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Abstract 

In a recent article published in this journal, Lombard, Snyder-Duch, and Bracken 

(2002) surveyed 200 content analyses for their reporting of reliability tests; compared 

the virtues and drawbacks of five popular reliability measures; and proposed guidelines 

and standards for their use. Their discussion revealed that numerous misconceptions 

circulate in the content analysis literature regarding how these measures behave and 

can aid or deceive content analysts in their effort to ensure the reliability of their data. 

This paper proposes three conditions for statistical measures to serve as indices of the 

reliability of data and examines the mathematical structure and the behavior of the five 

coefficients discussed by the authors, plus two others. It compares common beliefs 

about these coefficients with what they actually do and concludes with alternative 

recommendations for testing reliability in content analysis and similar data-making 

efforts.  

In a recent paper published in a special issue of Human Communication Research devoted to 

methodological topics (Vol. 28, No. 4), Lombard, Snyder-Duch, and Bracken (2002) presented their 

findings of how reliability was treated in 200 content analyses indexed in Communication Abstracts 

between 1994 and 1998. In essence, their results showed that only 69% of the articles report 

reliabilities. This amounts to no significant improvements in reliability concerns over earlier studies 

(e.g., Pasadeos et al., 1995; Riffe & Freitag, 1996). Lombard et al. attribute the failure of consistent 

reporting of reliability of content analysis data to a lack of available guidelines, and they end up 

proposing such guidelines. 

Having come to their conclusions by content analytic means, Lombard et al. also report their 

own reliabilities, using not one, but four, indices for comparison: %-agreement; Scott‟s (1955)  (pi); 

Cohen‟s (1960)  (kappa); and Krippendorff‟s (1970, 2004)  (alpha). Faulty software
1
 initially led the 

authors to miscalculations, now corrected (Lombard et al., 2003). However, in their original article, the 

authors cite several common beliefs about these coefficients and make recommendations that I contend 

can seriously mislead content analysis researchers, thus prompting my corrective response. To put the 

discussion of the purpose of these indices into a larger perspective, I will have to go beyond the 

arguments presented in their article. Readers who might find the technical details tedious are invited to 

go to the conclusion, which is in the form of four recommendations. 

The Conservative/Liberal Continuum 

Lombard et al. report “general agreement (in the literature) that indices which do not account 

for chance agreement (%-agreement and Holsti‟s [1969] CR – actually Osgood‟s [1959, p.44] index) 

are too liberal while those that do (, , and ) are too conservative” (2002, p. 593). For liberal or 

“more lenient” coefficients, the authors recommend adopting higher critical values for accepting data 

as reliable than for conservative or “more stringent” ones (p. 600) – as if differences between these 

coefficients were merely a problem of locating them on a shared scale. Discussing reliability 

coefficients in terms of a conservative/liberal continuum is not widespread in the technical literature. It 



entered the writing on content analysis not so long ago. Neuendorf (2002) used this terminology, but 

only in passing. Before that, Potter and Lewine-Donnerstein (1999, p. 287) cited Perreault and Leigh‟s 

(1989, p. 138) assessment of the chance-corrected  as being “overly conservative” and “difficult to 

compare (with) … Cronbach‟s (1951) alpha,” for example – as if the comparison with a correlation 

coefficient mattered.  

I contend that trying to understand diverse agreement coefficients by their numerical results 

alone, conceptually placing them on a conservative/liberal continuum, is seriously misleading. 

Statistical coefficients are mathematical functions. They apply to a collection of data (records, values, 

or numbers) and result in one numerical index intended to inform its users about something – here 

about whether they can rely on their data. Differences among coefficients are due to responding to (a) 

different patterns in data and/or (b) the same patterns but in different ways. How these functions 

respond to which patterns of agreement and how their numerical results relate to the risk of drawing 

false conclusions from unreliable data – not just the numbers they produce – must be understood 

before selecting one coefficient over another. 

Issues of Scale  

Let me start with the ranges of the two broad classes of agreement coefficients, chance-

corrected agreement and raw or %-agreement. While both kinds equal 1.000 or 100% when agreement 

is perfect, and data are considered reliable, %-agreement is zero when absolutely no agreement is 

observed; when one coder‟s categories unfailingly differ from the categories used by the other; or 

disagreement is systematic and extreme. Extreme disagreement is statistically almost as unexpected as 

perfect agreement. It should not occur, however, when coders apply the same coding instruction to the 

same set of units of analysis and work independently of each other, as is required when generating data 

for testing reliability.  

Where the reliability of data is an issue, the worst situation is not when one coder looks over 

the shoulder of another coder and selects a non-matching category, but when coders do not understand 

what they are asked to interpret, categorize by throwing dice, or examine unlike units of analysis, 

causing research results that are indistinguishable from chance events. While zero %-agreement has no 

meaningful reliability interpretation, chance-corrected agreement coefficients, by contrast, become 

zero when coders‟ behavior bears no relation to the phenomena to be coded, leaving researchers 

clueless as to what their data mean. Thus, the scales of chance-corrected agreement coefficients are 

anchored at two points of meaningful reliability interpretations, zero and one, whereas %-like 

agreement indices are anchored in only one, 100%, which renders all deviations from 100% 

uninterpretable, as far as data reliability is concerned. %-agreement has other undesirable properties; 

for example, it is limited to nominal data; can compare only two coders
2
; and high %-agreement 

becomes progressively unlikely as more categories are available. I am suggesting that the convenience 

of calculating %-agreement, which is often cited as its advantage, cannot compensate for its 

meaninglessness. Let me hasten to add that chance-correction is not a panacea either. Chance-corrected 

agreement coefficients do not form a uniform class. Benini (1901), Bennett, Alpert, and Goldstein 

(1954), Cohen (1960), Goodman and Kruskal (1954), Krippendorff (1970, 2004), and Scott (1955) 

build different corrections into their coefficients, thus measuring reliability on slightly different scales. 

Chance can mean different things. Discussing these coefficients in terms of being conservative 

(yielding lower values than expected) or liberal (yielding higher values than expected) glosses over 

their crucial mathematical differences and privileges an intuitive sense of the kind of magnitudes that 

are somehow considered acceptable.  

If it were the issue of striking a balance between conservative and liberal coefficients, it would 

be easy to follow statistical practices and modify larger coefficients by squaring them and smaller 

coefficients by applying the square root to them. However, neither transformation would alter what 

these mathematical functions actually measure; only the sizes of the intervals between 0 and 1. 



Lombard et al., by contrast, attempt to resolve their dilemma by recommending that content analysts 

use several reliability measures. In their own report, they use , “an index …known to be 

conservative,” but when  measures below .700, they revert to %-agreement, “a liberal index,” and 

accept data as reliable as long as the latter is above .900 (2002, p. 596). They give no empirical 

justification for their choice. I shall illustrate below the kind of data that would pass their criterion.  

Relation Between Agreement and Reliability 

To be clear, agreement is what we measure; reliability is what we wish to infer from it. In 

content analysis, reproducibility is arguably the most important interpretation of reliability 

(Krippendorff, 2004, p.215). I am suggesting that an agreement coefficient can become an index of 

reliability only when  

(1) It is applied to proper reliability data. Such data result from duplicating the process of describing, 

categorizing, or measuring a sample of data obtained from the population of data whose reliability 

is in question. Typically, but not exclusively, duplications are achieved by employing two or more 

widely available coders or observers who, working independent of each other, apply the same 

coding instructions or recording devices to the same set of units of analysis. 

(2) It treats units of analysis as separately describable or categorizable, without, however, presuming 

any knowledge about the correctness of their descriptions or categories. What matters, therefore, is 

not truths, correlations, subjectivity, or the predictability of one particular coder‟s use of categories 

from that by another coder, but agreements or disagreements among multiple descriptions 

generated by a coding procedure, regardless of who enacts that procedure. Reproducibility is about 

data making, not about coders. A coefficient for assessing the reliability of data must treat coders 

as interchangeable and count observable coder idiosyncrasies as disagreement. 

(3) Its values correlate with the conditions under which one is willing to rely on imperfect data. The 

correlation between a measure of agreement and the rely-ability on data involves two kinds of 

inferences. Estimating the (dis)agreement in a population of data from the (dis)agreements 

observed and measured in a subsample of these data is an inductive step and a function of the 

number of coders involved and the proportion of units in the recoded data. Inferring the 

(un)reliability of data from the estimated (dis)agreements is an abductive step and justifiable 

mainly in terms of the (economical, social, or scientific) consequences of using imperfect data. An 

index of the degree of reliability must have at least two designated values, one to know when 

reliability is perfect, and the other to know when the conclusions drawn from imperfect data are 

valid by mere chance.  

Note that (1) defines a precondition for measuring reliability. No single coefficient can 

determine whether coders are widely available, use the same instructions, work  independently, and 

code identical units of analysis. Researchers must ensure their peers or critics that the reliability data 

they generate satisfy these conditions. Many methodological problems in testing reliability stem from 

violating the requirement for coders to be truly independent, being given coding instructions they 

cannot follow, or applying them to data that they fail understand.  

The two methodological problems considered here result from choosing inadequate measures 

of agreement – calling something a reliability coefficient does not make it so – and applying 

indefensible decision criteria on their results. Since Lombard et al. discuss the relative merits of the 

above mentioned measures, correctly citing widely published but disputable claims, I feel compelled to 

provide mathematical demonstrations of how these coefficients actually differ and whether they satisfy 

(2) and (3) above. Let me discuss several better-known candidates. 

A Comparison of Seven Agreement Coefficients  

To begin, Lombard et al. are correct in discouraging the use of association, correlation, and 

consistency coefficients, including Cronbach‟s (1951) alpha, as indices of reliability in content 



analysis. Association measures respond to any deviation from chance contingencies between variables, 

correlations moreover from linearity, whereas (2) stipulates that reliability must be indicated by 

measures of agreement among multiple descriptions. Although the authors do not report on how often 

content analysis researchers fail to realize this crucial difference and use inappropriate indices (I could 

cite numerous examples of such uses and even name explicit proponents of such practices), one cannot 

strongly enough warn against the use of correlation statistics in reliability tests. I agree with the 

authors‟ assessment of the inappropriateness of such coefficients, and therefore need not consider them 

here. However, I take issue with their presentation of the differences among chance-corrected 

agreement coefficients. A crucial point is whether and how the population of data whose reliability is 

in question enters the mathematical form of a coefficient, whether not only (2) but also (3) is satisfied.  

To illustrate the issues involved, I shall compare the five coefficients that the Lombard et al. found to 

be most commonly used, plus Benini‟s (1901)  (beta), and Bennett, Alpert, and Goldstein‟s (1954) S 

in their most elementary forms: for dichotomous data generated by two coders. In such a severely 

restricted but mathematically exceptionally transparent situation, reliability data can be represented by 

means of the familiar proportions a, b, c, and d of a 2-by-2 contingency table, shown in Figure 1. In 

this figure, a+d is the observed %-agreement, Ao; b+c is the observed %-disagreement; and its 

marginal sums show the proportions p of 0s and q=1p of 1s as used by the two coders A and B, 

respectively.  

Figure 1 

Generic 2-by-2 Contingency Table 

 
   Coder A 

                              Values:             0     1 

                                    0    a     b    pB 

                         1    c     d    qB  

                           pA   qA   1  

 

Figure 2 states the above-mentioned agreement coefficients in terms of Figure 1 and in ‟s 

economical form: 

ntDisagreeme Expected

ntDisagreeme Observed
1

D

D
1greementA

e

o   

where, when the observed disagreement Do=0, agreement =1; and when the two disagreements are 

equal, Do=De, agreement =0. So, Do expresses the lack of agreement; whereas De defines the zero point 

of the measure.  

Figure 2 

The Dichotomous Forms of Seven Agreement Coefficients 
 

             Agreement   =   1    –  Observed   /  Expected Disagreements 

%-agreement    Ao   =   1    –     (b + c) 

Osgood (1959);  Holsti‟s    CR   =  [1 – (b+c)]  

Bennett et al. (1954)    S    =   1     –     (b + c)     /    2½½        where ½ is the logical probability of 0 and of 1 

Scott (1955)        =   1    –     (b + c)     /      2 qp          where                     and p1q   

Krippendorff (1970)       =   1    –     (b + c)     /          2 qp      where n = the number of 0s and 1s used jointly 

Cohen (1960)          =   1    –     (b + c)     /  pAqB+pBqA 

Coder B                                             

Population Estimates  
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Benini (1901)         =   1  –  [(b+c)|bc|] / [pAqB+pBqA|bc|] 

Evidently, all coefficients in Figure 2 contain the same observed disagreement, the proportion 

of mismatches (b+c), which satisfies part of (2). The %-agreement measure, Ao, stops there, making no 

allowance for disagreements that are expected by chance, assuming nothing about the properties of the 

data in question, and depriving researchers, as already stated, of a meaningful second anchor for their 

reliability scale. Ao cannot indicate the absence of reliability, as called for in (3).  

Osgood‟s (1959, p.44) coefficient, named CR by Holsti (1969, p.140), amounts to the product 

of two proportions, the %-agreement, Ao, equivalent to 1(b+c), and the proportion of the 

number BAN  of units coded jointly to the average number of those coded individually, NA and NB. 

Unlike the other coefficients reviewed here, Osgood‟s responds not only to disagreements in coding 

but also to disagreements in the numbers of identified units, however, without reference to what would 

amount to the absence of reliability: chance. Thus, Osgood‟s coefficient suffers from the same 

problems that %-agreement does.  

Bennett et al. (1954) were probably the first to realize that %-agreement becomes more difficult 

to achieve as the number of available categories increases. Their coefficient, S, corrects for this effect. 

For just two categories, S calculates the disagreement in the two cells, b and c, that can be expected by 

chance as 2½½ or 50%. Here, ½ is the logical probability of the distinction between category 0 and 1. 

It is not very flattering to the literature on content analysis that this coefficient has been reinvented 

with minor variations at least five times since its original proposal: as Guilford‟s G (Holley & 

Guilford, 1964); as the R.E. (random error) coefficient (Maxwell, 1970); as C (Janson & Vegelius, 

1979); as n (Brennan & Prediger, 1981), and as the intercoder reliability coefficient Ir. (Perreault & 

Leigh, 1989). The authors of the last two derivations at least knew of S. The justifications given in the 

literature for using this coefficient range from fairness to each category and appropriateness to the 

discipline of its advocates,
3
 to the absence of hard knowledge about the true distribution of categories 

in the population from which reliability data are sampled. By treating all categories as equally likely, S 

is insensitive to unequal (non-uniform) distributions of categories in the population of data, fails to 

respond to disagreements among coders regarding their frequencies of using these categories, becomes 

inflated by unused categories, and not satisfying (3), it cannot indicate the reliability in the population 

of data.  

Regarding the absence of knowledge about the true distribution of categories in the population 

of data, it would make good sense, indeed, to calculate expected disagreements from the proportions of 

categories in that population. After all, it is the nature of the data – not of the coders‟ proclivity for 

particular categories or systematic coding habits; not the categorical structure of a coding instrument – 

that empirical inquiries are ultimately concerned with and on which researchers hope all coders would 

agree. As stated in (2), content analysts have to accept the epistemological fact that data are knowable 

only through their descriptions and the true proportions of categories in the population of data remain 

unknown until the whole population of units of analysis is reliably observed, transcribed, categorized, 

or coded. Without a priori knowledge of the data, according to (3), these proportions must be 

estimated from the reliability sample, using as many coders as possible (at least two), and assuming 

that individual differences among them wash out with large numbers. It is standard statistical practice 

to take the mean of multiple coder judgments on a sample as estimates of the otherwise unknowable 

population proportions. With only two coders and two categories, as in Figure 1, p =(pA+pB)/2 is the 

best estimate of the proportion of 0s in the population of data and its complement, 

q =(qA+qB)/2=(1 p ), is the best estimate of the proportion of 1s in the same data.  

In Figure 2,  and  can be seen to be alike in calculating their expected disagreements in cells 

b and c as qp2 , relying on precisely this population estimate, thus satisfying the inductive step of (3) 

and the interchangeability of coders mentioned in (2). Evidently, nowhere does  and  “assume” that 



“coders have distributed their values across the categories identically” as Lombard et al. (2002, p.591) 

claim.  and  merely estimate the population proportions and calculate their expected disagreements 

in these terms. Confusing the computation of expected disagreements from population estimates with 

the assumption that coders have used their categories with identical frequencies and that disagreements 

between them are ignored is rooted in the failure to recognize that coder interchangeability is necessary 

to get to the population estimates. In Figure 2,  and  can be seen to refer to the population of data 

whereas the other coefficients do not. 

 and  differ in one respect, in the factor n/(n1), which is recognizable in  but not in . n is 

the total number of categories used to describe all units by all coders. This factor corrects  for the 

effects of small sample sizes and few coders. Numerically,  exceeds  by (1)/n. But as sample 

sizes increase, the factor n/(n1) converges to 1, the difference (1)/n converges to 0, and  and  

become asymptotically indistinguishable.  

Turning now to , its expected disagreement differs from ‟s and ‟s. The sum of pAqB and 

pBqA compute the proportions in cells b and c that can be expected under the condition that coders A 

and B are statistically independent.  does this, much like the familiar 
2
 statistic does. The latter is 

used to test null-hypotheses regarding associations, not agreement. Thus, and in violation of the second 

part of (2), ‟s expected disagreement is a function of the individual coder preferences for the two 

categories 0 and 1, not of the estimated proportions p of 0s and q  of 1s in the population of data. This 

expected disagreement renders  zero when the two coders‟ use of categories are statistically 

independent. As  deviates from perfect agreement, it becomes increasingly determined by coder 

preferences and says less about the data it is to evaluate.  

I suggested elsewhere (Krippendorff, 1978) that  is a hybrid coefficient. It enters the observed 

disagreement just as all agreement measures do but corrects this by a conception of chance that derives 

its logic from association measures. This inconsistency explains why  behaves so oddly in the 

numerical examples in Figure 3 below. But, faced with this characterization of , Fleiss (1978, p. 144), 

a major proponent of , conceded that when coders are interchangeable,  (and ) would be the correct 

measure of reliability. The use of , he wrote, should be restricted to reliability studies in which one 

pair of coders judge all units of analysis and unequal coder preferences are not problematic. Thus,  

fails to recognize that the two coders‟ unequal uses of categories could be a reliability problem. 

Notwithstanding ‟s popularity, the amount of research devoted to this coefficient, and the 

interpretations that Lombard et al. cite from the literature, the mathematical structure of Cohen‟s  is 

simply incommensurate with the logic of the situation that content analysts are facing when the 

reliability of their data is in question.  cannot be recommended as one of several alternative indices, 

as Lombard et al. are suggesting. 

As seen in Figure 2, Benini‟s (1901) 
4
 differs from  only in its subtracting the absolute 

difference |b-c| from both, ‟s observed and expected disagreements. This adjustment to  preserves its 

reliance on the statistical independence of the two coders and therefore disqualifies it from being 

interpretable as an index of the reliability of data. The importance of this seemingly small adjustment 

is that , unlike , carries its dependence on the coders‟ unequal use of categories to its logical 

conclusion, measuring 1.000 when agreement is the largest one possible, given these coders‟ marginal 

distributions. This might not be so easily recognizable in the mathematical form of Figure 2, but the 

behavior that follows from it might become clear in Figure 3 below. 

Common Misinterpretations of  and  and Their Behavior 

In comparing Scott‟s  with Cohen‟s , Lombard et al. cite Craig (1981), Hughes and Garnett 

(1980), and Neuendorf (2002) to which one could add several others (notably Fleiss, 1981, p. 218), 

claiming that  “does not account for differences in how the individual coders distribute their values 



across the coding categories, a potential source of systematic bias” and that “it () assumes the coders 

have distributed their values across the categories identically, and if this is not the case, the formula 

(for ) fails to account for the reduced agreement” (2002, p. 591). Comparing  with , the authors 

maintain that the way  multiplies the marginal proportions “has the effect of accounting for 

differences in the distribution of values across categories for different coders” (p. 592). However, just 

the opposite is correct. It is , not , that fails to count the observed disagreements among coders 

regarding their individual preferences for particular categories as errors. A simple demonstration will 

suffice. Compare the first two contingency tables of frequencies in Figure 3. 

 

Figure 3 

Three Contingency Tables with Equal/Unequal Margins and Largest Agreement 
 

                                                                           Coder A   
Categories:       a     b     c                   a     b     c                     a     b     c 

            a    12      9      9      30   a    12    18    18      48      a     12           36     48 

Coder B     b      9    14      9      32   b      0    14    18      32      b           32             32 

             c       9      9    20      38   c      0      0    20      20      c                  20      20 

                  30    32    38    100          12    32    56     100              12    32   56    100 

 Ao =  .460          Ao =  .460            Ao =  .640 

    =  .186             =  .186               =  .457 

    =  .186             =  .258               =  .506 

    =  .186             =  .511                =1.000 

 

These two tables are identical in the %-agreement they exhibit but differ in how their 

mismatching categories are distributed in these tables. In the left table, coder A and B agree on their 

marginal frequencies; in the right table, they do not. When they do agree, ,  and  are equal, as they 

should be. But when coders disagree on these frequencies, when they show unequal proclivities for the 

available categories, as is apparent in the margins of the table in the middle,  exceeds .  does not 

ignore the disagreements between the coders‟ use of categories, but adds it to the measure as an 

agreement! This highly undesirable property benefits coders who disagree on these margins over those 

who agree and it clearly contradicts what its proponents (Cohen, 1960; Fleiss, 1975) argued and what 

Lombard et al. (2002) have found to be the dominant opinion in the literature. Evidently, there are still 

46 out of 100 units with matching categories in the diagonal cells. What accounts for this difference is 

that the 54 mismatches, occupying the cells of both off-diagonal triangles in the left table of Figure 3, 

have now migrated to one off-diagonal triangle in the center table. It makes for an uneven distribution 

of the mismatching categories, increasing not agreement, but the predictability of the mismatching 

pairs of categories. Unlike ,  is evidently not affected by where the mismatching categories occur, 

satisfying (2) by not distinguishing who contributed which disagreements and, when data are nominal, 

which categories are confused. Predictability has nothing to do with reliability. 

Figure 3 demonstrates another peculiarity of . Not only does  counter intuitively exceed  

when disagreements in marginal frequencies are present, unlike ,  cannot reach 1.000 when such 

disagreements exist. This already had been observed by Cohen (1960), noted as a drawback by 

Brennan and Prediger (1981) and others, and may also be seen in the right table of Figure 3.  This table 

has the same marginal frequencies as the one in the center but exhibits the largest possible agreement, 

given the marginal constraints. Under these conditions,  cannot exceed .505, its largest possible value 

for these marginal frequencies. By contrast,  registers this very condition by measuring 1.000.
5
  



I am less concerned with this additional peculiarity of , except to note that  is always equal to 

or larger than  and  is always equally equal to or larger than . Having shown the reasons for these 

inequalities, both in mathematical terms and by numerical examples, characterizing these coefficients 

in terms of the aforementioned conservative/liberal dimension would be besides the point of this 

demonstration. When the reliability of data is the issue,  is simply wrong in what it does. Its behavior 

clearly invalidates widely held beliefs about , which are uncritically reproduced in the literature.  

I have to say that the above misinterpretation of  goes back to its inception. To justify his 

unfortunate modification of Scott‟s (1955) , Cohen incorrectly criticized  for ignoring “one source of 

disagreement between a pair of judges, … their proclivity to distribute their judgments differently over 

the categories” (1960, p. 41). Figure 3 showed that  behaves contrary to what Cohen had intended. 

Instead of including this error as disagreement,  credits this error towards agreement. Brennan and 

Prediger (1981) observed this highly undesirable property of  as well, pointing out that “two judges 

who independently, and without prior knowledge, produce similar marginal distributions must obtain a 

much higher agreement rate to obtain a given value of kappa, than two judges who produce radically 

different marginals. … [The former judges] are in a sense penalized” (p. 692) for agreeing on marginal 

frequencies. Zwick (1988) has considered this statistical artifact. Her advice to users of  is to test for 

unequal margins before applying . Its violating (2) and (3) renders  just about worthless as a 

reliability index in content analysis. The same can be said about , although I have not heard anyone 

claiming as much. 

Numerical Comparisons  

Following their own recommendation to compute several agreement coefficients and to find a 

balance between conservative and liberal coefficients, Lombard et al. calculated the values of the four 

aforementioned indices, %-agreement, , , and , for 36 of their variables. Their corrected table 

(2003, pp. 470-471) provides good empirical examples for discussing what their numerical differences 

mean. However, since all content analysts work hard to achieve reliable data, such a table cannot 

possibly reveal the full ranges of these coefficients. Therefore, let me state them generally:  

0  %-agreement  1 

1  , , and   +1 

For nominal variables, which account for the majority of the authors‟ data, their inequalities are: 

%-agreement       and nominal       

Careful readers of Lombard et al.‟s corrected table will notice the small differences among the 

three chance-corrected agreement coefficients and might come to the seriously mistaken conclusion 

that the choice among these coefficients would not matter much. However, even small differences 

mean rather different things, starting with their zero values: 

%-agreement = 0:  one coder describes all units of analysis in terms not chosen by the other 

 = 0:  multiple descriptions are chance events, assuming large numbers of units of analysis 

 = 0:  multiple descriptions are chance events, adjusted for variable numbers of units and coders 

  = 0:  coders are statistically independent of each other, assuming large numbers of units of analysis 

As already stated, when the sample size is large, theoretically infinite, nominal = . Otherwise, 

nominal exceeds  by (1)/n, which corrects nominal for small reliability sample sizes. With the 

authors‟ sample size of n=256 (2 coders  128 units), that difference is noticeable only in the third 

digits. Smaller samples would result in larger differences.  

As above demonstrated, when coders agree on their use of categories, on their marginal 

distributions,  = . When coders disagree regarding these distributions,  exceeds , responding to the 

increased predictability of one coder‟s categories from those of the other. Predictability has nothing to 

do with reliability measures and must not contaminate them. In the authors‟ table, the values of  and  



turn out to barely differ, suggesting that the two coders exhibit only small marginal differences. 

However, Figure 3 shows that such differences could be much larger. 

Lombard et al. also report the reliabilities for ordered data. If agreement concerns ordered 

reliability data – ranks, intervals, and proportions – an agreement coefficient that is appropriate to 

these data utilizes this information and can be expected to exceed nominal coefficients, which ignore 

that information.  is applicable to metrics other than nominal; %-agreement, , and  are not. In the 

authors‟ table, the names of variables with ratio metrics are superscripted “b.” %-agreement, , and  

are inappropriate for these variables. However, since the authors happen to calculate these coefficients, 

comparing them with the values of the ratio coefficient may show the reader how much %-agreement, 

, and  respectively omit.  

Consequences of Lombard et al.‟s Reliability Standards 

As already mentioned, Lombard et al. (2002) applied the following criterion for accepting 

content analysis findings as sufficiently reliable:   .70, otherwise %-agreement  .90 (p. 596). They 

take  as a conservative index and %-agreement as a liberal one, presumably convinced that the truth 

lies somewhere between these two. Their findings, listed in terms of absolute and relative frequencies 

(percentages) for the above-mentioned 36 variables in their corrected table (2003, pp.470-471), are the 

result of applying this criterion to their own data. The authors do not report findings for variables that 

lacked reliability, according to their criterion, which is fair and a common practice. To see what passes 

their criterion, let me examine the data on two of these variables, starting with the 25
th

, mentioning 

“„simple agreement‟ only.” The reliability data for this variable are tabulated in Figure 4.
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Figure 4 

Reliability Data on the Agreement Coefficient Used: “„Simple Agreement‟ Only” 
 

  Coder C 

         Categories:       0     1 

         0   83    1   84  + 3 without a match by C  

        1     2    0     2 

              85    1   86  = NCJ  

            + 1 without a match by J 

           

            NC = 87 
 

  Ao =     .965 

 CR =     .943 

   S  =     .930 

     =   .012 

     =   .016 

     =   .018 

     =   .024 

 

Figure 4 also lists the value of Osgood‟s coefficient (Holsti‟s CR), which Lombard et al. 

discuss but do not report
7
 and of Benett et al.‟s S, and Benini‟s  for comparison. 

The 0-0 cell in this table shows the two coders agreeing that this category was absent in 83 

articles. Its 0-1 and 1-0 cells indicate a total of three cases of one coder identifying this category while 

the other did not. And in four cases, one coder noted the absence of this category while the other 

abstained from coding the article. The four chance-corrected agreement coefficients for these data are 

    Coder J NJ = 89 



near zero, suggesting the virtual absence of reliability. Yet, the authors‟ decision criterion suggest 

otherwise. Unable to accept the data on account of =.012, which measures significantly less than 

.700, the criterion relies on the fact that the %-agreement of 96.5% is well above the 90% that 

Lombard et al. require and so, the authors feel justified in accepting this variable as reliable and report 

that 1% (or 2/137) of the articles they examined mention “simple agreement” only (2003, p.471)
8
.  

Note that in Figure 4, all 96.5% coincidences pertain to absences, the 0s. Regarding the 1s of 

the variable mentioning “„simple agreement‟ only,” which the authors report as their findings, the two 

coders do not agree at all, not even once! The 1-1 cell in Figure 4 is completely empty. And in the 

three cases in which one coder identifies “„simple agreement‟ only,” the other does not. If the %-

agreement measure would be allowed to go down to 90%, the number of mismatches could triple 

without shaking the authors‟ confidence in the reliability of the reported finding. Eighty-six out of 137 

units of analysis is a decent reliability sample, but could one trust a claim that the 137 articles in the 

data contained two mentions of this category when coders cannot agree on even one? In the calculation 

of reliability, large numbers of absences should not overwhelm the small number of occurrences that 

authors care to report.
9
 Without a single concurrence and three mismatches, the report of finding 2 out 

of 137 cases is about as close to chance as one can get – and this is born out by the near zero values of 

all the chance-corrected agreement coefficients.  

For Lombard et al., this case was not an oversight. In their Table 1 (2002, p. 592), they 

reproduce Perrault and Leigh‟s hypothetical 2-by-2 data (1989, p. 139) with very uneven marginal 

frequencies that yield =.000 while showing 82% agreement – just to argue for the conservative nature 

of , and by extension, of all chance-corrected agreement measures. The marginal frequencies in the 

table of Figure 4 are even more uneven. Yet most striking and often mystifying those who hold on to 

the %-agreement conception is the case in which all coders use one and the same category for all units 

of analysis, yielding 100% agreement. Such data can be obtained by broken instruments or coders who 

fell asleep or agreed in advance of the coding effort to make their task easy. As suggested in (3), 

appropriate indices of reliability cannot stop at measuring agreement but must infer the reproducibility 

of a population of data; and one cannot talk about reproducibility without evidence that that it could be 

otherwise. When all coders use only one category, there is no variation and, hence, no evidence of 

reliability. In the case of the slightly less extreme data in Figure 4, Lombard et al.‟s criterion for 

accepting data as reliable clearly fails to warn researchers about significant unreliabilities in data and 

induces a false sense of certainty about the conclusions drawn from these data when they actually are 

indistinguishable from chance events. Their criterion for accepting data as reliable does not separate 

the wheat from the chaff. The use of %-agreement should be actively discouraged, especially as a 

fallback criterion. Instead, I recommend that only chance-corrected agreement coefficients that satisfy 

(2) and (3) be used for inferring the reliability of data.  

Because agreement coefficients are averages over the categories in a variable, which allows 

unreliable categories to hide behind reliable ones, I am suggesting that reliabilities be obtained for all 

distinctions that matter. To state proportions of frequencies, the distinctions between these categories 

and their complements need to be reliable. If differences in frequencies of two categories are to be 

reported, the two categories must be reliably distinguishable. Overall agreement measures applied to a 

multi-category variable do not provide such assurances. For a simple numerical example, consider one 

of Lombard et al.‟s variables, the 20
th

, recording whether articles report reliability figures (2003, p. 

470). It recorded data in three categories: 0=No; 1=Yes together with findings; and 2=Yes separately
10

 

and measures =.686. This borderline measure should signal doubt. The data for this variable are 

reproduced in the left table of Figure 5.  



Figure 5 

Reliability Data on Whether Article Reports Reliability Figures and Two Distinctions 
 

                         Coder J                     1
st
 Distinction   

Categories:       0     1     2                          0     1&2               2
nd

 Distinction   

                   0     80    0     1      81          0      80       1          81                 1     2 

Coder C     1       1    0     1       2                                                    1      0     1      1   

                   2       0      0     3       3                                                  2      0     3      3   

                81     0     5     86                   81       5         86                  0     4      4  

                  = .686        = .789      = .000 
 

If its categories were equally unreliable, one could let the overall reliability of the variable stand. When 

this is not the case and when all categories are equally important to a research effort, one has to find 

the least reliable category. This can be done by computing the reliabilities for all distinctions in a 

variable, here, between any one category and the remaining categories lumped into one, also called 

individual category reliability. Lumping categories 1 and 2 and evaluating the distinction between 0 

and 1&2, as shown in the center table of Figure 5, yields (0|1&2)=.789, which is significantly larger 

than the overall =.686, suggesting also that this variable contains other categories that are less reliable 

than category 0.  With (1|0&2)= .006 and (2|0&1)=.739, category 1 turns out to be the 

unquestionable culprit. If the three categories were not equally important, if one could restrict the 

findings to the distinction between 0=absent and 1&2=present, the correct reliability would be =.789, 

not .686. The subordinate distinction between 1 and 2, whose data are shown in the right table of 

Figure 5, is a perfect chance event, =.000 exactly. Notwithstanding the low frequencies in the latter 

distinction, this analysis would render it a mistake to report on any difference in the frequencies of 

categories 1 and 2.
11

 Should this distinction be important, the variable must be rejected for not 

exceeding chance. When it is ignored, the overall measure would be inaccurate. In other words, 

reliability should assess all relevant details and not be contaminated by including irrelevant 

distinctions, which can overstate or understate the reliability of what matters.  

Multiple Coders, Multiple Coding Sets, Multiple Metrics 

Amplifying Neuendorf (2002, p. 163) who merely quotes a concern expressed elsewhere about 

the appropriateness of using different coders for coding different but overlapping sets of units, 

Lombard et al. (2002) make it a point of recommending against this attractive possibility (p. 602) – 

without justification, however. I can imagine three: (a) Potter and Levine-Donnerstein (1999) argue 

that the overlap needs to be large enough, which is correct. (b) Fleiss (1974) advised that “the use of  

… [be] restricted to reliability studies involving the same pair of judges.” This restriction applies only 

to the use of . It is not methodologically motivated and not generalizable to other coefficients. Finally, 

(c), if reliability data are generated by multiple coders of different but overlapping sets of data, the 

practice of averaging agreement measures among pairs of coders would actually average unrelated 

reliability data. The software PRAM
12

, on which Lombard et al. relied for parts of their calculations, 

does just this. So, the injunction would make sense for this makeshift approach to calculating multi-

coder agreements. However, I cannot see any methodological justification for the authors‟ proposed 

injunction.  

It should be noted that  is designed for the very situation that the authors seek to rule out (i.e., 

for variable numbers of interchangeable coders, including when coding different but overlapping sets 

of units, causing data to be missing). The authors acknowledge the ability of  to accommodate 

multiple coders and all common metrics or scales of measurement, not just the situation of two coders 

1&2     1       4           5       



and nominal data to which comparisons of nominal with the other nominal coefficients is limited. 

However, more important is to realize that  is a large family of agreement coefficients with identical 

assumptions about reliability, yielding measures that are comparable across a diversity of data – not to 

be confused with comparing the numerical results of coefficients with incompatible assumptions along 

a continuum. Although  reaches far beyond measures known in the literature, it embraces several 

known coefficients. For two coders and large sample sizes,  reduces not only Scott‟s , which is 

limited to nominal data, as Figure 2 demonstrated, but also to Spearman‟s  (rho) without ties, which is 

defined for rank orderings, and to Pearson‟s intraclass correlation, RI, appropriate for interval data – 

not his product moment correlation, rij. Thus, as a family,  can be compared across different metrics, 

and enables content analysts to apply identical decision criteria to them. Researchers may use  

conservatively or liberally, as they please; , in and of itself, is neither.  

Recommendations 

Let me conclude with four recommendations for establishing the reliability of given data, 

measured by the degree to which a coding process is reproducible with different coders, elsewhere, and 

under conditions that should not affect the results:
13

 

(i) Reliability data, the sample of data from which the trustworthiness of a population of data is to be 

inferred, have to be generated by coders that are widely available, follow explicit and 

communicable instructions (a data language), and work independently of each other. Reliability 

data must be representative of the data whose reliability is in question (not of the population of 

ultimate research interest); and the more coders participate in the process and the more common 

they are, the more likely can they ensure the reliability of data. Coders must be interchangeable, 

may code different subsamples of data, provided there is enough duplication or overlap. 

(ii) A decisive agreement coefficient should measure agreements within multiple descriptions, 

regardless of numbers and kinds of coders. Its values should be indicative of the likelihood that 

conclusions drawn from imperfect data are valid beyond chance. For two coders, large sample 

sizes, and nominal data,  is such a coefficient. When data are ordered, it is advantageous to select 

a coefficient that responds to the information in their metric (scale characteristic or level of 

measurement) but assumes not more than warranted by the data in hand.  can handle multiple 

coders, nominal, ordinal, interval, ratio, and other metrics, missing data, and small sample sizes. 

Content analyses that assess reliability in terms of any association coefficient, Pearson‟s r, for 

example, Benini‟s (1901) , Cohen‟s (1960) , Cronbach‟s (1951) alpha, Goodman and Kruscal‟s 

(1954) r (lambda r), and %-agreement should be rejected as these measures are incompatible with 

reliability concerns in content analysis. For any other measure and when in doubt, the 

mathematical structures of proposed indices should be examined for their ability to shed light on 

the reproducibility of the data making process. Unsubstantiated claims should be questioned. 

(iii) An acceptable level of agreement below which data are to be rejected as too unreliable must be 

chosen depending on the costs of drawing invalid conclusions from these data. When human lives 

hang on the results of a content analysis, whether they inform a legal decision or tip the scale from 

peace to war, decision criteria have to be set far higher than when a content analysis is intended to 

merely support scholarly arguments. In case of the latter, to be sure that the data under 

consideration are at least similarly interpretable by other scholars (as represented by different 

coders), I suggested elsewhere to require   .800, and where tentative conclusions are still 

acceptable,   .667 (Krippendorff, 2004, p. 241).
14

 Except for perfect agreement, there are no 

magical numbers, however. The ones suggested here should be verified by suitable experiments. 

To ensure that the measured agreement is representative of the data in question, confidence 

intervals should be consulted. Testing the null-hypothesis that observed agreement deviates from 

chance has no bearing on reliability, which concerns deviations from perfect agreement or 1.000. 



(iv) All distinctions that matter should be tested for their reliability. Where a system of several 

variables is intended to support a conclusion (e.g., as in an index, a regression equation, or any 

multi-variate analysis), the reliability of each variable should be measured and the smallest among 

them should be taken as the reliability of the whole system. Averaging the agreement measures of 

several variables, especially when they include easily coded clerical ones, can easily mislead 

researchers about the reliability of variables that matter. This logic applies to individual categories 

as well. Where differences in frequencies of the categories of a variable influence the conclusions 

of a research effort (e.g., in reports on differences, changes, or proportions – as exemplified in 

Lombard et al. [2003]), the reliability of each distinction should be tested and the smallest one 

should be taken as the reliability of the whole variable. This may not be required when a 

subsequent analysis concerns variances (e.g., in tests concerning correlations or associations), 

which are averages, just as measures of agreement of multi-category variables are. After data have 

been generated, reliability may be improved by discarding unreliable distinctions, recoding or 

lumping categories or dropping variables that do not meet the criterion adopted in (iii). Resolving 

disagreements by majority among three or more coders may make researchers feel better about 

their data, but does not affect the measured reliability (Krippendorff, 2004, p. 219).  

 

I commend Lombard, et al. (2002, 2003) for bringing the sad state of reliability testing to the 

attention of content analysts. The above criticism is directed less to the authors then to the literary 

practices in communication research. As a critical scholar, I defend the principle of encouraging 

multiple voices to speak through a text. However, when it comes to discussing mathematical objects, 

such as agreement measures and their use as indices of the reliability of data, mathematical proofs and 

demonstrations should speak louder than majority opinions, even when published in respectable 

journals. Quoting from the work of other scholars does not absolve our responsibility for investigating 

and judging what we are reproducing.  
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Endnotes 

                                                 
1
 The authors used a beta version of the software package PRAM, an acronym of “Program for Reliability Assessment with 

Multiple-coders” (Skymeg Software, 2002), also described by Neuendorf (2002, pp. 241-242), to calculate %-agreement, , 

and , and a separate unpublished software to calculate  (Lombard et al., 2002, p. 596). 
2
 Lombard et al. (2002, p.590) claim that %-agreement can also be computed for any number of coders without explaining 

how this could be accomplished. The aforementioned software PRAM includes a feature to average pairwise %-

agreements. This average of averages cannot express patterns of disagreement that inevitably arise when multiple coders 

are involved and becomes of dubious validity when coders code different sets and numbers of units.  
3
 For example, Perreault and Leigh argue that “in most marketing research studies (and in many other areas of applied 

research), there is no a priori knowledge of the likely distribution or responses” (1989, p. 139), much as I said in (2), but 

they then proceed to define expected disagreement as in S, in terms of the number of available categories, which is 

equivalent to assuming categories to be uniformly distributed. 

4
 Since  is less familiar than the other coefficients, I offer this definition: 

 







i i BiAiBiAi

i BiAii ii

pp)p,pmin(

ppp
, where, in a 

contingency table, i is a generic category, pii is the proportion of pairs of matching categories i, and pAi and pBi are the 

marginal sums for category i used by coder A and B respectively.   
5
 It might be noted that Cohen (1960), probably unfamiliar with Benini‟s , discussed a ratio /max (p. 43), which equals . 

I have not seen it used, however.  
6
 On December 12, 2002, Matthew Lombard kindly made the authors‟ data available to me and in return received the 

recalculations of . 
7
 In a footnote to the original table, Lombard et al. write, “Holsti‟s method is not reported because it is identical to Scott‟s 

pi in the case of two coders evaluating the same units” (2002, p. 598). In the revised table, the authors replaced “Scott‟s pi” 

by “percent agreement” (2003, p. 471), which makes this statement a mathematical possibility, but one that is not born out 

by their data. Figure 4 shows reliability data in which one coder categorized NC=87 articles, another categorized NJ=89 

articles, and both categorized NCJ=86 articles, rendering Osgood‟s coefficient (Holsti‟s 

CR) 943.
8987

862
965.

NN
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o 







  . 

8
 The original table reports 2% (Lombard, et al. 2002, p.579). I do not know what prompted this revision. 

9
 Arguably, 99% is a large proportion and 1% is a small one. Considering small errors, say 1%, 991% still defines a large 

proportion with a relatively small error, but 11% refers to a small proportion with a relatively large error. Thus, a range 

between 0% and 2% seems more severe than a range between 98% and 100%.  
10

 http://astro.temple.edu/~lombard/carman.htm, accessed in January 2003. 
11

 Lombard et al. are not explicit about the 6% (8 articles) they report as containing reliability information (2003, p.470). I 

presume, however, it refers to categories 1&2 lumped together, in which case the proper reliability should have been 

computed with data on the 1
st
 distinction, not for the whole variable, and reported as .739, not as .686 – widespread practice 

notwithstanding. 
12

 PRAM, op. cit. 
13

 These recommendations do not agree with Lombard et al.‟s (2002) guidelines 2, 4, parts of 8 and 9, the common practice 

of calculating average reliabilities for multi-category variables of which the frequencies and proportions (%) of individual 

categories are reported, but particularly not with criterion they have adopted in accepting their own findings as reliable (p. 

596; pp. 600-602).  
14

 These standards were suggested for , and the experiments that led to them concerned  only. Other coefficients may 

require different standards. Setting standards for all coefficients alike, even discussing them as if that made sense, glosses 

over their mathematical differences and the assumptions that go into their construction. This would apply also to 

conceptualizing agreement coefficients on a conservative/liberal continuum according to the numerical results they 

produce, discussed above.  

http://astro.temple.edu/~lombard/carman.htm

