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In this paper, we consider a high-speed production process, which produces defects at a known rate while in control. When the process
goes out of control, it produces defects at a higher rate. In this study, we revisit the role of the distribution of the process in-control
time when managing such systems. Specifically, we focus on two management schemes, a control policy and an inspection policy. In
the control policy, when the number of defects produced reaches a threshold, the process is stopped and inspected. In contrast, in the
inspection policy, the process is stopped and inspected periodically. We derive the operating characteristics of the system and devise
schemes for finding the optimal policy parameters for each policy. We also investigate the behavior of the optimal policy parameters,
compare the performances of the control and inspection policies and identify the environments in which each of these policies out
performs the other one using a numerical experiment.

10

1. Introduction

In this paper, we consider the economic design of con-15
trol and inspection policies in unreliable high-speed/high-
volume production processes. High-speed production sys-
tems are common in practice and can be found in many
industries. Examples range from traditional industries such
as potato grading (Noordam et al., 2000), aluminum beer20
can manufacture (Gold, 1993) and metal forming (Schoch,
1994), to high-tech industries such as semiconductor wafer
production (Schonecker et al., 2002) and image printing
(King and West, 1995). In such environments, it is usual
to have integrated devices, which perform automated mea-25
surements of the output of the process that are necessary
for next stage of production. The measurements are made
possible through the use of optical sensors (Gold, 1993;
King and West, 1995) such as laser or infrared devices re-
sulting in no sampling cost and thus, full sampling of all30
units produced.

Many manufacturing processes are unreliable in nature
since machines wear down after a period of intensive use
and this results in an increased defective rate and thus, ex-
cessive salvage costs for undetected defectives. Therefore, it35
is necessary to have a mechanism, which ensures the timely
halting of the process, identifies an assignable cause and
restores the process to its original state. In this study, we
design and analyze policies to detect machine breakdowns
so as to minimize the average operating cost rate involved in40
high-speed production processes. Our policies are economic

in nature, since various operational costs will be explicitly
incorporated.

The economic design of control charts is an intensively
studied topic dating back to Duncan (1956) who considered 45
the X̄-chart. Later Goel and Wu (1973) and Chiu (1974)
proposed a Cumulative SUM (CUSUM) policy for con- Q1

trolling the quality of production systems. They assumed a
continuous process, which stays in-control according to an
exponential distribution. While in control, the process pro- 50
duces defects with a known mean and variance. The mean
defect rate shifts to a higher rate after machine breaks down
(process goes out of control). Simpson and Keats (1996)
provided an optimization scheme and performed a sensitiv-
ity study for an economic control model using a CUSUM 55
policy.

Lorenzen and Vance (1986) presented a unified approach
that can systematically determine the economic design of
various control charts. McWilliams (1989) extended the
analysis to the case where the in-control time follows a 60
Weibull distribution enabling one to consider systems where
in-control times have increasing and decreasing hazard
rates. He re-examined Lorenzen and Vance (1986) and
found that the economic design of the standard control
charts is quite insensitive to the shape of the distribution 65
of in-control times. Furthermore, McWilliams (1996) dis-
cussed the relationship between it—earlier control models
and the unified Lorenzen–Vance model, and derived an ap-
proximation scheme in order to find the optimal control
parameters. More recently, Linderman and Love (2001) 70
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extended the Lorenzen–Vance model to develop the eco-
nomic design of Multivariate Exponentially Weighted
Moving Average (MEWMA) control charts.

In this paper, we consider a high-speed production sys-
tem, which produces defects at a known rate while in con-75
trol. When the process goes out of control, it produces
defects at a higher rate. For any given distribution of the
in-control time, we revisit the role of information, de-
fined as the coefficient of variation for the in-control time,
when managing such systems. Specifically, we focus on two80
schemes for managing such systems: a control policy in line
with that of CUSUM charts and an inspection policy. In
the control policy, each unit produced is sampled and de-
fective units are identified. When the number of defects in
the process reaches a limit, the process is stopped and the85
machine is inspected for an assignable cause. In contrast, in
the inspection policy, units produced are not sampled; how-
ever, at predetermined time points, the process is stopped
and the machine itself is inspected. Since the distribution of
the in-control times is not necessarily exponential, then the90
inspection intervals may not be of equal lengths. An inter-
esting question to be investigated is to compare these two
different schemes (control policies in comparison to inspec-
tion policies) and identify the type of environment in which
one of these policies performs better than the other one.95

In our model, we assume that units are produced with a
known defect rate. Now, in the high-speed production envi-
ronment, our underlying process converges to a Brownian
motion (or Wiener process) in which its drift increases when
the process goes out of control. This is known as the change-100
point problem (Carlstein, et al., 1994) which has attracted
significant attention from mathematicians and statisticians.
However, previous research has focused on minimizing the
average run length (ARL), which ignores information on
the various costs, and often yields suboptimal solutions.105
Our control policy is designed as an upper bound (on the
number of defective units) parallel to the process mean drift
in the in-control state. The distance of the upper bound to
the mean drift is optimally determined, by incorporating
the costs associated with machine repairs, unit salvage, and110
false alarms. Among related works, Ye (1990) is noteworthy
since considered a scenario that is somewhat similar to our
setting and focused on the optimal timing for machine re-
placement when maintenance and operational costs evolve
according to a Wiener process. These cost parameters define115
the state of the machines which deteriorate over time.

As previously mentioned we will also propose a time-
based inspection policy, in which the machine will be in-
spected periodically (not necessarily at equal time inter-
vals). There exist many studies that consider time-based120
inspection policies to manage unreliable systems. Badia
et al. (2001) considered a model in which the failure times
are assumed to be either exponential or Pareto-type and
analyzed a periodic inspection policy in the presence of
inspection errors. Lee and Rosenblatt (1987) studied the125
joint determination of the optimal production cycle and in-

spection schedules in unreliable production systems. They
showed that, for an exponentially-distributed time-to-shift
the inter-inspection times should be equally spaced. Moin-
zadeh and Klastorin (1995) considered a system that pro- 130
duces no defective items when in control but produces de-
fective items of a given defective rate when out of con-
trol. Assuming that the in-control time is exponentially dis-
tributed, they introduce the idea of locating a buffer after
the production system that is used to prevent defective units 135
produced between inspections being transfered to the next
stage of production. More recently Berk and Moinzadeh
(2000) studied a time-based maintenance policy for M ma-
chines whose performance deteriorated with use. Similarly,
a set of optimal inspection times can be found by balancing 140
all costs involved.

Our inspection policy relaxes the assumption of an expo-
nential time-to-failure distribution. The idea is to compare
its performance with that of control polices for different in-
control time distributions. In our numerical experiments, 145
we have chosen top one an Erlang distribution for the in- Q2

control times and this enables us to consider various dis-
tributions ranging from deterministic (complete memory)
to exponential (memoryless). Intuition suggests that in one
limit when the distribution is exponential, the control policy 150
outperforms the inspection policy since the inspection pol-
icy ignores the characteristics of the underlying process and
the exponential in-control time distribution lacks a mem-
ory. At the other end of the spectrum with a complete mem-
ory (deterministic), the inspection policy is expected to be 155
superior. Indeed, this is confirmed in our study. In addition,
we show that inspection policies dominate the control poli-
cies when there is a significant memory on the distribution
of the in-control times whereas the control policy performs
better as the level of memory is decreased. 160

The rest of the paper is organized as follows. In Section
2, we introduce some preliminaries regarding the produc-
tion process and the notation. Section 3 studies the control
policy whereas the inspection policy is examined in Section
4. Section 5 offers conclusions and directions for future 165
research.

2. Preliminaries

In this section, we first introduce the model and its assump-
tions and define the relevant notations. Then we discuss
some of characteristics of the manufacturing process under 170
study.

2.1. The Model, notations and assumptions

Consider an unreliable production system that produces
units at a rate γ , which is typically high in high-speed/high-
volume production settings. The process is in-control pro- 175
ducing defective units at a rate p1 for a random amount of
time, τ , before it goes out of control (breaks down). When
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out of control, the process produces defective items at a
rate of p2 ( p2 > p1). For a given policy, when certain policy
conditions are met, the machine is stopped and inspected180
to find possible assignable causes of breakdown (being out
of control). If there is a breakdown then the machine is
repaired and restored to in-control condition; otherwise,
a “false alarm” happens. We denote Cmr as the machine
repair/restoration cost and Cfa (Cfa < Cmr) as the cost of185
a false alarm. Furthermore, we assume that the defective
units produced are discarded at a salvage cost, Cur, per unit.
Finally, we assume that all the units produced are sampled
and tested (100% sampling) implying that the unit sampling
cost is zero. This assumption is reasonable for processes in190
which sampling and testing is peformed using optical sen-
sors that measure a specified quality parameter. In such
settings the sampling cost is negligible since the measure-
ment is part of production.

We now summarize the relevant parameters used in our195
modeling studies.

Parameters:

γ = production rate;
τ0 = mean in-control time;
k = variance parameter for in-control time;200
p1 = in-control defective rate;
p2 = out-of-control defective rate (p2 > p1);
Cfa = false alarm cost;
Cur = unit product salvage cost;
Cmr = machine repair cost;205

Decision variables:

L = control limit;
�n = inspection times (n = 1, 2, . . . ).

2.2. Process characteristics

To model the manufacturing process, let us first define a210
random walk:

SN = x1 + x2 + · · · + xN, (1)

and S0 = 0. Since each unit produced is sampled then Si de-
notes the number of defective units when a total of i units
are produced. The Bernoulli process to describe the pro-
duction of defectives is defined by P(xi = 0) = 1 − p and215
P(xi = 1) = p, where p = p1 or p2 for in-control or out-of-
control states, respectively.

Since units are produced at a rate of γ then the number
of units produced in t time units is equal to N = γ t. In the
limit where γ is large, the random walk SN can be approx-220
imated by a continuous process, which follows a Brownian
motion S(t) with probability density:

P(S(t) = y) = P(y; t) = 1
(2πσ 2t)1/2

exp
(

− (y − µt)2

2σ 2t

)
, (2)

where µ = pγ is the drift velocity and σ 2 is the variance pa-
rameter and is equal to σ 2

t = 2σ 2 tσ 2 = p(1 − p)γ /2. This
is a direct result of the central limit theorem (Bhattacharya 225
and Waymire, 1990).

To analyze the control policy in the next section, we need
the probability density function for the first passage time to
a barrier z, which is given by (Bhattacharya and Waymire,
1990). 230

fσ,µ;z(t) = |z|
(2πσ 2)1/2t3/2

exp
(

− (z − µt)2

2σ 2t

)
. (3)

When the drift is less than or equal to the barrier, that is,
z/µ ≤ 0, the probability of reaching the barrier is less than
one, and the expected passage time is also infinite. If z/µ >

0, then the expected first passage time to a barrier z is given
by: 235

E(t) =
∫ ∞

0
tfσ,µ;z(t)dt

=
∫ ∞

0
t

|z|
(2πσ 2)1/2t3/2

exp
(
− (z − µt)2

2σ 2t

)
dt = z

µ
, (4)

which is independent of the “diffusion constant” σ .

3. The control policy

3.1. Policy definition

We now propose a control policy to manage the system
described earlier. The policy is based on tracking the process 240
S(t) defined in the previous section and can be stated as
follows.

When,

S(t) ≥ µt + L, (5)

the machine is stopped and inspected. If an assignable cause
is detected, the process is repaired and restored to its origi- 245
nal condition; otherwise, a false alarm has occurred. Here
L is the control limit that will be determined so that the
average cost/time will be minimized and µ = p1γ is the
drift velocity when the process is in control. Obviously, the
choice of the slope in Equation (5) is heuristic as it is not 250
determined optimally. We define the production cycle as the
time between two consecutive machine repairs. Note that
during a cycle, there may be a number of false alarms. When
the process is restarted after a false alarm, S(t) is reset to
be µt where t is the time (elapsed from the beginning of a 255
cycle) which the false alarm occurred.

In order to find the average total cost rate, we need to
evaluate the average total cost in a cycle and the average
cycle time. For ease of exposition, we will work with the
process S(t) − µt . In this reference frame, when the pro- 260
cess is in control, the drift velocity is zero, but the vari-
ance parameter is σ 2 = p1(1 − p1)γ /2. When the process is
out of control, the relative drift velocity is δµ = (p2 − p1)γ .
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Fig. 1. Typical scenario for a process.

Figure 1 depicts the policy setting in which we assume that
the process is out of control when t > τ . Here τ is the265
machine breakdown time and x is the location where the
process S(t) − µt ends up at time t = τ .

3.2. Policy analysis

As mentioned before, to analyze this policy and find the
optimal control bound L, we need to figure out the ex-270
pected number of false alarms and the expected cycle time.
A false alarm occurs when the process S(t) reaches the con-
trol bound at any time before t = τ , where τ is the machine
breakdown time. Let us write f (t) = fσ,µ=0;L(t), and denote
P0(τ ) as the probability that there is no false alarm during275
a cycle, then:

P0(τ ) =
∫ ∞

τ

f (t)dt . (6)

Equation (6) states that the first passage time happens when
t ≥ τ , therefore no false alarm is triggered. The probabil-
ity there are n false alarms during a cycle, Pn(τ ), can be
calculated recursively as:280

Pn(τ ) =
∫ τ

0
f (t)Pn−1(τ − t)dt =

∫ τ

0
f (τ − t)Pn−1(t)dt . (7)

The above recursion results from the fact that, the first false
alarm occurs at a time t and there are (n − 1) false alarms
for the remaining τ − t .

The expected number of false alarms in a cycle, is:

En(τ ) =
∞∑

n=0

nPn(τ ). (8)

En(τ ) can also be obtained by solving an integral equation.
Multiplying both sides of Equation (7) by n and summing
over n gives:

En(τ ) =
∫ τ

0
f (τ − t)En(t)dt + P0(τ ). (9)

This is a Volterra equation of the second kind (Jerri, 1999) 285
and is typically solved by using the Laplace transform.
We first find the Laplace transform for f (t), explicitly
(Abramowitz and Stegun, 1972):

L ◦ f (λ) =
∫ ∞

0
f (t) exp(−λt)dt = exp(−

√
2λL/σ ). (10)

Applying Laplace convolution (Faltung) theorem
(Gradshteyn et al., 1998), the solution to Equation (9) can 290
be expressed in terms of inverse Laplace transform as:

En(τ ) = 1
2π i

∫ ζ+i∞

ζ−i∞

1
λ

exp(−√
2λL/σ )

1 − exp(−√
2λL/σ )

exp(λτ )dλ,

(11)

where ζ is a real constant that exceeds the real part of all
the singularities of the integrand.

Next, we find the probability density that the process
ends at x at time τ (see Fig. 1), which we denote as Pr(x; τ ). 295
This will be used when calculating the elapsed time between
the machine breaking down (t = τ ) and time at which the
breakdown is detected. First, the probability density that
the process reaches x at time τ without hitting the control
limit can be written as: 300

P0(x; τ ) = 1
(2πσ 2τ )1/2

exp
(

− x2

2σ 2τ

)

− 1
(2πσ 2τ )1/2

exp
(

− (2L − x)2

2σ 2τ

)
, (12)

where x ≤ L. In Appendix 1 we have provided a proof
for more generic situations, although Equation (12) can
be derived from the reflection principle (Bhattacharya and
Waymire, 1990). Similarly, the probability that the process
reaches x at time τ and there are n false alarms before τ , 305
Pn(x; τ ), can be calculated recursively from:

Pn(x; τ ) =
∫ τ

0
f (t)Pn−1(x; τ − t)dt, (13)

where 1 ≤ n < ∞. Finally, Pr(x; τ ) = ∑∞
n=0 Pn(x; τ ),

satisfies:

Pr(x; τ ) =
∫ τ

0
f (τ − t)Pr(x; t)dt + P0(x; τ ). (14)

Again, Equation (14) is a Volterra equation of the second
kind whose solution can be explicitly expressed in terms of 310
Laplace transforms, for x ≤ L:

Pr(x; τ ) = 1
2π i

∫ ζ+i∞

ζ−i∞

1√
2λσ

×exp(−√
2λ|x|/σ) − exp(−√

2λ(2L − x)/σ )

1 − exp(−√
2λL/σ)

exp(λτ )dλ.

(15)

For t > τ , the process will be out of control and we can
consider a new Brownian motion starting at time τ and
from position x with a drift velocity δµ. From Equation
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(4), we can write the expected time the process is in an out-315
of-control state during a cycle as:

Tctl(τ ) − τ = L − Ex(τ )
δµ

, (16)

where Tctl(τ ) is the expected duration of a production cycle
and Ex(τ ) is the expected value of the starting position for
this new Brownian motion which, from Equation (15), can
be expressed as;320

Ex(τ ) =
∫ L

−∞
x Pr(x; τ )dx

= −L · 1
2π i

∫ ζ+i∞

ζ−i∞

1
λ

exp(−√
2λL/σ )

1 − exp(−√
2λL/σ )

exp(λτ )dλ

= −L × En(τ ). (17)

From Equation (17), we note that Ex(τ ) + L × En(τ ) = 0.
This is intuitive since the process (Brownian motion for t <

τ ) has a zero drift velocity and in the absence of the control
bound L and resetting the process to µt in the case of false
alarms, the process should average to zero. The more false325
alarms (or the more resetting), the further away the process
will end from the control limit.

3.3. Optimal policy

Now we are in a position to derive the optimal process con-
trol policy parameter L which minimizes the average total330
cost rate defined as the ratio of the average total cost in a cy-
cle to the average cycle time. The expected total number of
defective units produced in a cycle is simply, (En(τ ) + 1)L.
Given the unit false alarm cost Cfa, the unit product salvage
cost Cur, and machine repair cost Cmr, the average total cost335
during a cycle is:

TCctl(τ ) = En(τ )Cfa + (En(τ ) + 1)LCur + Cmr. (18)

For the convenience of future calculations, we express
Equations (16) and (18) in terms of Laplace transforms.
The Laplace transform for the expected cycle time is:

L ◦ Tctl(λ) = 1
λ2

+ L
δµ

1
λ

1

1 − exp(−√
2λL/σ )

. (19)

Similarly, the expected total cost in a cycle is:340

L ◦ TCctl(λ) = 1
λ

exp(−√
2λL/σ )

1 − exp(−√
2λL/σ )

Cfa

+ 1
λ

L

1 − exp(−√
2λL/σ )

Cur + Cmr

λ
. (20)

The average total cost rate can be found from Equations (19)
and (20). Before presenting our numerical experiment, we
first study a special case where the machine breakdown time
is exponential. In this case, the average total cost rate is
given by the ratio of Equation (20) to Equation (19), with345

λ replaced by 1/τ 0. The first-order condition of optimality
with respect to L gives:(√

2
τ0

L
σ

(
Cur − Cmr − Cfa

δµτ0

)
+ Cur

− Cmr − Cfa

δµτ0
+

√
2
τ0

Cfa

σ

)
exp

(
−

√
2
τ0

L
σ

)
= Cur − Cmr

δµτ0
.

(21)

As shown in Appendix 2 the solution of above equation
exists only when δµτ 0Cur > Cmr. This states that there is
no need to detect and repair machines in the out-of-control 350
state if the average machine repair cost exceeds the average
salvage cost of the defective units.

3.4. Numerical results

One focus of this paper is to investigate the impact of the dis-
tribution of the machine breakdown time τ on the control 355
policy. For this, we numerically study a series of distribu-
tions for τ :

1
(k − 1)!

k
τ0

(
k
τ0

τ

)k−1

exp
(

− k
τ0

τ

)
, (22)

where k ≥ 1 is an integer. This is a series of Erlang distri-
bution, Ek which has a mean τ 0 and a variance τ 2

0/k. One
advantage of the Erlang distribution is that the calculation 360
of the expected (with respect to τ ) value of any function,
say g(τ ), can be reduced to taking derivatives of its corre-
sponding Laplace transform, explicitly:

1
(k − 1)!

(
k
τ0

)k

(−1)k−1 ∂

∂λ
L ◦ g(λ)

∣∣∣∣
λ=k/τ0

. (23)

In the case where k = ∞, that is, the deterministic machine
breakdown time, we adopt an algorithm for inversion of 365
the Laplace transform (Stehfest, 1970):

g(x) ≈ ln 2
x

N∑
i=1

ViL ◦ g
(

ln 2
x

i
)

, (24)

where

Vi = (−1)
N
2 +i

min(i,N/2)∑
j=[(i+1)/2]

jN/2(2j)!
(N/2 − j)! j !( j − 1)!(i − j)!(2j − i)!

.

(25)

In order to conduct numerical investigations, we have nor-
malized the expected breakdown time and machine repair
cost to unity, that is, τ 0 = 1 and Cmr = 1. The defective 370
rate in the in-control state is fixed at p1 = 0.2. In addition,
we set the product salvage cost per time unit, γ Cur, to 10,
and vary the production rate γ . A typical value for the pro-
duction rate is γ = 10 000, and for the unit salvage cost it
is Cur = 0.001. The typical values for the defective rate in 375
the out-of-control state p2 and the false alarm cost, Cfa,
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Fig. 2. (a) Optimal control limit plotted against the cost of a false alarm; and (b) the optimal control limit plotted against the
out-of-control defective rate.

are set to be 0.6 and 0.1, respectively. In all the numerical
experiments throughout the rest of this paper, we use these
typical values defined above, unless stated otherwise. In the
following, we will single out several important parameters380
and explore their impacts on the optimal control policy
parameter, L∗.

In Fig. 2(a), we plot the optimal control limit as a func-
tion of the false alarm cost as the value of k is varied. Re-
call that k defines the degree of variability present in the385
distribution of in-control times (actually, the coefficient of
variation of the in-control times is k−1/2). In other words, k
determines the degree of memory of the distribution of the
in-control times. The larger the value of k, the more memory
is present on the distribution of the in-control times. When390
k = 1, the distribution of in-control times is memoryless
(exponential). In contrast, k = ∞ presents the case where
the distribution of the in-control times has a full memory
(deterministic). It can be observed in Fig. 2(a), that the
optimal control limit is decreasing in the cost of the false395
alarms. This is as expected, as a higher control limit should
be set in order to avoid an increasing cost of the false alarms.
We also notice that the L∗ increases more slowly with Cfa
when k becomes larger; that is, for small values of Cfa the
optimal control limit is increasing in k and as Cfa becomes400
large, the reverse is true. This observation can be explained
as follows: when the cost of a false alarm is small and the
distribution of the in-control times has little memory (for in-
stance when it is memoryless which corresponds to k = 1),
the optimal policy should be to opt to reduce the associ-405
ated costs of producing defects when out of control. This
yields a lower optimal control limit (a tighter control pol-
icy), compared to the cases of larger values of k, which have
more memory about the timing of the process breakdown.
In contrast, when the cost of a false alarm is high, with less410
memory about the timing of the breakdown, the optimal
policy should be to opt to reduce this cost by setting higher
values of the control limit (a looser control policy).

Figure 2(b) depicts the behavior of the optimal control
limit as the out-of-control defective rate p2 and also k are 415
varied. As can be seen, the optimal control limit is decreas-
ing in p2. This is intuitive since a higher p2 indicates that
more defective units will be produced after the machine
breaks down. Therefore, a lower control is set so that the
out-of-control state can be detected earlier. Furthermore, 420
as in Fig. 2(a), L∗ increases more slowly with p2 when, k
becomes larger. This behavior can be explained along the
same lines as described before; that is, when p2 is small
then, systems with less memory on the distribution of their
in-control times opt to incur this cost rather than the cost 425
of a false alarm by setting their control limit to a high value.
When p2 is large, the reverse holds this since systems with
less memory adopt a tighter policy, which reduces their sal-
vage costs at the expense of incurring a lower false alarm
cost. 430

A more comprehensive depiction of the behavior of the
optimal control limit as a function of the memory of the
in-control time distribution (or k) appears in Fig. 3(a–c).
As discussed earlier, depending on the magnitude of the
cost of a false alarm Cfa, compared to the average of pro- 435
ducing a defective/time when out of control, the optimal
control limit can be strictly decreasing (when Cfa is small),
increasing (when Cfa is large) or can be decreasing and then
increasing (when Cfa is medium). This behavior can be ex-
plained following the same line of reasoning given before. 440
Furthermore, as can be seen from Fig. 3(a–c), the magni-
tude of change in the optimal control limit is small. Also,
the optimal control bound seems to quickly converge to the
corresponding value for the deterministic case represented
by a dashed line. 445

It is useful to observe how the average cost of the opti-
mal policy changes with process parameters. The average
cost is plotted against the false alarm cost in Fig. 4(a) and
out-of-control defective rate in Fig. 4(b). It is intuitive that
the average cost increases monotonically with Cfa and p2. 450
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Fig. 3. Optimal control limit plotted as a function of k for different Cfa values: (a) cfa = 0.1; (b) Cfa = 0.3; and (c) Cfa = 0.5.

As is shown in Fig. 4(b), a memory of the in-control time
(described by k) does not seem to have a significant impact
on the average cost when p2 is increased. On the contrary,
the average cost increases much faster with Cfa when the
in-control time distribution has less memory. With high-455

Fig. 4. (a) Average cost plotted against the cost of a false alarm; and (b) the average cost plotted against the out-of-control defective
rate.

production rates, the control limit is quickly reached once
the process is out of control. Therefore, the expected cost
of a false alarm dominates the salvage cost of the defective
units when out of control, and is more sensitive to the in-
control time distribution.



P1: GIM
TFJF078-04-50782 TJ-IIE.cls May 12, 2005 23:44

8 Moinzadeh and Tan

Fig. 5. Average cost plotted as a function of k for different Cfa and γ values: (a) Cfa = 0.1; γ = 10 000; (b) Cfa = 0.1, γ = 2000. and
Cfa = 0.05, γ = 2000.

Figure 5(a–c) shows the effect of the false alarm cost460
and production rate on the average cost. It is observed that
typically the average cost decreases as more information (or
memory) on the in-control time (higher k) is available. How-
ever, with a slow machine and a low cost for a false alarm,
less memory of the in-control times is preferred. Similarly,465
this can be explained by identifying when the expected false
alarm cost dominates the salvage cost of defective units
when out of control.

4. Inspection policy

In this section, we introduce a different class of policies to470
control such systems, namely, an inspection policy that is
based on time and not the number of defective units pro-
duced. First, we will analyze this policy in this section. We
then follow by presenting the behavior of the optimal pol-
icy parameter as the degree of memory present, character-475
ized by the variability of the in-control time distribution,
is varied in numerical examples. We then close this section
by discussing the performance of inspection policies com-
pared to the control policy studied in the previous section

and identify the environments where one would dominate 480
the other through a numerical experiment.

The analysis of this policy resembles that of the unified
Lorenzen-Vance model. A comparison of model parame-
ters used in our policy (M&T) and the unified Lorenzen-
Vance model (L&V) is summarized in Table 1. In our policy, 485
we assume that the sampling cost of the produced units is
negligible since the measurement of units is a part of the
production process, though this assumption can be easily
relaxed.

Table 1. Parameters compared with the Lorenzen-Vance model
parameters

Descriptions L & V M & T

Quality cost/hour while in
control

C0 Normalized to zero

Quality cost/hour while out
of control

C1 Cur (proportional to
C1 – C0)

Cost per false alarm Y Cfa

Cost to repair W Cmr

Fixed cost per sample a Assumed to be zero
Cost per unit sampled b Assumed to be zero
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Note that there are a few key differences between the490
two models. First, in L&V, the sampling cost is positive.
Therefore, the sample size and the control limits are the de-
cision variables. In contrast, in our control policy, since the
sampling cost is negligible, each unit produced is sampled.
Moreover, in our inspection policy, the inspection is per-495
formed directly on the machine rather than the produced
units. Second, L&V assumes an exponentially-distributed
in-control time. Our model is more general since we con-
sider an Erlang family, which enables us to study the impact
of information, characterized by the coefficient of varia-500
tion of the in-control times, on control/inspection deci-
sions. In L&V, since the in-control times are exponentially
distributed, the optimal inspection intervals are equally
spaced. However, as our model allows for any arbitrary
in-control time distribution, the optimal inspection inter-505
vals will not be equally spaced. Finally, L&V’s numerical
example is related to a foundry operation. The cost and
other parameters are not directly applicable to our case of
a high-speed/high-volume production system.

4.1. Policy analysis510

The inspection policy is defined as follows. The machine
is stopped and inspected at a set of pre-determined time
points, T1, T2, . . . , Tn, . . . . If the machine is found to be
out of control, it will be repaired and restored and a new
cycle is started. Otherwise, the machine is put back to work,515
however, a false alarm cost is incurred.

To analyze the policy, we first define the inter-inspection
time:

�n = Tn − Tn−1, (26)

where T0 = 0. and the unit step function:

u(x) =
{

1 if x ≥ 0,

0 if x < 0.
(27)

If the machine breaks down at time t = τ , it is straightfor-520
ward to explicitly express the cycle time using the unit step
function:

Tinp(τ ) =
∞∑

n=0

�n+1u(τ − Tn). (28)

Similarly, the total number of false alarms is:
∞∑

n=0

u(τ − Tn) − 1. (29)

This gives the total cost during a cycle as:

TCinp(τ ) =
( ∞∑

n=0

u(τ − Tn) − 1

)
Cfa

+ δµ

( ∞∑
n=0

�n+1u(τ − Tn) − τ

)
Cur + Cmr. (30)

For a given distribution of τ , the expected cycle time is: 525

Tinp =
∞∑

n=0

�n+1F(Tn), (31)

where F(·) is the complementary cummulative distribution
function of τ . The expected total cost per cycle is:

TCinp =
∞∑

n=1

F(Tn)Cfa + δµ

( ∞∑
n=0

�n+1F(Tn) − τ0

)
Cur + Cmr.

(32)

The expected average cost rate can be calculated as ACinp =
TCinp/Tinp, which is a function of the inspection times Tn.

To derive the optimal set of inspection times, we examine
the first-order condition:

∂

∂Tn
ACinp = 0, (33)

which yields: 530

f (Tn)
F(Tn−1) − F(Tn) − (Tn+1 − Tn)f (Tn)

= δµCur − ACinp

Cfa

≡ 1
η
. (34)

Notice that the parameter η is a constant independent of n.
Its value can be obtained self-consistently using Equation
(34) and the optimal values of Tn. This suggests an iterative
way to solve the problem. More specifically, we can write:

�n+1 = −η + ϕ(Tn, �n), (35)

where ϕ(Tn, �n) is defined as: 535

ϕ(Tn, �n) = F(Tn − �n) − F(Tn)
f (Tn)

. (36)

It is obvious that ϕ(Tn, �n) is an increasing function of �n.
Similarly as in the previous section, we will now focus on

the Erlang distribution (Ek) of τ , given in Equation (22) as
the choice for the in-control times. We will show that when
in-control times are Ek, the optimal inter-inspection times 540
will be non-increasing. To do so, we first start with the case
where k = 1 (i.e., the exponential distribution). When k =
1, ϕ(Tn, �n) = τ0(exp(�n/τ0) − 1), which is independent of
Tn. This reflects the memoryless property of the exponential
distribution. 545

In Fig. 6, we have plotted Equation (35) for the
exponentially-distributed machine breakdown time. Now
we argue that the inter-inspection times should be equal;
that is, �n = �∗, where the value of �∗ is indicated in Fig.
6. If �1 < �∗, using Fig. 6, one can immediately observe 550
that �2 < �1. Furthermore, �n decreases monotonically
with n and becomes zero at some point resulting in an in-
finite cost for an expected false alarm. Therefore, this set
of �n (where �1 < �) is excluded as a possible optimal
solution. Also, since all the inspections combined together 555
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Fig. 6. Recursive relation for inter-inspection times (k = 1).

Fig. 7. Recursive relation for inspection times.

Fig. 8. (a) Optimal inspection intervals plotted against n for different k−1/2; and (b) optimal first inspection interval as a function of
kt1/2.

should cover the entire time axis, this scenario is not feasi-
ble since for a set of decreasing �n,

∑∞
n=1 �n 
= ∞. Next,

when �1 > �∗, �n will be monotonically increasing, ac-
cording to Fig. 6. We have shown in Appendix 3 that this
choice results in a higher average cost when compared to 560
�n = �∗. Therefore, we can conclude that �n = �∗. This
agrees with Lee and Rosenblatt (1987) who showed that, for
an exponentially-distributed time-to-shift the time intervals
between inspections should be equally spaced.

Now let us consider the case when k 
= 1 as shown in 565
Fig. 7. As can be seen, all curves of ϕ (Tn, �n) are dispersed.
According to the property of an incomplete gamma func-
tion (Abramowitz and Stegun, 1972), for a fixed �n, ϕ (Tn,
�n) increases with Tn. The higher the value of the param-
eter k, the further apart these curves are separated. For a 570
given k, we observe that:

lim
Tn→∞

ϕ(Tn, �n) = τ0

k

(
exp

(
k
τ0

�n

)
− 1

)
, (37)

which is independent of Tn. From these properties, it is clear
that the optimal inspection time intervals decrease with n;
that is, �∗

n+1 < �∗
n. As n becomes larger, �∗

n converges to
a non-zero value, determined by Equations (35) and (37). 575
The higher is the value of k then the faster �∗

n decreases
with n.

4.2. Numerical illustrations

We now investigate the effectiveness of the inspection pol-
icy through a numerical experiment. In doing so, we first 580
discuss the behavior of the optimal inspection intervals as
the coefficient of variation (k−1/2) is varied. Then, we com-
pare the performance of the inspection policy with that of
fixed inspection intervals. Finally, we close by discussing the
performance of our inspection policy compared to the con- 585
trol policy studied in the previous section and identify the
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Fig. 9. Average costs as a function of the coefficient of variation
k−1/2.

environments where one would dominate the other through
a numerical experiment.

In Fig. 8(a), the optimal inspection intervals �∗
n for n =

1, 2, . . . , are plotted for different values of kt1/2. It can be
observed that �∗

n drops fairly rapidly with n and quickly590
converges to a non-zero value. Note that for lower values
of k−1/2, the first inspection will be close to the mean ma-
chine breakdown time (τ 0 = 1), followed by very frequent
inspections.

Figure 8(b) depicts the behavior of the optimal first in-595
spection time, �∗

x. As k−1/2 decreases, it becomes more
certain as to when the machine breaks down and �∗

x ap-
proaches the mean breakdown time τ 0 = 1. It is interesting
to observe (see the insert) that �∗

1 will cross τ 0 = 1 first and
then come back. This is intuitive since when k−1/2 = 0 (i.e.,600
the deterministic in-control times), �∗

1 = τ 0 + ε, where ε is
infinitesimal indicating that the machine should be stopped
right after it breaks down, so that a false alarm cost is not
incurred.

Fig. 10. Ratio of the average costs as a function of the coefficient of variation for: (a) different false alarm costs; and (b) different
production rates.

A frequently used variation of the inspection policy pro- 605
posed in this paper is that which sets the inspection intervals
equally (we refer to this policy as a uniform inspection pol-
icy). Recall that this policy is optimal when the distribution
of in-control times is either exponential (memoryless) or
deterministic (complete memory). In Fig. 9, we study the 610
performance of such a policy when compared to the one
proposed in this paper which allows the inspection inter-
vals to vary. Obviously, our inspection policy will not do
worse than the uniform inspection policy. As a matter of
fact, except in the two extreme cases, k−1/2 = 1 (exponen- 615
tial) and k−1/2 = 0 (deterministic), the non-uniform (vari-
able) policy significantly outperforms the periodic one, es-
pecially for intermediate values of k−1/2. This implies that
when inspection is used to manage systems in which the
in-control time distribution has some memory, inspection 620
intervals should be decided by incorporating the informa-
tion of the in-control time distribution. Complete ignorance
of the memory present on the distribution of the in-control
times and use of uniform inspection will result in an inferior
performance. 625

Finally, we close by comparing the performance of our
inspection policy to that of the control policy proposed ear-
lier. As discussed earlier, the optimal policy should switch
from the control policy to the inspection policy when there
is more memory (a smaller coefficient of variation) about 630
the in-control time.

In Fig. 10(a and b) we have plotted the ratio of average
costs for inspection and control policies, ACinp/ACctl. For
the parameter values of our choice, it can be observed that
the control policy outperforms (ACinp/ACctl > 1) the in- 635
spection one for a wide range of values for the coefficient of
variation. The inspection policy will outperform the control
policy only when the coefficient of variation is very small.

As can be seen in Fig. 10(a), for a higher cost for a false
alarm (for γ = 1000), the ratio ACinp/ACctl increases faster 640
since there is less memory (or the coefficient of variation



P1: GIM
TFJF078-04-50782 TJ-IIE.cls May 12, 2005 23:44

12 Moinzadeh and Tan

is higher). This is intuitive since when facing a higher cost
for a false alarm the control policy is more flexible in ad-
justing its control limit to a higher value in order to avoid
triggering false alarms. For a fixed cost of false alarm
(Cfa = 0.1), as shown in Fig. 10(b), the control policy is645
more dominant for faster production systems, since the ra-
tio ACinp/ACctl is higher. This is because a faster machine
has a larger drift velocity after the machine breaks down
and this allows the process to quickly reach the control
limit.650

It is worth noting that our control policy triggers an
alarm based only on a single point above the threshold.
However, most statistical process control software pack-
ages are implemented to combine other statistical criteria
as suggested in the Western Electric Statistical Process Con-655
trol Handbook (Anon, 1956) to the traditional control rules
(i.e., control limits). We note that in settings such as ours,
in the same spirit, a similar set of rules can be developed to
complement our policy in practice.

5. Conclusions660

In this paper, we have studied the economic design of con-
trol and inspection policies for high-speed unreliable pro-
duction systems. We modeled the number of defective units
produced as a Brownian motion. The mean drift of the pro-
cess increases when the process is out of control. We have665
presented and analyzed a control policy that stops the pro-
cess when the number of defective units exceeds a threshold.
A time-based inspection policy that inspects the process
periodically (not necessarily with equal time intervals) was
also proposed and studied.670

A main focus of this study was to examine the impact
of in-control time distributions when managing such sys-
tems and the choice of policies (control or inspection) that
should be employed in such environments. In doing so, we
considered systems in which the in-control time distribution675
followed a series of Erlang distributions. First, we showed
that when inspection is used to manage such systems, set-
ting the inspection times equally which is widely practiced,
may result in inferior performance in light of the presence
of a memory on the distribution of the in-control times.680
Second, we showed that when managing such systems, the
control policy seems to outperform the inspection policy in
most settings. In fact, the inspection policy will only out-
perform the control policy when the coefficient of variation
of the in-control time is small.685

One possible extension to this work is to integrate both
the control and inspection policies together. This approach
makes use of information for both the underlying process
and in-control time, and is expected to perform better. In
this study, we have chosen the control limit for the control690
policy in a heuristic manner. Another possible extension is
to consider a control policy in which the functional form of
the control limit is determined optimally.
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Appendices770

Appendix 1

The probability density of ending in y (<L) at time t without
touching the limit L is:

P0(y; t) = 1
(2πσ 2t)1/2

(
exp

(
− (y − µt)2

2σ 2t

)

− exp
(
−2(L − y)µ

σ 2

)
exp

(
− (2L − y − µt)2

2σ 2t

))
.

(A1)

To show this, we first have the probability density of crossing
the limit at least once:775

Pc(y; t) =
∫ t

0
fσ,µ;L(τ )P(y − L; t − τ )dτ .

Applying the Laplace transform:

L ◦ fσ,µ;L(λ) = exp
(

Lµ

σ 2

)
exp

(
−L

σ

√
2λ + µ2

σ 2

)
;

L ◦ P(y − L; λ) = 1√
4λσ 2 + 2µ2

exp
(

(y − L)µ
σ 2

)

× exp
(

−L − y
σ

√
2λ + µ2

σ 2

)
.

Therefore,

L ◦ Pc(y; λ) = 1√
4λσ 2 + 2µ2

exp
(

yµ

σ 2

)

× exp
(

−2L − y
σ

√
2λ + µ2

σ 2

)
.

Laplace inverting the above expression and subtracting it
from P(y, t) gives Equation (A1).

Appendix 2

Equation (21) can be written as: 780

(bx + c) exp(−x) = a, (A2)

where c > b > a and x > 0. If a < 0, and b ≥ 0, obviously
solution does not exist because x is positive. If a < 0, and
b < 0, let us write Equation (A2) as:(

b
a

x + c
a

)
exp(−x) = 1, (A3)

where 0 < b/ a < 1. The maximum value of the left-hand
side of Equation (A3) is: 785

b
a

exp
(

c
b

− 1
)

< 1

Thus it follows that b/a < 1, and c/b < 1 since b < 0.

Appendix 3

For the exponential distribution, we have the iterative
relation:

�n+1 = −η + τ0(exp(�n/τ0) − 1).

This gives the expected cycle time, as a function of �1, the
first inspection time:

∞∑
n=0

�n+1 exp(−Tn/τ0) = �1 + τ0 − ηNfa,

where Nfa = ∑∞
n=1 exp(−Tn/τ0) is the expected number of 790

false alarms. Using the definition of η in Equation (34), we
can derive,

η = (�1 + τ0)Cfa

δµτ0Cur − Cmr
,

and consequently,

ACinp = δµCur − δµτ0Cur − Cmr

�1 + τ0
.

This shows that to reduce the average cost, �1 should be
reduced to its lower bound, �∗.
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