
A Supply Chain Model with Reverse Information Exchange: Complete Appendix 

 

Step 1: Defining the Restricted Process 

We begin with focusing on a restricted version of the complete CTMC described above. The restricted 

version observes the process only over states for which N ≤ Sm . We note that whenever the restricted 

process is in states {i,Sm}, , the next transition due to an external or retailer demand arrival can 

only result in either the restricted process reverting to the same state {

∆≤≤ i0

i,Sm} or to the state {∆,Sm}. When 

a retailer arrival occurs in state {i,Sm} , the unrestricted process will see a transition to 

{∆,Sm + ∆ − (i −1)} which will ensure that the first state entered in the restricted process will be {∆,Sm}. 

When an external arrival occurs in state {i,Sm} , the unrestricted process will see a transition to 

{i,Sm + 1} . Irrespective of the specific sample path which the unrestricted process follows, it is certain 

that the first state it enters in the restricted state space will either be {i,Sm}or {∆,Sm}  depending on 

whether any retailer arrival occurs between two consecutive visits to the states with N = Sm . Note that 

the restricted process is also a CTMC. Its state-transition-rate diagram is shown in the Figure 4.        

 

Note that all the transition rates except those out of states {i,Sm}remain the same as in the unrestricted 

process. In the following we define the transition rates for the following transitions: 

and },{}|,{ mm SiiSi →∆< },{}|,{ mm SiSi ∆→∆< . Let us first focus on the former transition. 

Define:  

fij : Starting in a state {i, j | i < ∆, j ≥ Sm} and conditioned on the next transition being due to 

external arrival, the probability that the unrestricted process will return to state {i, j} for the first 

time before it reaches state {∆,Sm}.  

Thus, fij  is the probability that starting in {i, j | i < ∆, j ≥ Sm}, there is no retailer arrival until the process 

is back in the same state (any retailer arrival will result in IP = Su and therefore the process will first 

reach the state {∆,Sm}). Using standard conditioning arguments, we can write the recursion: 

∑
∞

=
+=

0
1. )(

k

k
jiij pfqf  

where, q =
µ

λe + λr + µ
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  represents the probability that once in state {i, j +1}, a service transition will 

bring the process back to {i, j}  and p =
λe

λe + λr + µ
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  represents the probability that once in state 
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{i, j +1}, an external arrival will take the process forward. The recursion above states that once in state 

{i, j +1}, the only way to go back to state {i, j} is to either go through a service completion or if an 

external arrival occurs, then the process must come back to {i, j +1}  and then go through a service 

completion. 

 

Next, from the structure of unrestricted Markov chain, it is clear that f ij = f i. j +1 . Another way to see this 

is to simply note that the above recursive equation stands for all j ≥ Sm and  will 

provide one valid solution to this system of recursive equations. Now, we can simplify the equation 

as:

mjiji Sjff ≥∀= +1..

ij
ij fp

qf
−

=
1

 and, therefore, 
p

pq
fij 2

411 −−
= . As this probability is the same for all 

, we will simply call it mSji ≥∆< , f . 

 

Finally, to complete the characterization of the restricted Markov chain, the transition rate attached to 

for  will be },{},{ mm SiSi → 0 ≤ i < ∆ λe f and the rate for {i,Sm} → {∆,Sm}  will be λr + λe (1− f ) . 

The rate for {∆,Sm} → {∆ ,Sm} will be λe + λr . We will normalize these rates by dividing them by µ . 

Thus, all the backward transitions with rate µ  will be considered as having rate 1; transition rates λe f  

are changed to ρe f ; λr + λe (1− f )  to ρr + ρe(1− f )  and λe + λr  to re ρρ + . 

 

Step 2: Steady-State Probabilities of the Restricted Process 

To be precise, we should define the steady-state probabilities (say, π 'ij ) of the restricted process as 

separate from the steady-state probabilities (π ij ) of the unrestricted process. However, we will be only 

developing equations expressing π 'ij as a multiple of π '∆ .0  which would also hold for probabilitiesπ ij . To 

avoid clutter, we will work with notation ijπ  even while addressing the restricted process. 

 

First, focus on the states where ω = ∆ . The balance equations are: 

2.1.. )1( −∆−∆∆ πρ−πρ+=π jejj   for mSj ≤≤2 , 

  .  01 ∆∆ ρπ=π

We note that the second-order homogeneous difference equation 0)1( 12 =ρ+ρ+− ++ kekk yyy  has the 

general solution , where  are the two roots of the characteristic equation kk
k zczcy 2211 += 21, zz
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0)1(2 =ρ+ρ+− ezz , and the two constants  are determined by the two boundary conditions: 21,cc

y1 = ρπ ∆ 0;y0 = π ∆ 0 .  This gives: 

 

;
2

4)1()1(
;

2
4)1()1( 2

2

2

1
ee zz

ρ−ρ+−ρ+
=

ρ−ρ++ρ+
=  

c1 =
ρ − z2

z1 − z2

π ∆ 0;c2 =
z1 − ρ
z1 − z2

π ∆0 , 

 and 
jj

j zczc 2211. +=π∆   for mSj ≤≤0 .    (A1) 

We now introduce some simple properties of the roots : 21, zz

(a) ;  ρ+=+ 121 zz

(b) ;  ezz ρ=21

(c) . fz eρ=2

To see (c), recall, that 
p

pq
f

2
411 −−

=  where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

=
µλλ

λ

re

ep  and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

=
µλλ

µ

re

q .  Simple 

algebra shows that . fz eρ=2

Next, let us focus on the states with 0 < ω < ∆ . A similar approach can be taken by treating the balance 

equations as second-order inhomogeneous difference equations and then using boundary conditions to 

solve for unknown constants. However, the following approach simplifies the analysis. To analyze the 

states with ω = i , we begin with writing the balance equation for the state :  ),( mSi

mmm SieSieSi f .1..)1( πρ+πρ=πρ+ − . 

 This gives: 

 .      1.2. −π=π
mm SiSi z

Now, the balance equations for the states with ω = i  can be written as:  

1,12.1.)1( −+−− πρ−πρ−πρ+=π jirjiejiij  for mSj ≤≤2 ,  

0.10.1. +πρ−ρπ=π irii .  

Starting with  and going backwards, for 0mSj = < i < ∆ , we have: 

∑
−

=
−+−− πρ+π=π

1

.11
1

1.2.
1mS

jk
kijkrjiji z

z  for mSj ≤≤1 ,     (A2)  
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  ∑
−

=
−π

−ρ
ρ

=π
1

0
.1

12
0.

1mS

k
kik

r
i zz

.      (A3) 

The last part of this step is to analyze states with 0=i . The approach is essentially the same as before. 

We first get: 

 1.0
1

.0 −π
ρ

=π
mm SS z

.  

Next, we write the balance equations for a group of states }10|),0{( −≤≤ mSjj  as:  

∑
−

=
− πρ−ρπ=π

1

0
.11.0.0

m

mm

S

k
krSS .  

From the above two equations we get:  

∑
−

=

π
−

ρ
=π

1

0
.1

1
.0 )1(

m

m

S

k
k

r
S z

       (A4) 

Finally, writing the balance equations for the groups of states }0|),0{( jkk ≤≤ , 10 −≤≤ mSj  gives: 

∑
=

+ π
ρ
ρ

+π
ρ

=π
j

k
k

r
jj

0
.11.0.0

1
     for  10 −≤≤ mSj    (A5) 

 

Step 3: Steady-State Probabilities for States with mSN >∆<ω ;  

Note that the balance equations for states with mSN = in the restricted process are:  

(1 + ρ)π iS m
= ρ eπ iS m−1 + ρ e fπ iSm

0 < i < ∆ ;  

(1 + ρ)π iS m
= ρπ iS m−1 + ρ e fπ iSm

i = 0.   

In the unrestricted process, the balance equation for the same states can be written as:  

∆<<π+πρ=πρ+ +− ifor
mmm iSiSeiS 0)1( 11 , 

0)1( 11 =π+ρπ=πρ+ +− ifor
mmm iSiSiS . 

The solution, which satisfies the above equations, is: 

 ∆<≤πρ=π + iforf
mm iSeiS 01 .  

Next, let us write the balance equations for the rest of the states, 1+≥ mSN : 

2.1.)1( −+ πρ−πρ+=π jiejiij  for ∆<≤ i0 ; 2+≥ mSj .  

As in step 2, the general solution for this difference equation is . Using boundary conditions 

gives: 

jj zczc 2211 +
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 , 
mSie fzczc .2211 πρ=+

mSicc .21 π=+  

and as we know that: 

2zfe =ρ ,  

we get: . Finally,  
mSicc .21 ;0 π==

m
Sj

Siij Sjiz m

m
≥∆<≤π=π − ;02. .     (A6) 

 

Step 4: Steady-State Probabilities for States with mSN >∆=ω ;  

To determine the probability , j.∆π 1+≥ mSj , we will consider the balance equations for the aggregate 

state }1,|),{(}0,|),{( −≤∆=≥∆< jlklklklk ∪ . These equations can be written as: 

1
1

0 )]1()[(
,1., +≥⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
πρ+ρπ=π ∑ ∑

−∆

=

∞

+−∆−−+=
−∆∆

+
m

k kSjSl
lkrjj Sj

mm

.  

Note that all the probabilities on the right hand side of the above expression can be expressed as multiples 

of . From (A6) and the result (c) from the proof of Theorem 2 below, we have: 0.∆π

1)(
1

0

]1[
2.21., +≥π−ρ+ρπ=π ∑

−∆

=

+∆−−−
−∆∆

+

m
k

kSj
Skjj Sjzz m

m
  (A7) 

For states with  this can be written as: 2+∆+≥ mSN

( ) 1
1

0
,

1
221.1, ≥π−ρ+πρ=π ∑

−∆

=

+
+∆+∆++∆+∆ jzz

k
Sk

kjj
S

j
jS mmm

 

Proof of Theorem 1:  

We note that (A1) does not depend on any artificial transition rates defined for the restricted process and 

therefore it is true for the unrestricted CTMC. Now (A2) through (A5) crucially depend on the artificial 

transitions from states  to themselves with rate ∆<≤ iSi m 0);,( feρ .  This leads to: 

  for 
mmm SieSieSi f .1..)1( πρ+πρ=πρ+ − ∆<< i0  

and 

  for 
mmm SieSiSi f .1..)1( πρ+ρπ=πρ+ − 0=i .  

In the unrestricted process, the balance equations for ∆<≤ iSi m 0);,(  can be written as: 

   for 1.1..)1( +− π+πρ=πρ+
mmm SiSieSi ∆<< i0 , 

and 
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  for 1.1..)1( +− π+ρπ=πρ+
mmm SiSiSi 0=i .  

These two sets of equations are equivalent due to (A6) which gives: 

∆<≤πρ=π + iforf
mm iSeiS 01 .  

Thus, (A2) through (A6) are mutually consistent and together satisfy the balance equations of unrestricted 

CTMC. 

 

Finally, (A7) is again derived with no reference to the artificial transition rates of the restricted CTMC.  

To check that this holds in the restricted CTMC, note that the balance equation for {∆,Sm}  in the 

restricted CTMC is consistent with its balance equation in the unrestricted CTMC. That is, equations: 

(1+ ρ)π ∆ .Sm
= ρeπ ∆ .Sm−1 + ρπ ∆ .Sm

+ (ρ − z2 ) π i.Sm
i= 0

∆ −1

∑ , 

and, 

1.1..)1( +∆−∆∆ π+πρ=πρ+
mmm SSeS  

are equivalent because from (A7): 

∑
−∆

=
∆+∆ π−ρ+ρπ=π

1

0
.2.1. )(

i
SiSS mmm

z .   �  

 

Proof of Theorem 2:  

We will first establish several relationships that are required to prove the main assertion in the following: 

(a)  for ∑∑ ∑
∆

==

∆

=
+ πρ−π=π

1
,

0 1
1,,1

i
ni

n

j i
enij 10 −≤≤ mSn .  

This can be seen directly from writing the balance equations for the set of states 

{ }njiji ≤≤∆≤≤ 0,1|),( . 

(b) , for ∑ ∑
−

=

−

=

π−ρ=πρ
1

0

1

0
,2, )(

m

m

S

j

m

i
Sijmr z ∆≤≤ m1 .  

This can be seen directly from writing the balance equations for the set of states 

{ }mSjimji ≤≤∆≤≤ 0,|),(  in the restricted process. 

(c) 
)1( 2

2 z
z r

−
ρ

=−ρ .  

To see this, note that 

 . rrezzzz ρ=ρ+ρ+ρ+−=−−ρ })1({)1)(( 2
2
222
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(d) ∑∑ ∑
−∆

=

−∆

=

∞

=

π
−

ρ−
=πρ−

1

0
,

1

0 2
, )1(

)1()1(
i

Si
i Sj

ji m

m
z

.  

This is simply due to  as in Step 3 above. m
Sj

Siij Sjiz m

m
≥∆<≤π=π − ;02.

(e) ∑∑∑
−∆

=

−∆

=
∆

∞

=
∆ π

−
−ρ

+π−∆−ρ+π=πρ−
1

0
,

1

0 2

2
,2,, )1(

)(
)()()1(

i
Si

i
SiS

Sj
j mmm

m
z
z

iz .  

To see this, from Step 4 we have:  

 .  1
1

0 )]1()[(
,1., +≥⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
πρ+ρπ=π ∑ ∑

−∆

=

∞

+−∆−−+=
−∆∆

+
m

k kSjSl
lkrjj Sj

mm

Summing up the set of equations and employing: 

 , m
Sj

Siij Sjiz m

m
≥∆<≤π=π − ;02.

we obtain: 

 ∑ ∑∑
−∆

=

∞

=
∆

∞

=
∆ π+−∆

−
ρ

+πρ=πρ−
+

1

0
,

0
2

2
,, }){(

)1(
)1(

1 i
Si

k

kr
S

Sj
j mm

m

zi
z

.  

Adding  on both sides and using (c), we get (e). 
mS,)1( ∆πρ−

 

Now, we begin the last step in the proof by writing the balance equations for the set of states 

for all and employing (a) as follows:  }0|),0{( njj ≤≤ 10 −≤≤ mSn

⎭
⎬
⎫

⎩
⎨
⎧

πρ−πρ−πρ=πρ−πρ=π ∑∑∑
∆

=

∆

=
+

=
+

1
,

1
1,,0

0
,1,01,0

i
ni

i
enirn

n

j
jrnn  for 10 −≤≤ mSn ,  

Summing up over yields:  n

∑∑ ∑ ∑∑
∆

=

−

=

∆

=

−

=

∆

=

π−πρ−−πρ+ρπ=π+πρ−
1

,

1

1 1

1

1 1
,0,0,0,0,0 )1()1(

i
Si

S

j i

S

j i
jieieSj m

m m

m
 

∑∑ ∑∑
∆

=

∆

=

−

=

∆

=

π−πρ+ρ−−πρ−+ρ−−+π+ρ−−=
1

,
1

1

1 1
,0,0,0 })1{()}1()1({}1)1({

i
Si

i

S

j i
jirir m

m

 

[Note: This note provides a formula to express in terms of ∑
−

=

1

0
.

mS

j
joπ ∆≤≤ i

mSi 0,.π . This was referred to 

in Section 5. 

∑∑∑ ∑∑∑
∆

=

−∆

=

∆

=

∆

=

−

=

−

=

π−π−∆
−

ρ−
−ρ−=π−πρ−−ρ−=πρ−

0
.

1

0
.

21 0
.

1

0
.

1

0
.0 )(

)1(
)1(

)1()1()1()1(
i

Si
i

Si
e

i i
Si

S

j
jie

S

j
j mmm

mm

i
z

 

or: 
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∑∑
∆

=

−

=

π
⎭
⎬
⎫

⎩
⎨
⎧

ρ−
+

ρ−−
−∆ρ−

−=π
0

.
2

1

0
.0 )1(

1
)1)(1(
))(1(

1
i

Si
e

S

j
j m

m

z
i

] 

Some rearranging and changing the order of summation and employing (b), we have: 

mm

mm

S
i

Si
i

S

j i
jirir

i

S

j
ji ,0

1
,

1

1

1 1
,0,0,0

0

1

0
, )1()1( π−π−πρ−πρ−+π=πρ− ∑∑ ∑∑∑ ∑

∆

=

∆

=

−

=

∆

=

∆

=

−

=

    

∑∑ ∑ ∑
∆

=

∆

=

∆

=

−

=

π−πρ−π=
0

,
0 1

1

0
,0,

i
Si

i i

S

j
jiri m

m

. 

 

∑∑ ∑
∆

=

∆

=

−∆

=

π−π−∆−ρ−π=
0

,
0

1

0
,20, )()(

i
Si

i i
Sii mm

iz  

 

Adding the above to those obtained in (d) and (e), we get: 

∑ ∑ ∑∑ ∑
−∆

=

∞

=

∞

=
∆

∆

=

−

=

πρ−+πρ−+πρ−
1

0
,,

0

1

0
, )1()1()1(

i Sj Sj
jji

i

S

j
ji

m m

m

 

∑∑∑∑∑ ∑
−∆

=

−∆

=
∆

−∆

=

∆

=

∆

=

−∆

= −
−

+−∆−++
−
−

+−−∆−−=
1

0
,

1

0 2

2
,2,

1

0
,

20
,

0

1

0
,20, )1(

)(
)()(

)1(
)1()()(

i
Si

i
SiS

i
Si

i
Si

i i
Sii mmmmmm z

z
iz

z
iz π

ρ
πρππρππρπ

∑∑∑∑
−∆

=
∆

−∆

=

∆

=

∆

= −
−

++
−
−

+−=
1

0
,

2

2
,

1

0
,

20
,

0
0, )1(

)(
)1(
)1(

i
SiS

i
Si

i
Si

i
i mmmm z

z
z

π
ρ

ππρππ  

∑∑∑ ∑∑
∆

=

∆

=

∆

=

∆

=

∞

=

+−=−⇒
0

.
0

.
0 0

0.
0

.)1(
i

Si
i

Si
i i

i
j

ji mm
ππππρ )1(

0
0. ρπ −=⇒ ∑

∆

=i
i .   � 

 

Proof of Theorem 3:  

We first prove the convexity of  for : ],,[ kjiC mSj ≥

Recall that, 

⎥
⎦

⎤
⎢
⎣

⎡
−−−−−+= +

µλ
µλ vTubvErlangTuErlangEbhkjiC

r
r *)],(),([*)(],,[  

+−+++⎥
⎦

⎤
⎢
⎣

⎡
−−= )],(),([*)(* uErlangvErlangTEbhvTuh r

r

λµ
µλ

 

where  and 1−++= kiSu l v = j − Sm + k  and ),( wErlang α  has a density ),,( twf α given by: 

.0
)!1(

)(),,(
1

≥
−

= −
−

tfore
w

ttwf t
w

αααα  
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Therefore, 

=],,[ kjiC  

dydxykSjpxkSipxTybh
kSj

T
kSi

h mrl
y

Ty

x
r

m

r

l ),(),2()()(
1

0 0

µµλλ
µλ

+−−++−+++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +−
−−

−++
∫ ∫
∞

=

+

=

 

where b
a

e
a
bbap −=

!
),(  is the Poisson mass function and P . Let  be defined as 

follows: 

(a;b) = p( j,b)
j = a

∞

∑ )( lSg

)](;[
1

)](;1[)(

);2()()(
0

TykSiP
kSi

TykSiPTy

dxxkSipxTySg

rl
r

l
rl

rl

Ty

x
rl

+++
−++

−+−+++=

−++−+= ∫
+

=

λ
λ

λ

λλ
 

Denote .δ  as the first order difference operator; that is: 

)1()()( −−=δ lllS SgSgSg
l

 

)](;1[1

))(;1())(;2()(

TykiSP

TykSip
kSi

TykSipTy

rl
r

rl
r

l
rl

+−++−

+−++
++

++−+++−=

λ
λ

λ
λ

λ
 

)](;1[1 TykiSP rl
r

+−++−= λ
λ

. 

 Therefore: 

∫
∞

−+−+−+++−=
0

);1()](;1[)(],,[ dyykSjpTykiSPhbhkjiC mrl
rr

Sl
µλ

λ
µ

λ
δ , 

and, 

0);1()](;1[)(],,[
0

2 >−+−+−+++= ∫
∞

dyykSjpTykiSphbkjiC mrl
r

Sl
µλ

λ
µδ . 

Thus  is convex in . In a similar fashion we can show that  is convex in . Now, 

recall that:  

],,[ kjiC lS ]1,0,0[C lS

⎥
⎦

⎤
⎢
⎣

⎡
+=⎥

⎦

⎤
⎢
⎣

⎡
= ∑ ∑ ∑∑∑∑

∆

=

∞

=

+−∆

=

−

=

∆

=

∞

=
∆

0

1

1

1

0
0

0 0
. ],,[]1,0,0[],[

i Sj

i

k
ij

S

j
jr

i j
ijrS

m

m

l
kjiCCjiCC ππλπλ  

 

This implies that .    � 0.
2 >δ ∆ll SS C
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Proof of Theorem 4:  

We will use the symbol to denote . In NI, .  

We need to show that : 

j.Σπ ∑
∆

=
Σπ=π==

0
..]Pr[

i
jji

RI jN jIN jN ρρ−== )1(]Pr[

]Pr[]Pr[ jNjN INRI ≤≤≤ . 

From Theorem 2, we have ρ−=πΣ 10. . Using the aggregation/disaggregation approach to analyze 

Markov chains (see Schweitzer  1991), we can write: 

 0.0.
0.

0.0
1. ΣΣ

Σ
Σ ρπ<π⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
π
π

ρ+ρ=π re .  

Alternatively, this can be seen by simply writing the balance equation for the group of states 

. Similarly, we can write }0|{ 0. ∆≤≤π ii mjj Sjfor ≤ρπ<π −ΣΣ 1.. by writing the balance equations 

for the groups of states 1};0|{ . −≤≤∆≤≤π mki Sjjki . Next, writing the balance equation for the 

group of states , we get };0|{ . mji Sji ≤∆≤≤π
mm SS .1. Σ+Σ ρπ=π . Therefore: 

   ]Pr[]Pr[ jNjN INRI =≤=

 and 

  . 1]Pr[]Pr[ +≤≤≤≤ m
INRI SjforjNjN

Next, consider the balance equation for the group of states };0|{ . mji Sji ≤∆≤≤π , which gives: 

  .  1.
0

.1.2. +Σ

∆

=
+Σ+Σ ρπ>πρ+ρπ=π ∑ mmmm S

i
SirSS

Similarly,  

21.. ≥ρπ>π −+Σ+Σ jforjSjS mm
. 

Therefore,  

1.. ≥>πρ>π +Σ
−

+Σ kjforkS
kj

jS mm
.  

We will prove the rest by contradiction. Assume there exists:  

 .  ∑
=

Σ +≥≤≥π=
k

j
m

IN
j SkkNkMinj

0
.

* }2];Pr[|{

From the definition of ,: *j
*

* )1(]Pr[]Pr[ *
.

* jIN
j

RI jNjN ρρ−==>π==
Σ

.  
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Now, 

1
)1(

)1(
)1(

)1()1(]Pr[]Pr[

]Pr[

*
*

*

*

*

*

1

1

**

1
.

0
.

=
ρ−

ρ
ρρ−+

ρ−
ρ−

ρ−==ρ+≤>

π+π=≤

+∞

+=

−

∞

+=
Σ

=
Σ

∞→

∑

∑∑

j
j

jj

INjjIN

jj
j

j

j
j

RI

j

jNjN

jNLim
. 

This is impossible. Therefore no such  exists and  for all .   � *j ]Pr[]Pr[ jNjN INRI ≤≤≤ 0≥j

 

Proof of Proposition 5:  

Recall from the Theorem 4 that  ]Pr[]Pr[ jNjN INRI =≤= mSjfor ≤ . Thus: 

IN
m

S

j

IN
m

S

j

RI
m

RI
m NSEjNjSjNjSNSE

mm
+

−

=

−

=

+ −==−≤=−=− ∑∑ ][]Pr[)(]Pr[)(][
1

0

1

0
.   � 

 

Extensions of the Basic Model: Case of 1+= ul SS  (Section 2: Retailer’s Policy) 

The following figure sketches out the CTMC for this case. We can follow essentially the same analytical 

steps as we employed in the case of  to develop the stead-state probabilities for this Markov 

chain.  A restricted Markov chain here will consist of all the states with 

lu SS >

1+≤ mSN . The finite state 

restricted chain can be easily solved. The cost calculation also follows the same steps as presented in 

Section 4. 

S L 

0 
S U 

1 2 3 Sm
Sm+ 

1
Sm+ 

2
Sm+

3

Manufacturer’s number-in-production-system N 

Retailer 
IP 

Drawn for case SL -SU =1, Sm=4
Horizontal transitions (forward): λ e

Non-horizontal transitions: λ r
Horizontal transitions (backward): µ (not shown) 

 

 

 

 

 

 

 11



Extensions of the Basic Model: Manufacturer’s Two-Level Policy (Section 5.3) 

The following CTMC presents the case when the manufacturer is using the policy described in Section 

5.3. Note that we have changed the state description from number in production system to finished goods 

on-hand inventory. The manufacturer knows the retailer’s inventory position. If it is greater than , 

then the manufacturer stops production when on-hand inventory reaches  otherwise the production 

continues until on-hand inventory reaches . A restricted process can be created exactly in the same 

way as described in the paper. The solution of the restricted chain has only minor differences and the rest 

of the analysis follows exactly the same steps. 

ipS

mlS

mhS

 

S U 

S L 

S mh 

S U -1 

S L +1 

S ml 
0 1 2 3 

Manufacturer’s finished-goods on-hand 

Retailer 
IP 

Drawn for case S U-S L=3,  S mh=4,  S ml=2, S ip=S L+1 
Horizontal transitions (forward):  λ e

Non-horizontal transitions:  λ r
Horizontal transitions (backward):  µ (not shown) 

S mh 
-1 

S ml
-1 
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