Smooth network inference from neural tracing data

Kameron Decker Harris¹ (kamdh@uw.edu), Nicholas Cain², Stefan Mihalas¹,², Eric Shea-Brown¹
¹Applied Mathematics, University of Washington, Seattle, WA USA; ²Allen Institute for Brain Science, Seattle, WA USA

Motivation
Broadly, understand interplay of brain structure and information representation

Improve the resolution of the connectivity weight matrix to voxel scale: underconstrained w/o regularization

Tracing experiments

Previous work: regional model
Oh et al., 2014, Nature 508(7495):207-214
Integrate source and target expression over regions to produce regional vectors of expression $\mathbf{x}^{(r)}$ and $\mathbf{y}^{(r)}$:

$\mathbf{x}^{(r)} = \sum_i x_i W_{ij} \mathbf{W}^{(r)}$
$\mathbf{y}^{(r)} = \sum_j y_j W_{ij} \mathbf{W}^{(r)}$

Then fit the $(n_x \times n_y)$ weight matrix $W^{(r)}$ via least squares by solving

$$\min_W \left\| \mathbf{Y}^{(r)} - W^{(r)} \mathbf{X}^{(r)} \right\|_F^2$$

This is the same as choosing a voxel scale W where W_{ij} is constant for all voxels i in region A and j in region B, for all regions A and B.

Evidence for smoothness

Retinotopy (map representation of visual field) in primary visual cortex is maintained from V1 into deeper areas analogous to V2, etc.

Smoothness regularized model
Find the voxel-resolution connection matrix W that balances goodness of fit and smoothness:

$$\min_{W} \left\| \mathbf{Y} - W \mathbf{X} \right\|_F^2 + \lambda \left\| \mathbf{W} L^T \mathbf{W} + \mathbf{L}^T \mathbf{W} \right\|_F^2$$

where

$\mathbf{Y} = [y_1, \ldots, y_{n_y}]$
$\mathbf{X} = [x_1, \ldots, x_{n_x}]$

The choice of a Laplacian penalty in this regression is analogous to so-called “thin-plate splines” for curve fitting or interpolation

Method must be scalable to work with $O(10^5)$ voxels in dataset

Result: With n_y small (relative to n_x, n_y) a low rank ($\approx 3 \times n_y$) solution $W = UV^T$ works well in our 1-dimensional test problem

Acknowledgements: ESB and KDH acknowledge support from NSF Grant #1122106 and a Simons Fellowship in Mathematics. KDH was also supported by a Boeing fellowship. We wish to thank the Allen Institute founders, Paul G. Allen and Jody Allen, for their vision, encouragement and support. Thanks also to the computational neuroscience community at UW, including Joel Zylberberg, for suggestions and discussions.

Challenges and future work

- Algorithmic bottleneck is Sylvester equation solve
- Regularization parameter & goodness of fit w/ cross-validation
- Does this work equally well in higher dimensions?
- How much injection coverage is needed?
- Hope to recover retinotopy correlation from connectivity
- Fit entire mouse visual system... fit entire mouse brain