A Supply Chain Model with Reverse Information Exchange: Complete Appendix

Step 1: Defining the Restricted Process

We begin with focusing on a restricted version of the complete CTMC described above. The restricted
version observes the process only over states for which N <S . We note that whenever the restricted
process is in states {i,S}, 0<i <A, the next transition due to an external or retailer demand arrival can
only result in either the restricted process reverting to the same state {i, S } or to the state {A,S}. When
a retailer arrival occurs in state {i,S.} , the unrestricted process will see a transition to
{A,S,, + A—(i —=1)} which will ensure that the first state entered in the restricted process will be {A,S, }.
When an external arrival occurs in state {i,S }, the unrestricted process will see a transition to
{i,S,, +1} . Irrespective of the specific sample path which the unrestricted process follows, it is certain
that the first state it enters in the restricted state space will either be {i,S }or {A,S,} depending on
whether any retailer arrival occurs between two consecutive visits to the states with N =S, . Note that

the restricted process is also a CTMC. Its state-transition-rate diagram is shown in the Figure 4.

Note that all the transition rates except those out of states {i, S, } remain the same as in the unrestricted
process. In the following we define the transition rates for the following transitions:
{i,S,, |li<A}—>{i,S, }and {i,S, |i<A}—>{A,S,}. Let us first focus on the former transition.

Define;

fy:  Starting inastate {i,j [i <A, j>S_} and conditioned on the next transition being due to
external arrival, the probability that the unrestricted process will return to state {i, j} for the first
time before it reaches state {A,S, }.

Thus, f; is the probability that starting in {i,] |i <A, J> S}, there is no retailer arrival until the process

is back in the same state (any retailer arrival will result in IP =S, and therefore the process will first

reach the state {A, S, }). Using standard conditioning arguments, we can write the recursion:
fy = qZ(pfi.j+l)k
k=0

where, q :( £ j represents the probability that once in state {i, j +1}, a service transition will

Ao+ A+ 1

bring the process back to {i,j} and p:(—ej represents the probability that once in state
A+ A+ 1



{i,j +1}, an external arrival will take the process forward. The recursion above states that once in state
{i,j +1}, the only way to go back to state {i,]}is to either go through a service completion or if an
external arrival occurs, then the process must come back to {i,j+1} and then go through a service

completion.

Next, from the structure of unrestricted Markov chain, it is clear that f; = f,;.,. Another way to see this

is to simply note that the above recursive equation stands for all j=S,and f, = f,;,Vj>S  will

provide one valid solution to this system of recursive equations. Now, we can simplify the equation

1\

g and, therefore, = - As this probability is the same for all
-pf; 2p

as: f; =

i<A,j=S, , wewill simply call it f.

Finally, to complete the characterization of the restricted Markov chain, the transition rate attached to
{i,S,}—>{i,S, }for 0<i<A will be 4 f and the rate for {i,S,} =>{A,S,} will be A4 +4,(1-f).
The rate for {A,S,,} — {A,S,, } will be 4, + 4,. We will normalize these rates by dividing them by .

Thus, all the backward transitions with rate # will be considered as having rate 1; transition rates A, f

are changedto p.f; A+ 4, (1-f) to p, + p,(1-Tf) and A4 + 4, to p, + p, .

Step 2: Steady-State Probabilities of the Restricted Process

To be precise, we should define the steady-state probabilities (say, 7z"; ) of the restricted process as
separate from the steady-state probabilities (7; ) of the unrestricted process. However, we will be only

developing equations expressing 7'; as a multiple of 7', , which would also hold for probabilities z;; . To

avoid clutter, we will work with notation 7;; even while addressing the restricted process.

First, focus on the states where @ = A . The balance equations are:
Ta; =@+p)my g —Pey;, fOr 2<j<S
a1 = PTlpo-
We note that the second-order homogeneous difference equation y,,, —(1+p) Y., +p. Y =0 has the

general solution y, =c,z +C,z5 , where z,,Z, are the two roots of the characteristic equation



2> —(+p)z+p, =0, and the two constants C,,C, are determined by the two boundary conditions:

V1= P, 0o = Too. This gives:

, QP +ytp) —dp,

_(@+p)—yA+p)° - 4p, .
5 :

1 5 14y
P—1 . L—p
C, = Ta0:iCy = TTpQ s
-1, -1,
and
My, =C2) +Cz)  for 0<j<S . (A1)

We now introduce some simple properties of the roots z,,z,:

(@ z,+z,=1+p;

(b) 2,2, = p,;

() z,=p.f.
To see (c), recall, that f =# where p :[MﬁJ and ¢ :[ﬁJ Simple
algebra shows that z, =p, f .

Next, let us focus on the states with 0 <@ <A . A similar approach can be taken by treating the balance
equations as second-order inhomogeneous difference equations and then using boundary conditions to

solve for unknown constants. However, the following approach simplifies the analysis. To analyze the

states with @ =i, we begin with writing the balance equation for the state (i,S,,):
A+p)mis =peTis 1 +Pe s -

This gives:
Tis, = ZoMs, 1-

Now, the balance equations for the states with @ =i can be written as:

T = 1+ p)ni.j—l —PeTij o — P Ty g TOT 2<j<S,,

i1 = PTio = PrMisp-
Starting with j = S and going backwards, for 0 <i<A , we have:
Sy—1

1 .
Tci,j = ZZTci.j—l + Py ;W’ni—l.k for 1< ] < Sm’ (AZ)
=] "1



Sp-1
pr X1
EPRUENE (A3)
p— Zz k=0 Zl

The last part of this step is to analyze states with i = 0. The approach is essentially the same as before.
We first get:
Tos, — -~ Tos, -1
1

Next, we write the balance equations for a group of states {(0, j)|0< J<S_, -1} as:

5,1
To.s, = PTos,1 ~Pr znl.k :
k=0

From the above two equations we get:

P Sy—1
" B r & A4
=y (A%)
Finally, writing the balance equations for the groups of states {(0,k) |0 <k < j}, 0< j <SS, —1 gives:
1 P, < _
Toj = —Toju +—an_k for 0<j<S, -1 (A5)
p P k=0

Step 3: Steady-State Probabilities for States with @ < A;N > S

Note that the balance equations for states with N =S in the restricted process are:
A+ p)ms, = permis, 1+ P frrys, 0<i<A;
A+ p)ms, = prrig, 1+ p frg 1=0.

In the unrestricted process, the balance equation for the same states can be written as:
@+ p)niSm =PeTis, 1t s forO<i<A,
d+p)ms, =pms, 4 + 7,0 fOri=0.

The solution, which satisfies the above equations, is:
Tis, 1 =p,f s, forO<i<A.

Next, let us write the balance equations for the rest of the states, N > S +1:
T =@+ PNy — Py, fOr 0<i<A; j>S +2.

As in step 2, the general solution for this difference equation is clzlj + szzj . Using boundary conditions

gives:



c,z, +C,Z, =p, f“i.sm ,
C,+Cp =T
and as we know that:
p.f=12,,
we get: ¢, =0;¢, = ;s . Finally,
My =T 2 " 0<i<Aj=S, . (A6)
Step 4: Steady-State Probabilities for States with @ = A;N > S|
To determine the probability =, ;, ] =S, +1, we will consider the balance equations for the aggregate

state {(k,1) | k < A, 1 > 0FU{(k,I) | k = A,I < j—1}. These equations can be written as:

A-1 0
Taj =PTpja +P; Z an,l =S, +1.
k=0 1=8,+[(j~Sy)-(A—k+1)]"
Note that all the probabilities on the right hand side of the above expression can be expressed as multiples

of m,,. From (A6) and the result (c) from the proof of Theorem 2 below, we have:

A1 _ L
Tpj =PTpjat (p- Zz)znk.sm Zgj_sm_l_Mk] J2S,+1 (A7)
k=0

For states with N > S_ + A+ 2 this can be written as:

A-1
— i _ i k+1 i
Tas +at1t] — P Tas 1ast +Q) Z, E Lo s ) >1
k=0

Proof of Theorem 1:
We note that (A1) does not depend on any artificial transition rates defined for the restricted process and

therefore it is true for the unrestricted CTMC. Now (A2) through (A5) crucially depend on the artificial

transitions from states (i,S,,); 0 <i <A to themselves with rate p, f . This leads to:
L+p)mis =pPeTis 4 +P s for 0<i<A

and
A+p)mis =pmis 4 +p,fr;g for i=0.

In the unrestricted process, the balance equations for (i,S,,); 0 <i <A can be written as:
L+p)mis =pemis 4+ Mg,y for 0<i<A,

and



A+p)mis =pmis 4 +mg ., for i=0.
These two sets of equations are equivalent due to (A6) which gives:
Tis a =P f Mg fOr 0<i<A.

Thus, (A2) through (A6) are mutually consistent and together satisfy the balance equations of unrestricted
CTMC.

Finally, (A7) is again derived with no reference to the artificial transition rates of the restricted CTMC.
To check that this holds in the restricted CTMC, note that the balance equation for {A,S,} in the

restricted CTMC is consistent with its balance equation in the unrestricted CTMC. That is, equations:
A-1
A+ P)7ps, =Peas,at PTAs, + (P Zz)z Tisy o
i=0
and,
A+pP)Tas, =PeTlas, 1+ Tas,
are equivalent because from (A7):

A1
Tas,«1 = PTlas, T (p— Zz)zﬁi.sm . N
i=0

Proof of Theorem 2:

We will first establish several relationships that are required to prove the main assertion in the following:
n A A

(@) an’j = Zni’nﬂ —peZni'n for0O<n<§, -1.
j=0 i=1 i=1

This can be seen directly from writing the balance equations for the set of states
{i.j)|1<i<A0<j<n}.
Sp-1 m-1
O p D T =(P—2,)D M forl<m<A.
j=0 i=0
This can be seen directly from writing the balance equations for the set of states

{(i, PDIM<Li<A 0SS, } in the restricted process.

_ P
(1-12,)

To see this, note that

(P-12,)-12,) :{222 -(1+p)z; +pttp, =p,-

©) p-2,



©) (Lp)fini,— - p)Z Tis, -

i=0 j=S,,

i-s,,

This is simply due to 7; = 7,5 2, 0<i<A;j=S, asin Step 3 above.

A-1

IS s,

€ 1-p) 'iTEA,j =Ty, (P ZZ)i(A_i)niysm + (g: 2) .

To see this, from Step 4 we have:

A-1

Ty =P7TA.1_1+Pr[Z Z’Tm J j=S,, +1.
k=0 1=S,+[(j~Sp)-(A-k+1)]*
Summing up the set of equations and employing:
My =T 2 " 0<i<Aj2S,,
we obtain:

(1-p) Yo7y, =pm
jszm+1 ) A'Sm (1_ 2)

Adding (1-p)m, s onboth sides and using (c), we get (e).

Z{(A—l)+Zz s -

Now, we begin the last step in the proof by writing the balance equations for the set of states

{(0,J)|0< j<n}forall 0<n<S, —landemploying (a) as follows:

n A A
Tons1 = P T _prznl,j =PTo, _pr{zni,ml _pezni,n} for 0<n< Sm -
i=1 i=1

i=0

Summing up over nyields:

(1- p)ZTCOj_l_TEOS =PToo T Pe ano (- p)iznlj ansm
= (-9 oo +{-0-9) + AP R ~{A-P)+p IS Y D,

Sp-1
[Note: This note provides a formula to express Z;ro_j in terms of 7,5 ,0 <i<A. This was referred to
j=0

in Section 5.
1930y =A-P)=A=p)3 Sm 3, = 0-p) - GRS -, T
or:



(1-2,)A-p)

Some rearranging and changing the order of summation and employing (b), we have:

S [apa-i) 1
jz_(;“o.j =1 Z{ (1_p)}ni.sm]

(- P)ZA:Z_:W|1—7T00+(1 P)Znuo Pr Z_‘,ZA:TCH ans ~Tos,

m—1

A S
ni,O _prz

i=1 j=0

M=

A
T j —Zni,sm :
i=0

I
o

M>

G NCELLIE

T
o

Adding the above to those obtained in (d) and (e), we get:

A Sp-1 A

,_\

(l_p)z Zni,j +(1-p) an,j +(l_p)ZnA,j
i=0 j=0 i=0 j=S, j=Sm
A A-l _ A (p-2,)
;ﬂlo_(p_ZZ)g(A_l)”i,Sm_ O”i,sm (1 Zz)z iS5, T7as, +(P_22)Z(A—|)7T.s +mzﬂ'us
_~ N d-p) < L (P=2))3
_;:7['0 ;:,”i,sm (1- 22)27['5 Tps, T -z, Z Tis,
A o A A A A
=( )ZZ”.; :Z”Lo _Z”i.sm +Z”u Sy = Z”uo =1-p)
i=0 j=0 i=0 i=0 i=0 i=0

Proof of Theorem 3:
We first prove the convexity of C[i, j,k] for j =S, :

Recall that,

Cli, j,k]= (h+b)*E[Erlang(4,,u) =T — Erlang(x,Vv)]" —b*{%—T _1}
r 7

_h *[/% T _l} +(h+b)*E[T + Erlang(x,Vv) — Erlang (4, ,u)]"
7,

where U=, +i+k—-1andv=j—S, +k and Erlang(o, W) has a density f (c,w,t) given by:

(dt)w—l

e ™ fort>0.
(w=21)!

f(a,w,t)=«




Therefore,
C[, j, k] =

- _ P o Yy+T
h[%q —L“k}(hm)j [y +T =x)4,p(+S, +k~2,2,X)(j ~ S, +K, ay) dxdy
u

r y=0 x=0

a

where p(a,b) = b—le‘b is the Poisson mass function and P(&a;b) = Z p(j,b). Let g(S,) be defined as
al

j=a
follows:

y+T

9(8)) = [(y+T =x)2,p(i+8, +k-24Xx) dx
x=0

=(y+T)P[i+S,+k-LA(y+T)]-

'+S'/1¢P[i +S, 1k A (y+T)]

r

Denote & as the first order difference operator; that is:
83, g(S|) = g(S|)_ g(S| _1)

I+S, +k

=—(y+T)p(i+S,+k-24,(y+T))+ p(i+S,+k-L A (y+T))

r

—%P[SI +i+k=-LA (y+T)]

r

:_%P[S, +i+tk-LA (y+T)].

r

Therefore:

3, Cli 1K1 =~ (b+ W[ LIS, +i+k 157, (y +T)] p(i =S, +k~L ) dy.
0

r r

and,
5;C[i,j,k]=(b+h)j§p[s.+i+k—1;zr(y+T)] p(j—S, +k-Luy)dy >0.
0 r

Thus CIi, j,k] is convex in S,. In a similar fashion we can show that C[0,0,1] is convex in S,. Now,

recall that:
A »© o Sp—1 A Acitl
Con =4 ZﬂijC[I!J] =4 Z”o;‘C[O’O,l]+Z Zﬂ'ij ZC[LJ,k]
i=0 j=0 i=0 i=0 j=5, k=l
This implies that 85 Cs , > 0. 0



Proof of Theorem 4:

A .
We will use the symbol 7 ;to denote PF[N™ = j1=>"m,; =m, ;. In NI, PI[N"" = jl=(1-p)p’.

i=0
We need to show that :
PrIN® < j1<Pr[N™ < j].
From Theorem 2, we have m,, =1-p . Using the aggregation/disaggregation approach to analyze

Markov chains (see Schweitzer 1991), we can write:

_ n Too
Ts1 =| Pe TP Ty <PTgp-

Tso

Alternatively, this can be seen by simply writing the balance equation for the group of states
{nio |0 <i < A}. Similarly, we can write ©, ; <pmy;, for j<S by writing the balance equations
for the groups of states {m;, |[0<i1<A;k < j} j<S, —1. Next, writing the balance equation for the
group of states {m; ; |0 <1 <A;j< S, }, weget ny , =pmn, . Therefore:

PrIN® = j1<Pr[N"' = j]
and

PrIN® < jT<Pr[N™' < j] for j<S,_ +1.

Next, consider the balance equation for the group of states {n; ; |0 <i < A; j < S}, which gives:

A
Tss,+2 = Plss 1 TPy Z:ﬂi.srn > PTss, 41
i~0

Similarly,
TCE.Serj > pTEE.Serjfl fOI’ _] > 2
Therefore,
-k ;
TEZ.Serj >p nZ.Serk for J >k21

We will prove the rest by contradiction. Assume there exists:

k
T =Min{k | Y my 2PN <k[:k>S, +2}.
=0

From the definition of j~:

PIIN® = " ]=n, . >PrIN™ = j]=(-p)p .

10



Now,

i ©
LimPr[N® < j]:Znle + an.j

)= j=0 j=i"+
& T . 1-p'™) F P
SPINY < T+ 3pl PN = = - D) P
J;H (1-p) 1-p)

This is impossible. Therefore no such j~ existsand Pr[N™ < jJ<Pr[NM' < j] forall j>0. [

Proof of Proposition 5:

Recall from the Theorem 4 that Pr[N ™' = jJ<Pr[N"™' = j] for j<S, . Thus:

NI

LS, ~NI™" = 25, — DPIIN® = jI< 3 (S, — PrIN™ = j]=E[S, -N]™".

j=0

Extensions of the Basic Model: Case of S, =S, +1 (Section 2: Retailer’s Policy)

The following figure sketches out the CTMC for this case. We can follow essentially the same analytical

steps as we employed in the case of S, > S, to develop the stead-state probabilities for this Markov

chain. A restricted Markov chain here will consist of all the states with N < S _ +1. The finite state
restricted chain can be easily solved. The cost calculation also follows the same steps as presented in
Section 4.

Manufacturer's number-in-production-system N
S S+ S+

St
o 1 2 3 /\a

Retailer >V \

IP
S;e >

v

Drawn for case § -S, =1, S,=4
Horizontal transitions (forward),
Non-horizontal transitions,
Horizontal transitions (backward)u(not shown)
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Extensions of the Basic Model: Manufacturer’s Two-Level Policy (Section 5.3)
The following CTMC presents the case when the manufacturer is using the policy described in Section

5.3. Note that we have changed the state description from number in production system to finished goods

on-hand inventory. The manufacturer knows the retailer’s inventory position. If it is greater than S, ,
then the manufacturer stops production when on-hand inventory reaches S, otherwise the production

continues until on-hand inventory reaches S, . A restricted process can be created exactly in the same

way as described in the paper. The solution of the restricted chain has only minor differences and the rest

of the analysis follows exactly the same steps.

Manufacturer’s finished-goods on-hand
S 0 1 2 3
oS be ve ve be >
Retailer s
IP Sin _'J““
SL+1 > v—v/v—-/vv >0
S| be »e

lad

v

v

Drawn for case S-S, =3, S,,=4, S,=2, S;;=S, +1
Horizontal transitions (forward): A,
Non-horizontal transitions: A,
Horizontal transitions (backward): p(not shown)
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