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We develop a model and analyze reverse information sharing, a growing business practice in supply chain
management in which a manufacturer shares information about supply with a retailer. We model the

manufacturer as a production queue with finished goods warehouse, the retailer as an inventory location, and
other customers as an external demand stream. In our model, the manufacturer allows the retailer access to
inventory status at the warehouse. To take advantage of this new information, the retailer changes from a
single-level base-stock policy to a two-level, state-dependent base-stock policy. We provide an exact method for
computing performance and develop a procedure for evaluating optimal policy. We demonstrate the impact of
the new policy on the manufacturer and other customers. Numerical computations lead to insights about the
value of information to the retailer, and to guidelines for the manufacturer on sharing information.
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1. Introduction
In recent years, retailers and manufacturers have
shown increasing interest in cooperating to improve
the performance of the supply chain and increase
their gains. Sharing information has emerged as one
of the most critical practices in improving the per-
formance of supply chains. Most of the work on
information sharing to date has focused on cases in
which the retailer shares information about current
demand with the manufacturer (for example, see Lee
and Whang 1999, Cheung and Lee 2002, Chen 1998,
Cachon and Fisher 2000, Moinzadeh 2002). A different
but parallel trend calls for the manufacturer to share
information with the retailer. In these instances, infor-
mation flows in reverse order; that is, instead of the
retailer providing information about its demand and
inventory status to the supplier, the supplier provides
the retailer with information about its inventory avail-
ability status. While the practice appears to be grow-
ing, its consequences have not been fully analyzed.
Specifically, how can the retailer use this information
to its benefit, and what is the impact of the practice
on the performance of the manufacturer?

In this paper, we consider a supply chain in
which the manufacturer shares information about cur-
rent inventory with a retailer that satisfies external
demand through inventory. The manufacturer sup-
plies goods first come, first served (FCFS) to the
retailer and other “walk-in” customers, using its
finished-goods inventory. Finished-goods inventory
is replenished through production. Standard holding
and backorder costs apply at inventory locations, but
no ordering/setup cost is incurred. At the time of
ordering, the retailer can ask about the availability of
stock at the manufacturer’s finished-goods inventory.
To take advantage of this information, the retailer
uses a state-dependent base-stock policy. Our main
goals are to develop an exact evaluation of this sys-
tem, and to develop insights for both the retailer and
the manufacturer.
The new trend toward reverse information shar-

ing is driven by two factors: (i) availability of tech-
nological capability for information sharing, and
(ii) increased customer awareness of information
sharing in supply chains (and, as a consequence,
increased customer pressure on the manufacturer to
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share information). An example of new technolog-
ical capability is the customer portal available in
J. D. Edwards’s software system. The portal allows
a retailer to log in to a manufacturer’s system. After
logging in, the retailer not only has the ability to
check the status of its outstanding orders and its
financial account information, but can also choose
“view inventory availability” option to get informa-
tion on the manufacturer’s stock availability. Here
and in other examples, the manufacturer chooses to
allow access to its system, and controls the amount of
information available to customers. These “customer
portals” or similar features (the terminology is not
standard) are now available from most large business
software application providers. They are the result
of a confluence of three technologies developed in
recent years: enterprise resource planning (ERP) sys-
tems, customer relationship management (CRM) sys-
tems, and business-to-business (B2B) exchanges.
Valspar Corporation, a leading paint manufacturer,

offers an example of the second factor driving reverse
information sharing, increased pressure from cus-
tomers. Valspar Corporation administers a question-
naire to any business seeking to become a regular
supplier. One of the qualifying questions determines
whether the supplier provides product availability
information. This kind of pressure from customers
is reflected by the supplier’s sales force. Hard data
is difficult to come by, but in an informal U.S. Info-
Tel survey, sales representatives said that they could
make more sales if they were able to answer avail-
ability questions in a customer’s office. The desire
to answer such questions may be part of the rea-
son for growth in salesforce automation software that
allows sales representatives to share inventory infor-
mation with customers (Colombo 1994). Pressure for
sharing information may also come from third-party
trading hubs, such as Exostar, that promise customers
“improved access to product availability information”
(Plyler and Shaw 2001).
Driven by the availability of software applications

and working under competitive pressures to keep
customers satisfied, many manufacturers and dis-
tributors already employ customer portals in their
supply chains. One such example (Smith 2002) is
Osmonics Inc., a Minnesota-based manufacturer of

water purification systems serving soft drink man-
ufacturers, bottled water companies, and original
equipment manufacturers. Osmonics uses the SAP
AG R/3 ERP system for its internal data management,
and HAHT Commerce’s HAHT Commerce Suite as
an interface to share information with its customers.
Many customers tap into the company’s ERP data and
have varying degrees of access and control, depend-
ing in part on the sophistication of the customer’s
own software systems. Among other features, cus-
tomers using the system can check the status of
orders and inventory. Another example (PeopleSoft
2002) is Sager Electronics, one of the largest elec-
tronics distributors in the United States. The com-
pany upgraded its PeopleSoft ERP system to provide
password-protected access to customers so that they
can easily complete their supply chain management
functions. In addition, the system is designed to tailor
the portal for different users, and incorporates content
changes for each user. In the business of spare parts,
where base-stock policies are often used (Nahmias
1981), Pratt and Whitney Canada provides informa-
tion related to inventory availability to its customers
once they register on the Internet.
In our abstract model of these business situations,

we consider a manufacturer who shares some pri-
vate supply information with certain customers. The
manufacturer uses a base-stock policy to manage its
finished-goods inventory, and its production process
is modeled as a single-server queue. The manufac-
turer shares information about product availability
at its warehouse with the retailer. Other customers,
called walk-ins, do not have access to this manufac-
turer information. To take advantage of the product
availability information, the retailer employs a state-
dependent base-stock ordering policy. Under this pol-
icy, the retailer uses two different base-stock levels,
each corresponding to whether or not the product is
available at the manufacturer’s warehouse at the time
the order is placed. We use our model to demon-
strate that this policy lets the retailer use the product
availability information opportunistically, sneaking in
larger orders when the product supply is unavailable.
We develop insights on the magnitude of the retailer’s
cost reduction under various settings. We show that
the retailer’s use of the information results in a bull-
whip effect in the supply chain and investigate its
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impact on the number of orders in the manufacturer’s
production system, as well as on the on-hand inven-
tory and backorder levels in the finished-goods ware-
house. We then extend our model to consider the
case of two-way information exchange in which the
manufacturer may know the retailer’s current inven-
tory position. Finally, we use examples based on our
model to develop insights into the reasons manufac-
turers are sharing their private supply information.
We conclude with a discussion about the future of
such information sharing.
Our contributions lie in two primary areas. First,

we extend the existing literature on inventory sys-
tems with supply information. Among the literature
that incorporates supply conditions in ordering pol-
icy, Song and Zipkin (1996) is noteworthy. They study
this issue in a periodic setting by modeling the sup-
ply system as an evolving Markov chain in which the
retailer knows the current state of the chain before
ordering in each period. Their work builds on a
stream of research initiated by Kaplan (1970) for mod-
eling stochastic lead times. In Kaplan (1970), lead-
time distribution is known at the time of ordering.
By design, however, it does not provide any informa-
tion about the lead-time distribution at the next order-
ing opportunity. Nahmias (1979) and Zipkin (1986)
explain how to construct a supply system that pro-
duces dependent lead times (orders do not cross) and
yet provides no information for the next lead time. In
Song and Zipkin (1996), the retailer knows the cur-
rent state of the Markov chain, which not only leads
to the current lead-time distribution, but also pro-
vides information about the lead-time distribution at
the next ordering opportunity. Thus, the dependency
between consecutive lead times is explicitly modeled
by Markov chain’s transition probabilities. The future
state of the Markov chain, however, is independent of
the ordering activities at any given time. That is, the
transition probabilities are independent of the order
size. Chen and Yu (2002) provide a new algorithm for
the Song and Zipkin (1996) model, and analyze a sit-
uation in which the retailer can use lead-time history
data to predict the next state, even when the current
state is unknown.
The focus of these studies is on determining opti-

mal policy in the periodic setting. In our work, we
focus on developing a model that captures the impact

of retailer ordering policy on the supply chain, and
allows for exact analysis as well as the develop-
ment of managerial insights. Most importantly, in our
model we allow the orders placed by the retailer to
influence the supply system. This relaxes the assump-
tion made in the earlier studies that retailer orders do
not influence the supply system. By explicitly captur-
ing the retailer orders’ impact on the state of the sup-
ply system, we find that the value of information for
the retailer may be less than the value found in mod-
els in which the retailer’s load is marginal to the sys-
tem. We also identify situations in which the retailer
would not benefit from using this information.
Our paper also makes a contribution to understand-

ing the propagation of variability in supply chains.
Lee et al. (1997) have suggested several reasons for
the bullwhip effect in supply chains. One of these, the
capacity-rationing game (see Cachon and Lariviere
1999), comes close to our situation. We demonstrate
that reverse information sharing can actually create
the bullwhip effect in the supply chain. While ear-
lier work is driven by shortage of capacity in a sin-
gle period, we show the effect in a dynamic model
in which there is no shortage of capacity in the long
term. In addition, Lee et al. suggest that in their
model, the manufacturer sharing its inventory infor-
mation with downstream members may prevent the
bullwhip effect. In our model, however, it is the selec-
tive sharing of information that creates the bullwhip
effect. We also present a rationale for the manufac-
turer to allow reverse information sharing.
In the next section, we describe our model and

the notation. Section 3 is devoted to the development
and the analysis of the continuous-time Markov chain
(CTMC) describing the state of the system. In §4,
we focus on the retailer’s cost under the new pol-
icy, and provide a procedure to compute optimal pol-
icy parameters. We provide insights into the value of
information for the retailer. Section 5 provides results
on the manufacturer’s performance measures in such
systems. Finally, we summarize our main results and
discuss the possible extensions to this research.

2. The Model
Consider a supply chain consisting of a manufac-
turer who supplies a finished good to a retailer and
walk-in customers. Demand generated by the walk-in
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customers follows a Poisson process with rate �e (sub-
script e for external arrivals). Demand at the retailer is
assumed to follow a Poisson process with rate �r . The
retailer holds stock and satisfies its demand through
its on-hand inventory, and we assume that excess
demand at the retailer is backordered. To replenish
its stock, the retailer places orders with the manu-
facturer. We assume that orders placed by either the
retailer or walk-in customers are satisfied immedi-
ately if the manufacturer has stock; otherwise, they
are delayed and served in an FCFS manner. The man-
ufacturer manages its finished-goods inventory using
a base-stock production policy. That is, for each order
it receives from its customers, the manufacturer issues
a production order. We model the manufacturer’s pro-
duction system as a single-server queue with expo-
nentially distributed processing times with a mean of
1/�. In addition, we assume that the order transit time
from the manufacturer to the retailer is constant, T .
We assume that the manufacturer shares informa-

tion about stock availability only with the retailer.
At the time of order placement, the manufacturer
informs the retailer whether the product is avail-
able in the manufacturer’s finished-goods inventory.
We acknowledge that manufacturers can share more
detailed information. However, limiting ourselves
to the simpler binary interpretation—stock is either
available or unavailable—allows us to capture the
main idea behind reverse information sharing while
keeping the analysis tractable. Due to its limited
scope, this interpretation of reverse information shar-
ing may be more practical. For example, many online
retailers, such as Amazon.com, share information on
stock availability with their customers. Manufactur-
ers may find it easier to overcome their natural reluc-
tance to let customers see private information if the
amount of that information is limited. Finally, this
binary model of information sharing is equivalent to
the manufacturer informing the retailer whether the
product is backordered before the retailer places the
order.
Because we observe differentiation between cus-

tomers in practice, we classify the manufacturer’s cus-
tomers as retailers and walk-ins—those who have
access to reverse information and those who do not.
At Osmonics Inc. (Smith 2002), for example, “nearly
200 customers [are] actively accessing” its ERP data

out of a total of “3,000 or so customers.” Our mod-
eling of walk-ins captures those customers who do
not have access to information. Just like the retailer,
walk-ins will carry inventory to satisfy their demand.
In the absence of any supply information, how-
ever, the walk-ins will employ a standard one-for-
one policy. Therefore, the walk-in order streams to
the manufacturer will be exactly the same as their
demand streams. It may be plausible that walk-ins
will respond to any change in the supply chain by
changing their base-stock level, but that would not
affect their order stream. To keep matters simple, we
do not explicitly model the inventory system for the
walk-ins. Using the analysis presented here, incorpo-
ration of the inventory model at the walk-in level is
straightforward. We believe, however, that it would
not offer further insights. We should point out that if a
walk-in customer learns by observing the dependence
in the lead times and this results in a state-dependent
ordering policy, it will be necessary to develop an
explicit inventory model for such customers. We do
not consider that case in the study.
The balance of the paper considers the impact

of reverse information exchange from either the
retailer’s perspective or the manufacturer’s perspec-
tive. In §4, we consider the retailer alone, and show
that service received by walk-in customers may dete-
riorate as a result of the retailer’s actions. Section 5
discusses the manufacturer’s response to the retailer’s
policy. We consider only those manufacturer policies
that leave the service received by walk-in customers
unaffected, and so do not motivate a change in cus-
tomer behavior.

2.1. Retailer’s Policy
Let h and b denote the unit holding and backorder
cost rates at the retailer. Assuming that the retailer’s
objective is to minimize the sum of average hold-
ing and backorder cost rates, we propose and dis-
cuss the form of the retailer’s inventory policy. We
present an exact formulation of the cost function
in §4. Recall that the manufacturer allows the retailer
access to information regarding stock availability at
the manufacturer’s finished-goods warehouse. So that
the retailer can make use of this information, we
propose a state-dependent base-stock retailer order-
ing policy as follows: When a demand occurs at the
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retailer, the retailer checks the availability of the stock
at the manufacturer. If the manufacturer has stock
available, it orders enough to bring its inventory posi-
tion (on-hand+on-order−backorders) up to the base-
stock level Sl. Otherwise, it orders enough to bring
its inventory position up to the base-stock level Su.
Note that when the retailer’s inventory position is
equal to or greater than the target base-stock level,
the retailer does not order. Under this scenario, the
retailer’s knowledge of the current state of the sup-
ply system is binary, and there is a base-stock level
corresponding to each state. We will refer to this state-
dependent base-stock policy as �Sl Su� policy.
Before we proceed, some discussion of the state-

dependent base-stock policy is helpful. Previous
research suggests that in settings such as ours, the
choice of a state-dependent base-stock policy is a
reasonable one: Our model can be formulated as a
continuous-time Markov decision process, where the
state transition probability is a function of the action
taken (order size) by the retailer. In a periodic set-
ting, with transition probabilities independent of the
action, Song and Zipkin (1996) showed that the state-
dependent base-stock policy is optimal. The depen-
dence of transition probability on the form of the
policy in our model makes it quite difficult to extend
the standard optimality arguments. On an intuitive
level, it is difficult to argue that our proposed policy
may not perform well. We also follow the tradition of
proposing simple-to-implement policies, especially in
continuous inventory models. See, for example, Rubio
and Wein (1996).
We assume that the retailer places an order only

at its demand epochs, and accesses the availability
information only at those times. Order placement
at demand epochs, while not necessarily optimal
(Moinzadeh 2001), is a common and reasonable
assumption that has been widely used in many previ-
ous works (Axsäter 1990, Svoronos and Zipkin 1991).
We also assume that the retailer knows the distribu-
tion of the manufacturer’s processing time, its base-
stock level and the total market demand. The retailer
may have come to this knowledge based on historical
data or by gathering business intelligence. This is akin
to the retailer knowing the transition probabilities of
the supply Markov chain in Song and Zipkin (1996)
and in Chen and Yu (2002).

We assume that Sl ≤ Su. In studies of the periodic
system, Song and Zipkin (1996) and Chen and Yu
(2002) show that optimal state-dependent base-stock
level is not necessarily nondecreasing in lead time.
Based on their discussions and results, this counterin-
tuitive phenomenon appears to occur when the lead
time is not monotonically increasing in the state vari-
able describing the supply system (see Theorem 4 of
Song and Zipkin), and when lead time of zero is pos-
sible. These conditions do not hold in our setting.
Thus, we have primarily focused on the case Sl ≤ Su.
Our evaluation technique, however, also lends itself
to the analysis of cases where Sl > Su. (The appendix
presents the case Sl = Su + 1�) In all of the instances
we evaluated (see §4.2), Sl ≤ Su is always dominant.
The manufacturer receives an order stream from

the retailer, and a second order stream, modeled as
a Poisson process, from walk-in customers. If the
retailer is using the information by following the pro-
posed �Sl Su� policy, the retailer orders constitute a
state-dependent bulk arrival process at the manufac-
turer. We assume that even though a retailer’s order
may consist of more than one unit, units in the same
order do not wait for each other before being trans-
ported (i.e., partial shipment is allowed).
We assume that the manufacturer follows a base-

stock production policy with base-stock level Sm to
manage its finished-goods inventory. Thus, every unit
demanded by a customer gives rise to a production
order to replenish the inventory. Again, the produc-
tion system is modeled as a single-server, FCFS queue
with exponential service times with a mean rate of �.
Our assumption of exponential service time allows
for tractability of analysis, and is commonly used in
production and inventory literature.
The assumption of a base-stock policy for manu-

facturer finished-goods inventory is based on Sobel
(1969), and Gavish and Graves (1980). In the absence
of any fixed start-up or shutdown costs, but with
standard holding and backorder cost rates, a base-
stock policy is optimal when the order stream at the
manufacturer is a renewal process. The assumption
of renewal arrivals is not met when Sl �= Su. It can be
argued that when Sl �= Su, the manufacturer may antic-
ipate the retailer’s ordering behavior and improve its
current base-stock policy. We will explore such an
improved policy for the manufacturer in §5, and show
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that the cost reduction for the manufacturer is minis-
cule. Here, we continue to assume a base-stock policy
for the manufacturer.
We close this section by defining all the relevant

parameters in the system.
�e Mean arrival rate of external walk-in cus-

tomers
�r Mean demand rate at the retailer
� Mean unit production rate of the manufac-

turer’s production system
�e Load in the production system due to external

arrivals= �e/�
�r Load in the production system due to retailer

arrivals= �r/�
� Overall load in the production system= �e+�r
Sm Base-stock level for manufacturer’s inventory

in the finished-goods warehouse
N Random variable representing the number of

orders in the manufacturer’s production sys-
tem (also referred to as work in process)

Sl Retailer’s base-stock level when manufacturer
has stock �N < Sm�

Su Retailer’s base-stock level when manufacturer
is out of stock �N ≥ Sm�

� Su− Sl; �≥ 0
IP Random variable representing retailer’s inven-

tory position
�i�j Steady-state probability of �IP = Sl + i N = j�;

0≤ i≤�; j ≥ 0
h Unit holding cost/time
b Retailer’s unit backorder cost/time

CSl�� Retailer’s expected cost for policy parame-
ters Sl and �

E�X! Expected value of random variable X

3. Analysis of the Reverse
Information Sharing Model

In this section, we model the manufacturer’s system
as a CTMC and develop a solution for its steady-
state probabilities. The state of the system is described
by �IPN�. The evolution of the system does not
depend on the absolute values of the base-stock lev-
els, Sl, Su, but only on their difference �. Therefore, to
formulate the Markov chain that describes the behav-
ior of the system, we work with the equivalent state
description �"N� where "= IP −Sl �0≤"≤��. This

Figure 1 State-Transition-Rate Diagram of the Unrestricted Conti-
nuous-Time Markov Chain
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is the state of the system as seen by an external or
retailer arrival (all assumed to be Poisson). The CTMC
representing the system (see Figure 1) is as follows.
We begin with describing the transitions between

states in Figure 1. An external arrival (walk-in) will
increase the number in the production system (N )
by one, but will not influence the retailer’s inven-
tory position ("). Therefore, all the horizontal forward
transition arrows (in Figure 1) from state �i j� →
�i j + 1� represent a rate of �e. A service completion
will also affect only the number in the production sys-
tem, and not the retailer’s inventory position. Hori-
zontal backward transition arrows (not shown in the
figures to avoid clutter) from state �i j + 1�→ �i j�

represent a rate of �. All the nonhorizontal transition
arrows represent a demand arrival at the retailer with
a rate of �r . We can classify the transitions initiated
by retailer demand in the following three categories:
(a) The system is in state �i j � i > 0 j < Sm� and

a retailer demand arrives; the retailer observes that
the manufacturer’s warehouse has stock and tries to
achieve the base-stock level of Sl by not placing an
order. This results in transition to the state �i− 1 j�.
(b) The system is in state �i j � i = 0 j < Sm� and

a retailer demand arrives; the retailer observes that
the warehouse has stock and tries to achieve the base-
stock level of Sl by placing an order of one unit. This
results in transition to the state �i j + 1�.
(c) The system is in state �i j � i ≤ � j ≥ Sm� and

a retailer demand arrives; the retailer observes that
the warehouse has no stock and tries to achieve the
base-stock level of Su. Its current inventory position
is Sl + i − 1, and therefore it places an order for
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�− �i− 1� units. This results in the transition to the
state �� j +�− �i− 1��.
We now develop a procedure for computing

the steady-state joint probability mass function, �ij ,
for this CTMC. The main idea is to exploit the
distinct patterns in two different portions of the
state-transition-rate diagram. We accomplish this by
decomposing the Markov chain into two parts. The
analysis proceeds in five steps. The first step defines
how the process evolves over the reduced state space
in one of the two parts—we call it the “restricted
process.” The complete Markov chain is called “unre-
stricted.” The second step solves for the steady-state
probabilities in the restricted process. The third and
fourth steps take the analysis back to the full CTMC
and solves for the steady-state probabilities for the
rest of the states. The fifth step normalizes the state
probabilities. We present the results of each step’s
analysis here. The details of the analysis are available
in the appendix.
Step 1. Defining the Restricted Process. The

restricted process captures the transitions between
states with N ≤ Sm. We observe that whenever the
restricted process is in states �i Sm�, 0 ≤ i ≤ �, the
next transition due to an external or retailer demand
arrival can only result in the restricted process revert-
ing either to the same state �i Sm�, or to the state
��Sm�. This allows us to separate the states with
N ≤ Sm from those with N > Sm. Figure 2 presents
this restricted process. The transition probabilities
from states �i Sm� → ��Sm� are developed in the
appendix.
Step 2. Steady-State Probabilities of the Restricted

Process. The next step is to develop the steady-state
probabilities of the restricted process’s Markov chain.

Figure 2 State-Transition-Rate Diagram of the Restricted Continuous-
Time Markov Chain
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Let z1 z2 �z1 > z2� be the two roots of the characteristic
equation z2 − �1+ ��z+ �e = 0. The following expres-
sions summarize the steady-state probabilities of the
unrestricted process ��ij � in terms of ��0:

��� j =
(
�− z2
z1− z2

z
j
1+

z1−�
z1− z2

z
j
2

)
��0 for 0≤ j ≤ Sm� (1)

�i� j = z2�i� j−1+�r
Sm−1∑
k=j

1

z
k−j+1
1

�i−1� k

for 0< i <� and 1≤ j ≤ Sm (2)

�i�0 =
�r

�− z2
Sm−1∑
k=0

1
zk1
�i−1� k for 0< i <� (3)

�0� Sm =
�r

�z1− 1�

Sm−1∑
k=0

�1� k (4)

�0� j =
1
�
�0� j+1+

�r
�

j∑
k=0
�1� k for 0≤ j ≤ Sm− 1� (5)

With the sequential application of (1) to (5), all steady-
state probabilities �i� j , 0 ≤ i ≤ �, 0 ≤ j ≤ Sm can be
directly expressed as multiples of ���0. We do not
present the complete expressions here, as they are
cumbersome and add nothing to our understanding.
Step 3. Steady-State Probabilities for States with

" < �, N > Sm. We now turn back to the complete
CTMC. For states with " < �, balance equations for
any state involve only the neighboring states. This
allows us to find a simple solution to the balance
equations as following:

�i� j =�i�Smzj−Sm2 for 0≤ i < �% j ≥ Sm� (6)

Step 4. Steady-State Probabilities for States with
"=�; N > Sm. Next, we present equations that allow
us to express the steady-state probabilities of the
states with "=�; N > Sm.

��� j = ���� j−1+ ��− z2�
�−1∑
k=0
�k�Smz

�j−Sm−1−�+k!+
2

for j ≥ Sm+ 1� (7)

At this point, we present the confirmation that our
reduction of the unrestricted chain into a restricted
chain is indeed valid, and yields relationships that
provide solutions for the unrestricted chain.

Theorem 1. Equations (1)–(7) provide a solution to the
unrestricted CTMC.
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Proof. See the appendix.
Step 5. Determining ���0. Equations (1) to (7) allow

us to write all probabilities �i� j in terms of ���0. We can
now take the traditional normalization step of equat-
ing the sum of probabilities �

∑�
i=0

∑	
j=0�i� j � to 1 and

determining ���0. The following theorem provides a
simplification of this step by showing that the sum of
probability masses at states with N = 0 equals 1− �.
Even though our model represents a queuing system
that is controlled by the state-dependent actions of the
retailer, the following relationship is similar to the one
observed in a simple uncontrolled single-server queu-
ing system, such as an M/M/1 queue.

Theorem 2.
∑�
i=0�i�0 = 1−�.

Proof. See the appendix.

4. Retailer’s Performance Measures
In this section, we determine the optimal policy and
cost for the retailer under reverse information sharing.
We also present computational results that provide
managerial insights into the value of this information
for the retailer.

4.1. Retailer’s Optimal Policy and Cost
To develop retailer’s cost, we follow the unit-costing
convention where each unit ordered by the retailer
is assigned a cost incurred for satisfying the corre-
sponding demand. Let C�i j k! denote the expected
cost assigned to the kth unit ordered when "= i and
N = j . Let C�i j! be the expected total cost assigned to
an ordering epoch when the state is "= i and N = j .

C�i j!=
�−i+1∑
k=1

C�i j k! for j ≥ Sm

C�i j!=C�i j1! for i= 0% j < Sm

C�i j!= 0 for i > 0% j < Sm

We can write the average total cost per time unit for
the retailer as CSl�� = �r

∑�
i=0

∑	
j=0�i� jC�i j!.

The average cost assigned to each unit ordered,
C�i j k!, depends on the time difference between the
arrival of the unit at the retailer and the occurrence
of the corresponding demand that will be satisfied
by this unit. For j < Sm, the ordered unit will arrive
after the transportation time T . When j ≥ Sm, in addi-
tion to the fixed transportation time T , the ordered

units will each experience a delay at the manufacturer
as the manufacturer is out of stock at the time the
retailer placed the order. In such cases, the delay expe-
rienced by the kth unit in the order will be equal to
the time until j − Sm+ k units have been processed in
the production system. In either case, the correspond-
ing demand, which will be satisfied by the kth unit
in the order, will arrive after Sl+ i+ k− 1 subsequent
demands.
First, consider the case j ≥ Sm. Let u = Sl + i +

k − 1 and v = j − Sm + k. The random variable rep-
resenting the time until the corresponding demand
occurs is Erlang��ru�, and time until supply is avail-
able is Erlang��v�. Note that Erlang�'w� represents
a random variable that is equal to the sum of w
exponentially distributed random variables, each with
rate '. Now

C�i j k! = hE�Erlang��ru�− T −Erlang��v�!+

+ bE�T +Erlang��v�−Erlang��ru�!
+

= �h+ b�E�Erlang��ru�− T −Erlang��v�!+

− b
[
u

�r
− T − v

�

]


where �x!+ =max�0x�. For the sake of completeness,
when u≤ 0, the cost function is given by

C�i j k!= b
[
T + v

�
+ u

�r

]
�

Next, consider the case j < Sm. Clearly, for 1 ≤ i ≤ �,
the retailer does not place an order, and therefore the
cost assigned to the order epoch is zero. For i = 0,
the retailer always orders one unit. Because the mate-
rial is available in the warehouse, the lead time for
this order is always T , and therefore its corresponding
average cost is always the same. Thus, C�i j1! for
i= 0; j < Sm has the same value; let us call it C�001!,
which can be easily computed as

C�001!= �h+ b�E�Erlang��r Sl�− T !+ − b
[
Sl
�r

− T
]

for 0≤ j < Sm�
The computational burden mainly consists of comput-
ing C�i j k! values. The following observation helps
us ease this burden: C�i j k!=C�i+k−1 j+k−11!.
We only need to evaluate C�i j1! once for j < Sm,
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and once for each state �i j�, j ≥ Sm. For the probabili-
ties �i� j required for computing CSl��, we only need to
know the values of �i�Sm , 0≤ i≤�; because

∑Sm−1
j=0 �0� j ,

as well as all �i� j 0≤ i≤�, j ≥ Sm+ 1, can be directly
expressed in terms of �i�Sm , 0 ≤ i ≤ �. See proof of
Theorem 2 for the expression of

∑Sm−1
j=0 �0� j .

For a given manufacturer base-stock Sm, and re-
tailer’s ordering policy �Sl Su�, �= Su−Sl, the retailer
cost rate is denoted by CSl��. We now prove a property
of CSl��.

Theorem 3. For a given � and Sm, CSl�� is convex
in Sl.

Proof. See the appendix.
This result allows us to efficiently search for the

optimal S∗l ��� for a given �. An observation based on
extensive computations further simplifies the search
for optimal policy: S∗l ��� is nonincreasing in �. The
algorithm we present below arrived at the opti-
mal policy parameters (confirmed by an exhaustive
search) in all the cases in extensive experimentation.
Step 1. Set �= 0, compute S∗l �0� and CS∗l �0�0.
Step 2. �=�+ 1. Find S∗l ��� as follows:
2(a) Set S∗l ���= S∗l ��− 1�, compute CS∗l ����
2(b) S∗l ��� = S∗l ��� − 1, If CS∗l ���� < CS∗l ���+1�, go

to Step 2(b) else, S∗l ���= S∗l ���+ 1, go to Step 3.
Step 3. If CS∗l ���� < CS∗l ��−1��−1, go to Step 2, else

�∗ =�− 1, stop.
Finally, it is evident intuitively that the retailer can
be no worse off using the information through a
state-dependent base-stock policy. If current informa-
tion suggests a congested supply system, the retailer
has an opportunity to order extra before the external
arrivals generated by walk-ins create further conges-
tion. The retailer uses this information to opportunis-
tically sneak in orders for extra units, and thus avoids
possibly longer lead times. As we discuss in the next
section, however, we have identified instances when
the retailer continues to use the single base-stock pol-
icy after it obtains access to current information.

4.2. Computational Results for the Retailer
In this section, we study the impact of reverse infor-
mation sharing on the retailer, using a numerical
experiment. We set the mean service rate, �, and hold-
ing cost rate, h, to unity. Then, we vary the overall
system utilization, �; the fraction of retailer load in

the total utilization, �r/�, the transportation time, T ;
and the backorder cost rate at the retailer, b. The val-
ues of the manufacturer’s base-stock level, Sm, are
set to provide the service level, 'm, under the case
Sl = Su. The values of T and b are chosen relative to �
and h, respectively. We report our observations based
on computing the optimal policy and correspond-
ing performance measures for a set of 216 problem
instances consisting of the following parameter val-
ues: � ∈ �0�70�80�9�, �r/� ∈ �0�20�40�60�8�, 'm ∈
�0�70�90�95� T ∈ �15�, b ∈ �7/3919�. We chose
these values to reflect the range found in practice.
For utilization �, the historical data in the Federal
Reserve Statistical Release (2004) suggests that our
chosen range represents a wide variety of industries.
For relative retailer size �r/�, the chosen values repre-
sent a wide range of possibilities. In the context of our
model, what matters is the relative size �r/� because
the load imposed by a large retailer may constitute
either a large or a small portion of the manufacturer’s
total load. For example, a large retailer such as Wal-
Mart is a major customer to Procter and Gamble, but
it makes up only about 10% of Procter and Gamble’s
dollar revenue. For a smaller manufacturer, on the
other hand, Wal-Mart may be responsible for a larger
portion of total load. To be complete, we focus on a
wide range of �r/� values in our numerical experi-
ment. For manufacturer’s service level, 'm, we also
consider a wide range of values, as previous work has
reported and used service levels as low as 0.5 (Ernst
and Cohen 1992) and as high as 0.99 (Cachon and
Fisher 1997). The values of b have been chosen to rep-
resent the same range in the newsboy service levels
for the retailer.

4.2.1. Retailer’s Optimal Policy Parameters. We
report our observations by presenting results for a
specific combination of parameters. However, these
observations hold for all problem instances we have
described previously. Figure 3 depicts the optimal
policy parameters �S∗l  S

∗
u� as well as S

∗
r , the optimal

base-stock level if the retailer does not use the infor-
mation, as the overall utilization, �, is varied, while
the ratio �r/� is fixed. Note that while S∗l tracks S∗r
quite closely, S∗u increases as � increases. We can intu-
itively explain this behavior by considering the roles
of each of the two base-stock levels S∗l and S

∗
u. We sug-

gest that S∗l is mainly determined by considering the
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Figure 3 Optimal Policy Parameters vs. Utilization �
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holding and backorder cost trade-off at the retailer.
Therefore, S∗l behaves in a manner similar to S∗r ; it
increases as the congestion grows, which results in
a deterioration of the manufacturer’s service. On the
other hand, S∗u is the base-stock level the retailer wants
to achieve after it sees a stockout. It depends on
the retailer’s estimation of future lead times. Once
a stockout has occurred, all retailer orders join the
queue and future lead times depend on the utiliza-
tion of the queueing system. As the congestion at the
manufacturer grows, lead times increase, resulting in
an increase in S∗u.
Figure 3 shows that there are cases in which all

three optimal base-stock levels are the same. That is,
the retailer continues to operate a single-level base-
stock policy ��∗ = 0� even when reverse information
is available. Clearly, when �∗ = 0, the retailer does not
benefit from the available information. To help us fur-
ther investigate the circumstances that lead to �∗ = 0,
Figure 4 presents �∗ as the retailer utilization, �r ,
changes for a given overall utilization � ��= 0�60�9�.
For � = 0�9, �∗ = 0 occurs only at the extremely low
and high values of �r . For � = 0�6, the retailer sel-
dom adopts the two-level base-stock policy at all. This
leads us to two observations. First, for a given �, if the
retailer makes up either a very small or a very large
portion of the overall load, reverse information shar-
ing is not beneficial to the retailer. Second, the range

Figure 4 Optimal Policy Spread vs. Retailer Utilization �r
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of relative retailer load �r/� over which it benefits
from reverse information is smaller for a smaller �.
The retailer benefits from information about stock

availability when it signals that a stockout is likely at
the next ordering epoch and ordering a large batch
enables the retailer to preempt orders from other cus-
tomers. When the retailer is a very small part of the
system, intuition suggests that current stock availabil-
ity will not be a strong predictor of a stockout at the
next ordering opportunity. This is because during the
relatively long period between the retailer’s orders,
activity at the manufacturer such as walk-in arrivals
and production completions is likely to be signifi-
cant. Information about stock availability, then, is not
a reliable predictor of stockout at the next ordering
opportunity, and opportunistic ordering is not likely
to help the retailer. When the retailer is a very large
part of the system, its knowledge of its own back-
orders closely mimics the state of the manufacturer’s
systems. Therefore, information about stock availabil-
ity adds little to the retailer’s knowledge of the sys-
tem. In addition, ordering a large batch does not have
much preemptive value due to low external traffic.
This argues that opportunistic ordering will not be
beneficial. Indeed, if there are no external arrivals, the
retailer will not see any benefit at all. Finally, when
overall utilization is low, knowing that the system
may have a stockout at the next ordering opportunity
is not of much use because low utilization implies that
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Figure 5 Retailer Optimal Policy vs. Manufacturer Base-Stock Sm
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the manufacturer will most likely resolve its back-
orders shortly. These arguments suggest that before
a retailer pressures a manufacturer to share reverse
information, it should first make an assessment, based
on its relative load, of whether it will see any benefit.
To understand the retailer’s policy with respect to

changes in Sm, Figure 5 provides an example of the
retailer optimal policy parameters for different val-
ues of Sm for a specific set of parameter values. Two
observations can be made. First, at low values of Sm,
a marginal increase in Sm often results in decreas-
ing S∗l . As pointed out earlier, S∗l is primarily con-
cerned with the marginal cost trade-off at the retailer,
and its behavior is similar to a single base-stock
level S∗r . As Sm increases, the manufacturer’s stock-
out probability decreases, which in turn results in
lower optimal retailer base-stock levels. As the manu-
facturer’s service level increases, further reduction in
the retailer’s base-stock level is only marginally bet-
ter for the retailer, and therefore S∗l does not change
significantly. Our second observation about Figure 5
is that at moderate or high values of Sm, the optimal
policy parameter S∗u is relatively insensitive to Sm. As
pointed out earlier, S∗u depends on lead times after
a stockout, which in turn depend on the utilization
of the queuing system. While Sm may have an initial
impact by influencing the number of orders in queue
at the time of stockout, it does not influence the sys-
tem utilization and has limited impact on future lead
times and S∗u. We note that the range of Sm over which
the retailer optimal policy remains undisturbed corre-
sponds to a range of reasonable service levels 'm. For
example, Sm = 21⇔ 'm = 0�9 and Sm = 11⇔ 'm = 0�7.

4.2.2. Value of Information for the Retailer. In
this section, we look at the magnitude of the bene-
fits and costs of reverse information sharing for the
retailer. We report the percentage reduction in the
retailer’s optimal cost as a result of employing reverse
information. When the retailer has no information, it
uses a single base-stock level, that is, Sl = Su. The per-
centage reduction in retailer cost (value of informa-
tion), averaged across all cases with a fixed parameter
value, is presented in the second column of Table 1.
As a result of reverse information sharing, we observe
a reduction in inventory costs at the retailer. The aver-
age percent cost reduction across all cases is 9.51%. In
our numerical experiment, the minimum cost reduc-
tion is none (e.g., �= 0�7, �r/�= 0�2, 'm = 0�9, T = 1,
b = 9), and the maximum cost reduction is 46.82%
(e.g., �= 0�9, �r/�= 0�4, 'm = 0�9, T = 1, b= 19).
In Table 1, average percent cost reduction increases

as the backorder cost rate for the retailer increases.
Considering individual cases, all but 3 out of 72 com-
parisons between b = 7/3 and b = 9, and all but 4
out of 72 comparisons between b = 9 and b = 19,
show an increase in percentage cost reduction. Our
explanation for the few anomalies lies in the discrete
nature of the units of goods. Discreteness constraints
on optimal decisions may result in higher cost than
the unconstrained optimal. The cost increase may not
be the same with or without the reverse informa-
tion. The difference in cost increases may result in the
observed anomalies. The dominant effect is that the
value of information increases with backorder cost.
This follows intuition, because the main benefit of
opportunistic ordering for retailers is reducing the
possibility of backorders and backorder costs.
The value of information for the retailer is also

greatly influenced by the ratio �r/�. For averages
across cases in Table 1, as well as for each individ-
ual case, the percent cost reduction first increases and
then decreases with the increase in �r/�. This sug-
gests that, similar to the behavior of �∗ in Figure 4,
the value of information increases with �r/� at lower
values of �r/�, and the trend is reversed as �r/�
gets larger. The implication here is that information
is more valuable to the retailer when its demand is
neither a very small nor a very large part of the over-
all system demand. Furthermore, we observe that the
average percent cost reduction at the retailer increases
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Table 1 Benefits and Costs of Reverse Information Sharing

Average %
Fixed Average % Average % Average % Average % increase
parameter decrease in increase decrease in increase in in walk-in
and value retailer cost in E�N� E�Sm −N�+ E�N −Sm�

+ backorders Avg. �∗

b= 19 14�63 21�50 4.32 125�76 46.80 6.00
b= 9 9�95 15�06 3.07 83�21 32.17 4.36
b= 7/3 3�97 5�27 0.99 29�49 11.78 1.83

�= 0�7 3�52 8�93 1.42 51�17 11.49 1.40
�= 0�8 8�05 13�82 2.74 76�74 24.94 2.96
�= 0�9 16�98 19�08 4.23 110�56 54.32 7.83

�r /�= 0�2 11�90 5�47 1.15 28�78 11.54 1.93
�r /�= 0�4 12�97 13�30 2.79 71�72 27.81 3.89
�r /�= 0�6 9�55 20�70 4.26 113�55 43.80 5.50
�r /�= 0�8 3�65 16�30 2.98 103�89 37.86 4.94

T = 1 11�89 15�23 3.06 86�68 32.76 4.29
T = 5 7�15 12�65 2.53 72�30 27.73 3.83

�m = 0�7 9�45 22�47 5.71 59�48 21.25 3.51
�m = 0�9 9�67 12�56 1.90 86�84 32.23 4.26
�m = 0�95 9�43 6�78 0.78 92�15 37.29 4.42

as the congestion at the manufacturer increases. On
a case-by-case basis, only 4 out of 72 comparisons
between �= 0�7 and �= 0�8, and none of the compar-
isons between � = 0�8 and � = 0�9, show a decrease
in percentage cost reduction. We attribute these few
anomalous cases to the discreteness constraint on the
optimal policy decision.
Finally, we discern from Table 1 that in cases in

which the transportation time, T , is long compared
to the production times, information sharing has less
value for the retailer. This observation holds for all
cases we consider. Because the transportation time
is known and deterministic, the value of knowing
about supply uncertainty and order delay at the
manufacturer is less when this knowledge benefits a
smaller fraction of the total lead time (order delay+
transportation). Similar to Figure 5, the value of the
manufacturer service level does not appear to have a
great influence on the average percent cost reduction
for the retailer.

5. Manufacturer’s Performance
Measures

In this section, we take the manufacturer’s per-
spective. We begin by discussing the impact of
the retailer’s state-dependent policy on the supply
chain. Next, we propose and evaluate an improved

production policy for the manufacturer. Finally, we
discuss why such information sharing may make eco-
nomic sense for the manufacturer.

5.1. Variability Propagation in the Supply Chain
We focus first on understanding the impact on the
manufacturer’s performance measures of a retailer
who follows a state-dependent base-stock ordering
policy. Under a state-dependent ordering policy, the
retailer’s ordering does not necessarily follow a
Poisson process. Because the retailer orders in batches
at certain demand epochs while at other times orders
nothing at all, the order stream experienced by the
manufacturer is more variable than the demand expe-
rienced by the retailer. Thus, sharing supply informa-
tion with the retailer can result in a bullwhip effect in
the supply chain. This bullwhip effect is of no concern
to the retailer because the opportunistic ordering that
creates the effect also ensures that the retailer benefits
from it. The question is how this affects the manufac-
turer and walk-in customers.
To understand the impact of the bullwhip effect, we

compare the manufacturer’s performance measures
under two cases: (i) the retailer uses the informa-
tion and employs the two-level policy (superscript RI
for reverse information), and (ii) the retailer uses no
information and employs a single-level policy (super-
script NI for no-information). Rather than focus on
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a single cost measure, we examine three performance
measures at the manufacturer. These are: (i) the
average work in process in the production system,
E�N !, (ii) the average finished-goods on-hand inven-
tory, E�Sm − N!+, and (iii) the average backorders at
the finished-goods warehouse, E�N − Sm!+. Here we
assume that the manufacturer does not react to the
retailer’s new policy, and continues to follow the base-
stock policy with the same base-stock Sm to manage
its finished-goods stock. In §5.3, we assume the manu-
facturer modifies its policy in response to the retailer’s
state-dependent policy. We find that the manufacturer
gains only marginally from changing its policy, which
implies that the analysis in this section is valid.
The following shows that as a direct consequence

of the retailer following the state-dependent order-
ing policy, the number in the production system is
stochastically larger in the reverse information shar-
ing system.

Theorem 4. NRI ≥st N
NI .

Proof. See the appendix.
When the retailer observes that no stock is avail-

able at the manufacturer’s warehouse, that is, the pro-
duction system is congested, it takes the opportunity
to place a larger order, and thus further increases
the congestion. This suggests that the larger the max-
imum order size, as represented by �, the larger
the disruption in the supply system created by the
retailer’s new policy. The immediate implication of
Theorem 4 is that for a given base-stock level at
the manufacturer, both the average work in process
E�N ! and average backorders E�N −Sm!+ will increase
when the retailer employs the state-dependent base-
stock policy.
This has direct implications for the performance

measures of walk-in customers. A randomly arriving
walk-in customer will have to wait for an average of
E�N −Sm!+ service completions before being serviced.
Therefore, average manufacturer lead time for walk-in
customers is �E�N − Sm!+ + 1�/� and average number
of walk-in backorders is ��e�E�N − Sm!+ + 1��/�. As
E�N − Sm!+ increases, the average walk-in backorders
also increase. Any benefit realized by the retailer will
come at the expense of walk-in customers.
This result does not explicitly provide an under-

standing of the reverse information’s effect on

the manufacturer’s average on-hand finished-goods
inventory. In the next proposition, we show that the
manufacturer’s average on-hand inventory decreases
when the retailer employs the state-dependent policy.

Proposition 5. E�Sm−NRI !+ ≤ E�Sm−NNI !+.

Proof. See the appendix.
At first glance, the decrease in the manufacturer’s

on-hand inventory may not appear intuitive. Using
reverse information, the retailer places orders earlier
than it would if it had no information. This suggests
that under reverse information, whenever a unit is
produced, a retailer order is more likely to be wait-
ing for it. The length of time on-hand inventory is
zero and the length of time a unit of inventory resides
in the manufacturer’s stock may be shorter using
reverse information. Thus, the manufacturer will see
its finished-goods on-hand inventory levels decrease
while its work in process and backorders increase.
Depending on the manufacturer’s cost structure, it
is conceivable that cost may decrease. For exam-
ple, in cases in which the manufacturer may not be
charged an explicit backorder cost, the manufacturer’s
cost may decrease. This is because the finished-goods
holding cost is likely to exceed the work-in-process
holding cost, and a decrease in the former cost may
trump an increase in the latter. Note, however, that
even in such cases, the increase in the manufacturer’s
average backorder levels will result in an increase in
average lead time for walk-in customers. In the next
section, we look at performance measures for all par-
ties in the supply chain.

5.2. Computational Results for the Manufacturer’s
Performance Measures

Using a numerical experiment, we now study the
behavior of average walk-in backorders, and the three
performance measures described above as we move
from no information sharing to reverse information
sharing. In addition, we report changes in �∗ as a
measure of variability caused by the retailer’s two-
level policy. Table 1 reports the average % increase/
decrease in the performance measures discussed
across all system parameters in our numerical exper-
iment in §4.2 when one of the parameters is fixed.
Looking at Table 1, our first observation concerns

the magnitude of the effects we described in the last
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section. The retailer benefits by reverse information
sharing while walk-in customers see degradations in
its performance measure. The manufacturer sees a
percentage increase in its work in process, which is
numerically larger than the reduction it sees in its
finished-goods on-hand inventory. From the manufac-
turer’s perspective, the retailer’s push to share infor-
mation results in degradation in the service walk-in
customers receive. The outcome, whether information
is shared or not, reflects a balance between these two
observations. Clearly, our model does not capture all
of the relevant aspects of the business situation that
may influence the outcome, such as the power of the
retailer versus the power of the walk-in customer, and
the profit function of the manufacturer. In the context
of our model, however, we can discuss how various
parameters may affect the outcome.
Our second observation is that, as �r/� increases,

the percent increase in E�N !, percent decrease in
E�Sm−N!+, and percent increase in E�N −Sm!+ all get
larger at first, and then decrease. Thus, the improve-
ment in the retailer’s performance measure and the
degradation in walk-in customers’ performance mea-
sure follow the same broad pattern.
To further analyze this observation, we study the

percentage changes in the performance measures
described above as �r changes for a specific set of
parameter values (see Figure 6). In Figure 6, we
observe that, while the retailer’s maximum cost sav-
ings occurs at lower values of �r/� ��r = 0�2�, the
maximum disruption imposed on the rest of the

Figure 6 % Change over NI Scenario vs. Retailer Utilization �r
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system occurs at higher values of �r/� ��r = 0�6�. This
suggests that, in the long run, one is more likely to see
an information-sharing outcome when the retailer’s
demand is a smaller share of the total system (say,
�r of 0.2 versus 0.6 in the Figure). This is because at
�r = 0�2, the retailer and the walk-in customers are
both better off than at �r = 0�6. Such observations sug-
gest a testable hypothesis: It is more likely that only
a small share of the manufacturer’s total load is privy
to the reverse information. Of course, this hypothesis
will only be borne out to the extent that the dynamics
analyzed in this model matter in practice versus other
factors.

5.3. An Improved Manufacturer’s Policy
Thus far we have considered a manufacturer fol-
lowing a base-stock policy. In cases where the
retailer does not use the information (i.e., Sl = Su�,
this policy is indeed optimal (Sobel 1969). More
recently, Ha (1997) pointed out that for a single-
product production-inventory model with indepen-
dent renewal demand, a base-stock policy is optimal
when the cost of starting production is negligible.
However, when the retailer is taking advantage of
the information (i.e., Sl < Su), the demand faced by
the manufacturer is neither independent of the cur-
rent state, nor is it a renewal process. This raises the
question of how the manufacturer should respond to
the retailer’s two-level policy. Here, we assume that
the manufacturer’s objective is to provide a given ser-
vice level, 'm, while minimizing the finished-goods
on-hand inventory holding cost. We also provide a
model of two-way information exchange in which the
retailer knows the manufacturer’s inventory availabil-
ity and the manufacturer knows the retailer’s inven-
tory position.
Before proposing a policy, we make two observa-

tions. First, any manufacturer policy in our setting
can be described as a rule to stop and start produc-
tion. Note that one can view any stationary produc-
tion policy at a manufacturer as a binary decision
rule, start production or stop production, applied at
the epochs of changes in net inventory. In the absence
of any starting cost, one can assume starting inven-
tory level is just one less than the stopping inventory
level (Gavish and Graves 1980). Second, the manu-
facturer knows the retailer’s inventory position, and
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thus can anticipate the period when the retailer will
not be ordering in an effort to bring down its inven-
tory position from Su to Sl. The manufacturer can take
advantage of this anticipated low-demand period by
carrying lower on-hand inventory than it does during
periods when the retailer is ordering. The proposed
policy can be stated this way: If the retailer inventory
position is less than or equal to Sip �Sl ≤ Sip < Su�, stop
production when the manufacturer’s on-hand inven-
tory reaches Smh; otherwise, stop production at Sml
(where Sml < Smh�. Start production whenever on-hand
inventory drops below the stopping level. We note
that it is possible to implement a version of this policy
with Sip = Sl, even if the manufacturer has no knowl-
edge of the retailer’s inventory position. Our method-
ology for Markov chain analysis, developed earlier, is
easily applicable here. (See the appendix for details.)
Unfortunately, from the manufacturer’s perspective,

the cost saving of using this improved policy instead
of the standard single base-stock policy is miniscule.
For example, let �e = �r = 0�4, �= 1, T = 1, h= 1 b =
9'm = 0�9. When the manufacturer is using a single-
level base-stock policy, the retailer’s optimal policy
is Sl = 1, Su = 5, and the manufacturer achieves the
desired service level at Sm = 12. We note that this is
an equilibrium solution in the sense that, given one
party’s policy, the other has no incentive to change its
policy. The manufacturer provides a service level of
90.64% with an average on-hand inventory, E�Sm−N!+
of 8.1685. If the manufacturer uses the improved pol-
icy, the optimal policy would be Sml = 6, Sip = 1, Smh =
12, which would provide a service level of 90.07%
with an average on-hand inventory of 8.0089. We note
that under both scenarios the retailer’s optimal policy
remains Sl = 1, Su = 5 even as its cost increases slightly
under the two-level policy at the manufacturer. Our
two observations—that the manufacturer’s cost reduc-
tion is small and the retailer’s optimal �Sl Su� remains
unaffected—are verified across the parameter ranges
described in §4.2. This leads us to infer that even
in two-way information exchange, the managerial
insights drawn earlier will hold.
Intuitively, the two-level policy increases the man-

ufacturer’s freedom to set policy, and allows it to
deliver the required service level while reducing
the base-stock level. However, given that the manu-
facturer’s supply system is a controlled production
queue with finite production rate, and not the tradi-

tional outside supplier with infinite capacity and fixed
lead times, the manufacturer’s decisions are limited to
“when to stop production” instead of the traditional
“when to place each order.” This explains the mod-
est size of cost reduction. The manufacturer’s deci-
sion space is constrained, and so it does not have
much room to react to the current information. Given
this limitation of the improved policy, we will limit
ourselves to a single-level policy at the manufacturer,
while developing managerial insights into the manu-
facturer’s actions in the next section.

5.4. Economic Rationale for Reverse
Information Sharing

We now investigate reverse information sharing from
a purely economic point of view for manufacturers:
Are there situations in which reverse information
sharing can benefit them? We suggest that sharing
reverse information can be a tool to induce the retailer
to increase its demand. For instance, if a retailer
buys only a portion of its demand from the man-
ufacturer, providing reverse information may give
the retailer incentive to transfer a larger portion of
its demand to the manufacturer. This will gener-
ate more revenues for the manufacturer, but will
also increase the congestion in the production sys-
tem. These outcomes may justify reverse information
sharing for the manufacturer. Any such justification
must also consider the impact of the retailer’s and
the manufacturer’s policies on walk-in customers. In
our study, we consider only those cases in which
the service received by walk-in customers remains
the same. Therefore, walk-in customers have no rea-
son to change their behavior. We present an example
and discuss the manufacturer’s incentive for sharing
reverse information.
Consider the situation in which the manufacturer

experiences an external demand rate of �e = 0�4 and
its policy is to set the base-stock Sm to provide a
service level of 'm = 0�9. Other relevant parameters
are � = 1, T = 1, h = 1, b = 9. The retailer decides
its demand rate. In the following, we consider the
retailer’s problem under two scenarios, with and
without reverse information.
To keep the example simple, we assume a specific

demand-and-supply model for the retailer. Each of the
retailer’s customers is assumed to be contributing .
towards a total demand rate of /r . We assume dual
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supply modes for the retailer. One mode is the man-
ufacturer in our model, and the other is an external
source exogenous to our model. The external source
charges a higher per-unit price we than the manufac-
turer, but it has unlimited capacity, can deliver directly
to the retailer’s customers out of its own stock and
agrees to compensate for any backorder cost incurred
by the retailer due to delayed supplies. The manu-
facturer charges a smaller price wm, but has a lim-
ited capacity, can only deliver to the retailer with an
additional time lag T , and can only commit to a self-
specified service level 'm. Both sources require a com-
mitted order rate from the retailer. In such a situation,
the retailer carries inventory only for the deliveries
from the manufacturer, assigns some customers (total
demand rate �r ) to be supplied from its own inven-
tory, and assigns other customers (total demand rate
/r −�r ) to be supplied directly from the external sup-
plier’s inventory.
To find the optimal �r , the retailer uses a marginal

argument. Let C∗��r � be the optimal inventory cost
if the retailer satisfies an average of �r units of its
demand from the manufacturer. For any �r , C∗��r � is
computed at the equilibrium policy combination Sm,
Sl, Su, under the condition Sl = Su to reflect no infor-
mation sharing. Recall that the manufacturer’s policy
is to set Sm to provide 'm = 0�9, and the retailer uses
the optimal single-level base-stock policy. The equilib-
rium occurs when neither the retailer nor the manu-
facturer has an incentive to deviate from its policy. Let
�C∗��r �=C∗��r +.�−C∗��r � be the marginal increase
in cost over an increase in the retailer’s demand of the
manufacturer. The marginal argument suggests that
the retailer would assign a customer’s demand stream
to the manufacturer as long as wm.+ �C∗��r � ≤ we..
In this example, we use . = 0�0001. We can numeri-
cally confirm that �C∗��r � is positive and increasing
in �r , and therefore there is a unique optimal solu-
tion �∗r to the retailer’s problem. We note that there is a
one-to-one correspondence between the two sources’
price difference we − wm and optimal decision �∗r .
Let us pick one case: we−wm = 33�0746⇔ �∗r = 0�4.
The corresponding equilibrium policy combination is
Sm = 10, Sl = Su = 1. The retailer cost is 2.27743, and the
manufacturer has an average finished-goods on-hand
inventory, E�Sm − N!+ of 6.4295, to provide a service
level of 89.2626%. The number of average walk-in
backorders is 0.5717.

Next, suppose reverse information is shared. Again,
the retailer will decide its optimal �r by searching
for the smallest �r to satisfy wm. + �C∗��r � ≤ we.

(we keep we −wm = 33�0746 to be consistent with the
no-information case). Now, �C∗��r � is a different func-
tion. For any �r , �C∗��r � is computed at the equilib-
rium policy combination Sm, Sl, Su, without enforcing
Sl = Su. At the equilibrium, the manufacturer sets Sm
to provide 'm at lowest cost, the retailer sets Sl, Su
to minimize its own cost, and given the other party’s
policy neither has any incentive to deviate from its
own policy. We numerically find the optimal decision
�∗r = 0�46, with the corresponding equilibrium policy:
Sm = 18, Sl = 1, Su = 8. We assume that /r is large
enough not to constrain the retailer’s choice of �r . The
retailer cost is 1.87877 and the manufacturer’s aver-
age on-hand inventory is 12.0768. Clearly, the man-
ufacturer has to increase Sm to maintain service. The
service level 'm is 90.06% and the number of average
walk-in backorders is 0.5425.
Thus, the retailer’s cost rate decreases due to reverse

information from �we�/r − 0�40� + wm0�40 + 2�27743�
to �we�/r − 0�46� + wm0�46 + 1�87877�, resulting in a
savings of ��we − wm�0�06 + 0�39866�. The manufac-
turer’s profit rate changes from �wm0�40 − xm0�40 −
hm6�4295� to �wm0�46 − xm0�46 − hm12�0768�, where
xm is the production and material cost per unit and
hm is the holding cost rate at the manufacturer’s
finished-goods inventory. The manufacturer’s profit
will increase using reverse information sharing if the
manufacturer’s profit margin per unit �wm − xm� is
larger than a critical value. This analysis suggests that
for any given parameter combination, there may exist
a revenue and cost structure that would justify reverse
information sharing for the manufacturer while reduc-
ing the retailer’s cost and keeping the service level
for walk-in customers the same. It also suggests that
supply chains in which manufacturers have a high
profit margin are more likely to use reverse informa-
tion sharing.
Because we wish to highlight the issue in terms of

operating measures rather than exogenous parame-
ters, in this discussion we have not assumed specific
values for the per-unit cost parameters, we, wm, xm.
Here, the manufacturer’s decision to share informa-
tion depends on the trade-off between the increase
in the retailer’s demand rate (benefit of additional
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revenue) and the increase in finished-goods on-hand
inventory (cost of additional holding charges). The
increase in the retailer’s rate is a consequence of
change in the retailer’s cost due to information shar-
ing. The increase in the finished-goods on-hand inven-
tory is required to keep the service level fixed so that
external customers continue to experience the same
service. Now we will focus on this operating measures
trade-off for the manufacturer.
Figure 7 illustrates the trade-off by plotting the

retailer cost and manufacturer on-hand inventory both
before and after reverse information sharing. We note
that, for a given �r , reverse information sharing not
only reduces the retailer’s cost, but also reduces the
gradient of the retailer cost ��C∗��r �/.�. This moti-
vates the retailer to increase �r in order to keep the
cost gradient unchanged at we−wm. The increase in �r
(horizontal arrow) measures the benefit of information
sharing to the manufacturer, while the corresponding
increase in the holding cost (vertical arrow) measures
its cost to the manufacturer. Note that the graph is
drawn for a fixed �e, and any increase in �r increases
the utilization at the manufacturer, as well as changes
the ratio of the two demand rates.
The next graph, Figure 8, focuses on changing the

mix of two types of demand rate. The graph is con-
structed for a constant utilization ��e + �r�/� while
changing the mix of �e and �r . Consider each point on
the horizontal axis in Figure 8 as the retailer’s optimal
order rate under no information, corresponding to a
we −wm value. A larger horizontal axis value reflects

Figure 7 Cost and Benefit of Information Sharing
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Figure 8 Effect of Retailer Size on Information Sharing
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a larger we −wm. Now, for the manufacturer sharing
information will lead to a benefit—increase in �r—and
a cost—increase in holding cost. The benefit and cost
pair is plotted for two different utilization values.
As the portion of the retailer’s demand in the total

grows, both the cost and the benefit of information
sharing first grow and then decline. The graph sug-
gests that if the holding cost were negligible, the man-
ufacturer should share information with retailers that
make up about half of the workload. If the holding
cost is nonnegligible, we take the separation between
the cost and the benefit lines as a comparative mea-
sure, and this suggests that retailers that constitute
less than half of the workload are better candidates
for information sharing than are those that consti-
tute more than half of the workload. This makes intu-
itive sense because, as we noted in §4.2.2, the percent-
age cost reduction is smaller for the retailer when its
demand is a larger part of the overall system. This
suggests that the benefit to the manufacturer (increase
in order rate) will be smaller if the retailer is larger.
We do note, however, that while larger customers may
be able to exercise more pressure for sharing reverse
information, the manufacturer’s economic interest is
better served by sharing it with smaller customers.
The graph shows another pair of cost benefit lines

for a lower utilization. We observe that the separa-
tion is wider, and therefore that reverse information
sharing may make more sense for manufacturers with
lower utilization. Again, this makes intuitive sense
because the manufacturer’s cost will increase less
rapidly with utilization when utilization is small.
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The example and analysis above highlight the man-
ufacturer’s economic motivation to share information:
releasing the information may result in the retailer
increasing its order rate. More detailed supply and
demand models for the retailer may suggest different
mechanisms for the increase in order rate. The retailer
may lower its price to acquire new demand or, in the
case of two identical supply modes, may shift orders
from the mode that does not share reverse information
to the one that does. From the manufacturer’s perspec-
tive, however, the end result is the same: an increase in
the retailer’s order rate. For the manufacturer, reverse
information sharing is a way to differentiate itself from
its competitors, and thus attract larger demand. It is
also a tool that can be used to achieve nonprice dis-
crimination among its customers, in favor of those
who have the ability to increase their demand rate.

6. Extensions and Conclusion
This paper analyzes the implications of a growing
business practice called reverse information sharing
for different parties in a supply chain. We build and
analyze a manufacturer-retailer model that avoids
a limiting assumption made in earlier works. We
demonstrate that a simple policy will enable the
retailer to take advantage of reverse information to
reduce its inventory cost. We also demonstrate how
reverse information sharing may increase the manu-
facturer’s profits. The model leads to insights that pro-
vide guidance to managers on when to share reverse
information and how to use it.
On the modeling side, two questions stand out for

future research. First, what if the retailer has access to
more detailed current information, for example, if the
retailer knows the number of orders outstanding at
the manufacturer, N , at the time of ordering? Second,
what if the manufacturer shares current information
with all customers? We believe that the infrastructure
we have developed in this model can be extended
to address these questions and others. It may also be
extended to provide detailed models of the retailer’s
static knowledge of the supply system. In this paper
we assume that the retailer possesses sufficient knowl-
edge to develop �ij and to use our algorithm. An
interesting avenue for future research is the study of
situations in which the retailer does not have this
knowledge.

Appendix
This appendix provides brief sketches of the steps in the
analysis in §3 and of the proofs. Complete details are avail-
able in the online appendix.
Step 1. Defining the Restricted Process. The restricted

version observes the process only over states for which
N ≤ Sm. The state-transition-rate diagram is shown in Fig-
ure 2. All the transition rates except those out of states �i Sm�
remain the same as in the unrestricted process. To determine
the transition rates for �i Sm � i < ��→ �i Sm� and �i Sm � i <
��→ ��Sm�, first define
fij : Starting in a state �i j � i < � j ≥ Sm� and conditioned

on the next transition being due to external arrival, the prob-
ability that the unrestricted process will return to state �i j�
for the first time before it reaches state ��Sm�.
Using conditioning arguments, we can write the recur-

sion fij = q
∑	
k=0�pfi� j+1�

k where q = �/��e + �r +�� and p=
�e/��e + �r + ��. Next, note that fij = fi� j+1 and therefore,
fij = �1−

√
1− 4pq�/�2p�= f . The transition rate attached to

�i Sm�→ �i Sm� for 0 ≤ i < � will be �ef and the rate for
�i Sm�→ ��Sm�will be �r+�e�1−f �. The rate for ��Sm�→
��Sm� will be �e + �r . We will normalize these rates by
dividing them by �.
Steps 2, 3, and 4. In Steps 2 and 3 we formulate and solve

second-order homogeneous difference equations to obtain
Equations (1) to (6). Further algebraic manipulation of the
balance equations yields Equation (7) in Step 4.

Proof of Theorem 1. We obtain this proof by showing
that Equations (1) to (7) in §3 satisfy all the balance equa-
tions of the original process. �

Proof of Theorem 2. We first prove the following iden-
tities (a) to (e).

(a)
n∑
j=0
�1� j =

�∑
i=1
�i�n+1−�e

�∑
i=1
�i�n for 0≤ n≤ Sm− 1�

(b) �r

Sm−1∑
j=0

�m� j = ��− z2�
m−1∑
i=0
�i�Sm for 1≤m≤��

(c) �− z2 =
�r

�1− z2�
�

(d) �1−��
�−1∑
i=0

	∑
j=Sm

�i� j =
�1−��
�1− z2�

�−1∑
i=0
�i�Sm �

(e) �1−��
	∑

j=Sm
��� j =���Sm + ��− z2�

�−1∑
i=0
��− i��i� Sm

+ ��− z2�
�1− z2�

�−1∑
i=0
�i�Sm �

The last step in the proof begins with writing the balance
equations for the set of states ��0 j� � 0 ≤ j ≤ n� for all 0 ≤
n ≤ Sm − 1 and then using (a) to (e) to show

∑�
i=0�i�0 =

�1−��. �

Proof of Theorem 3. We separately prove the convexity
of C�i j k! for j ≥ Sm and of C�001!. Combining the two
results proves the convexity of CSl�� in Sl. �



Jain and Moinzadeh: A Supply Chain Model with Reverse Information Exchange
378 Manufacturing & Service Operations Management 7(4), pp. 360–378, © 2005 INFORMS

Proof of Theorem 4. We will use the symbol �3� j to
denote Pr�NRI = j! = ∑�

i=0�i� j = �3� j . In NI , Pr�NNI = j! =
�1− ���j . We need to show that: Pr�NRI ≤ j!≤ Pr�NNI ≤ j!.
From Theorem 2, we have �3�0 = 1 − �. Using the
aggregation/disaggregation approach to analyze Markov
chains (see Schweitzer 1991), we can write: �3�1 = ��e +
�r ��0�0/�3�0���3�0 < ��3�0. We also show that �3� j < ��3� j−1
for j ≤ Sm and that �3�Sm+1 = ��3�Sm . Therefore, Pr�NRI ≤ j!≤
Pr�NNI ≤ j! for j ≤ Sm+ 1.
Next, consider the balance equation for the group of

states ��i� j � 0 ≤ i ≤ �% j ≤ Sm�, which gives: �3�Sm+2 =
��3�Sm+1 + �r

∑�
i=0�i�Sm > ��3�Sm+1. Similarly, �3�Sm+j >

��3�Sm+j−1 for j ≥ 2. Therefore, �3�Sm+j > �j−k�3�Sm+k for
j > k≥ 1.
We will prove the rest by contradiction. Assume there

exists:

j∗ =Min
{
k
∣∣∣ k∑
j=0
�3� j ≥ Pr�NNI ≤ k!% k≥ Sm+ 2

}
�

From the definition of j∗4 Pr�NRI = j∗!=�3� j∗ > Pr�NNI =
j∗!= �1−���j∗ . Now,

Lim
j→	

Pr�NRI ≤ j! =
j∗∑
j=0
�3� j +

	∑
j=j∗+1

�3� j

> Pr�NNI ≤ j∗!+
	∑

j=j∗+1
�j−j

∗
Pr�NNI = j∗!

= �1−�� �1−�
j∗+1�

�1−�� + �1−���j∗ �

�1−�� = 1�

This is impossible. Therefore, no such j∗ exists and Pr�NRI ≤
j!≤ Pr�NNI ≤ j! for all j ≥ 0. �

Proof of Proposition 5. Recall from Theorem 4 that
Pr�NRI = j!≤ Pr�NNI = j! for j ≤ Sm. Thus

E�Sm−N!+RI =
Sm−1∑
j=0
�Sm− j�Pr�NRI = j!

≤
Sm−1∑
j=0
�Sm− j�Pr�NNI = j!= E�Sm−N!+NI � �

Two extensions of the basic model, discussed in §2
and §5.3, are available in the online appendix (Jain and
Moinzadeh 2005).
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