships between effective climates sensitivity (EffCS) over 1981-2014 and 1981-2014 warming rate in individual CMIP5/6 models. a, CanESM5. b,
CNRM-CM6-1. c, GISS-E2-1-G. d, HadGEM3-CG3-LL. e, IPSL-CM6A-LR. f, MIROC6. g, NorESM2-LM. h, CESM1-CAM5. Ensemble means shown as larger circles and
ensemble members shown as smaller dots. Also shown are EffCS and warming rates in CESM1-CAM5 simulations with wind nudging or meltwater forcing (see main text). Blue
lines show fits calculated using ordinary least squares regression, with dashed blue lines showing 5-95% ranges of fit parameters. Gray shading shows observational estimates
(5-95% range) of observed warming rate (HadCRUT5) and EffCS (see main text). Diamonds show EffCS values from AGCM simulations forced by observed warming patterns,
with the corresponding warming rates estimated from the regression between EffCS over 1981-2014 and warming rate for each model (blue line).
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Fig. S4. Relationships between climate sensitivity metrics and the 1981-2014 warming rate with (diamonds) and without (circles) accounting for observed warming
patterns. TCR vs warming rate for a, CMIP5/6 eight-model subset, with circles showing uncorrected warming rates (from Fig. 1b) and diamonds showing corrected warming
rates estimated using AGCM values of EffCS and the relationship between EffCS and warming (Fig. 1d); horizontal lines show 5-95% confidence ranges from uncertainty in the
fit. b, CMIP5/6 eight-model subset, with with circles showing uncorrected warming rates (Fig. S1b) and diamonds showing corrected warming rates estimated using AGCM
values of λ and equation (3), with horizontal lines showing uncertainty ranges reflecting the spread in κ across ensemble members. c, CMIP5/6 ECS vs warming rate, with
corrected warming rates (diamonds) estimated using AGCM values of EffCS and the relationship between EffCS and warming in the individual CMIP5/6 models (Fig. S3), with
horizontal lines showing 5-95% confidence ranges from uncertainty in the fit; circles show uncorrected values as in Fig. 1b. d, CMIP5/6 TCR vs warming rate, with corrected
warming rates (diamonds) estimated using AGCM values of EffCS and the relationship between EffCS and warming in the individual CMIP5/6 models (Fig. S2), with horizontal
lines showing 5-95% confidence ranges from uncertainty in the fit; circles show uncorrected values as in Fig. S1b. Gray shading shows observational estimates (5-95% range)
of observed warming rate as described in the main text.
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Fig. S5. Relationships between equilibrium climate sensitivity (ECS), transient climate response (TCR), effective climate sensitivity (EffCS), and the 1981-2014
warming rate in the two-layer energy balance model (EBM). a, ECS versus warming rate; colors correspond to values of ECS. b, TCR versus warming rate. c, ECS versus
EffCS over 1981-2014; diamonds show an EffCS value corresponding to an observational estimate of 2◦C. d, TCR versus EffCS over 1981-2014; diamonds show an EffCS
value corresponding to an observational estimate of 2◦C. e, EffCS over 1981-2014 versus warming rate; diamonds show warming rates simulated by the EBM when using an
EffCS value corresponding to an observational estimate of 2◦C over 1981-2014, which are in good agreement with the regression slope (blue line with dashed blue lines
showing 5-95% ranges of fit parameters). f, Relationship between TCR and warming rate with circles showing uncorrected warming rates and diamonds showing corrected
warming rates using observed values of EffCS as described in main text, with a median of 2◦C and horizontal lines showing 5-95% confidence ranges showing 1.5-3.1◦C. Gray
shading shows observational estimates (5-95% range) of observed warming rate and EffCS as described in the main text.

Kyle C. Armour, Cristian Proistosescu, Yue Dong, Lily C. Hahn, Edward Blanchard-Wrigglesworth, Andrew G. Pauling, Robert
C. Jnglin Wills, Timothy Andrews, Malte F. Stuecker, Stephen Po-Chedley, Ivan Mitevski, Piers M. Forster, and Jonathan M.
Gregory

9 of 10



1950 2000 2050 2100
Year

0

2

4

6

W
ar

m
in

g 
re

la
tiv

e 
to

 1
85

0-
19

00
 (K

)

1950 2000 2050 2100
Year

0

2

4

6

W
ar

m
in

g 
re

la
tiv

e 
to

 1
85

0-
19

00
 (K

)

1950 2000 2050 2100
Year

0

2

4

6

W
ar

m
in

g 
re

la
tiv

e 
to

 1
85

0-
19

00
 (K

)

1950 2000 2050 2100
Year

0

2

4

6

W
ar

m
in

g 
re

la
tiv

e 
to

 1
85

0-
19

00
 (K

)a b

c d

EBM response to historical and RCP8.5 
forcing with CMIP5/6 parameters

EBM response to historical and RCP8.5 
forcing with EffCS = 2ºC over 1981-2100 

EBM response to historical and RCP8.5 
forcing with EffCS = 2ºC over 1981-2020 and 
returning to CMIP5/6 EffCS values by 2100

EBM response to historical and RCP8.5 
forcing with EffCS = 2ºC over 1981-2020 and 
returning to CMIP5/6 EffCS values by 2060

Fig. S6. Two-layer energy balance model (EBM) response to historical and RCP8.5 radiative forcing, either with CMIP5/6 model parameters or with changes in
EffCS. a, EBM response using CMIP5/6 parameters; colors correspond to values of ECS. b, EBM response using CMIP5/6 parameters but with EffCS = 2◦C over 1981-2100.
c, EBM response using CMIP5/6 parameters but with EffCS = 2◦C over 1981-2020 and EffCS returning to CMIP5/6 values by 2060. d, EBM response using CMIP5/6
parameters but with EffCS = 2◦C over 1981-2020 and EffCS returning to CMIP5/6 values by 2100.
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