The .GOV Internet Archive:
A Big Data Resource for Political Science

Emily Cadd]]
John Wilkerson
University of Washington

Abstract

We introduce the Internet Archive’s .GOV database, which includes more than 1 billion .gov
webpage captures in a format that supports large-n systematic analyses. Understanding how
to work with .GOV provides an introduction into the ever expanding world of big data. We
offer instructions and tips for using .GOV, and illustrate its potential by exploring attention to
several recent issues across U.S. federal government websites. E|

!Corresponding Author: ekgade@uw.edu

?We thank Vinay Goel of the Internet Archive, Altiscale, the University of Washington Data Science Incubator
and Nitin Borwanker for their assistance. This work was supported in part by the National Science Foundation
under Grant No. 1243917 (Division of Social and Economic Sciences, Directorate for Social, Behavioral Economic
Sciences). Any opinions, findings, and conclusions or recommendations expressed are those of the authors and
do not necessarily reflect the views of the National Science Foundation.

1 Introduction

“Big data” will transform social science research. By big data, we primarily mean datasets that
are so large that they cannot be analyzed using traditional data processing techniques. However,
big data is further distinguished by diverse types of information and the rapid accumulation
of that informationE] We introduce one recently released big data resource, and discuss its
promise along with potential pitfalls. For nearly 20 years, governments have used the web to
share information and communicate with citizens and the world. .GOV is an archive of nearly
two decades of content from .gov domains (US federal, state, local) organized into a database
format that is nine times larger than the entire print content of the Library of Congress (90
terabytes, or 90,000 gigabytes)ﬁ Big data resources like .GOV pose novel analytic challenges
in terms how to access and analyze so much data. In addition to the difficulty posed by its size,
big data is often messy. Additionally, .GOV is neither a complete nor a representative sample
of government presence on the web across time.

1.1 The Internet Archive

In 1963, J.C.R. Licklider of the Advanced Research Projects Agency (ARPA) drafted a “Memo-
randum For Members and Affiliates of the Intergalactic Computer Network” (emphasis added).
Subsequent discussions ultimately led to the creation of ARPANET in 1968. Soon after, major
government departments and agencies were constructing their own “nets” (DOE and MFENet/
HEPNet, NASA and SPAN). In 1989, Tim Berners-Lee proposed (among other things) using
hypertext links to enable users to post and search for information on the internet, creating the
World Wide Web. The first commercial contracts for managing network addresses were awarded
in the early 1990s. In 1995, the internet was officially recognized by the Federal Networking
Council, and Netscape Navigator, “the web browser for everyone,” went public.

In 1996, a non-profit organization, the Internet Archive (IA) assumed the ambitious task
of documenting the public web. The current collection contains more than 450 billion webpage
“captures” (downloads of URL linked pages and metadata) dating back to 1995. The best
way to quickly appreciate what’s in the IA holdings is to visit the WayBack Machine website
(archive.org/web), where specific historical website captures (e.g. the White House home
page from Dec. 27, 1996) can be viewed.

2 .GOV: Government on the Internet

The Internet Archive also curates sub-collection: .GOVE] .GOV contains approximately 1.1 bil-
lion page captures of URLs with a .gov suffix (from 1996 through Sept 30, 2013). At the federal

3For example, see this article on understanding Big Data: Sagiroglu, S., Sinanc, D. (2013, May). Big data:
A review. In Collaboration Technologies and Systems (CTS), 2013 International Conference on (pp. 42-47).
IEEE. https://xa.yimg.com/kq/groups/72986399/1585974627 /name/06567202. pdf

“In thinking about using the volume of the Library of Congress as a unit of measure, see: “A “Library of
Congress” Worth of Data” by Leslie Johnston, April 25, 2012. http://blogs.loc.gov/digitalpreservation/
2012/04/a-1ibrary-of-congress-worth-of-data-its-all
-in-how-you-define-it/

°See the Internet Archive’s description of their sub-collections here: https://archive.org/details/
additional_collections

archive.org/web
https://xa.yimg.com/kq/groups/72986399/1585974627/name/06567202.pdf
http://blogs.loc.gov/digitalpreservation/2012/04/a-library-of-congress-worth-of-data-its-all
http://blogs.loc.gov/digitalpreservation/2012/04/a-library-of-congress-worth-of-data-its-all
-in-how-you-define-it/
https://archive.org/details/additional_collections
https://archive.org/details/additional_collections

level, this includes the official websites of elected officials, departments, agencies, consulates,
embassies, USAID missions and much moreﬁ Whereas the Wayback Machine makes it possible
to view date-specific individual websites, the .GOV collection can be used to investigate pat-
terns across websites and over time.

.GOV offers four types of data from each webpage capture: the link data (the page URL
and every other url/hyperlink found on the page); the parsed text of the page; the full content
of the page (the text including html markup language; images; video files etc); and the CDX
index file that is used to access the page via the Wayback Machine.

2.0.1 Messy Data

There is no way to download the entire content of the internet, or even a representative sample.
The TA (as well as major search firms such as Google) capture content by “crawling” from
one page to another. Starting from a limited number of “seed” URLs (web page addresses) a
“bot” (software program) collects content from all of the URLS found on the originating page,
then all of the URLs on those pages (etc.) until it encounters no more unique pages, or a user
defined search constraint tells it to stop. This sequential process inevitably offers an incom-
plete snapshot of a constantly evolving World Wide Web. In 2008, the official Google blog
reported that developers had collected 1 trillion unique URLs in a single concerted effort but
also noted that “the number of pages out there is inﬁnite.”m Crawl results are also incomplete
because webpages are sometimes located behind firewalls (the “dark web”), or include scripts
that discourage bots from collecting content. The Internet Archive will also delete a website
at the owner’s request. We have also discovered other limitations of the .GOV data that users
should be aware of in designing projectsﬂ

The quality of the Internet Archive also improves over time, both because of changes in
the way the Web is used and because of changes in the way the Internet Archive conducted its
crawls. Figure (1] displays how often the White House website was captured across four different
years starting in 1997E| The Wayback Machine indicates that whitehouse.gov|was crawled just
3 times in 1997. In 2001, it was not crawled at all in the month of August and then hundreds
of times in the three months following the terrorist attacks on September 11. In 2007, it was
captured much more often - at least once a week. And in 2014, whitehouse.gov| was captured
at least once a day.

6.GOV also includes state and local websites that use the .gov suffix.

"See Google’s Official Blog (July 25, 2008) for discussion at “We knew the web was big...” http://googleblog.
blogspot.com/2008/07/we-knew-web-was-big.html

8These are listed in the on-line Appendix.

9The graphs are copied from Wayback Machine search results for whitehouse.gov!

whitehouse.gov
whitehouse.gov
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
whitehouse.gov

Figure 1: Frequency of |whitehouse.gov| crawls (selected years)

Bos v CRIN ! £ s
e LY LR | v
- " - ooy o
= - = - -
- = -
voa a0 . e
W -
T - v @ -
" . i -
= = = = -
= o sow s
......

L .
e GREEEE.
CE e e
o o a .IH‘HKIF e

o 2007 © TTC

2014

The most complete .GOV crawls occurred during three month time periods (Nov-Jan)
of election years starting in 2004@ Using congressional websites URLs as the seeds, the IA
captured more government web presence than before. Figure [2|indicates spikes in unique .GOV
URLs captured during election years. For example, the number triples from about 500 million

to 1.5 billion between 2003 and 2004.

10 According to Vinay Goel, senior data engineer at the IA, the Library of Congress contracted with the IA to
systematically capture congressional websites during these time periods.

whitehouse.gov

Figure 2: Total .GOV Unique URLs

Count of Unique URLs

1e+08 2e+08 3e+08 4e+08 5e+08

—] B |

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

0e+00
|

Years

Although .GOV is less than ideal as a data resource from a conventional social science
perspective, there is no other option for investigating two decades of White House website
content, or the content of millions of other pages of government website content. Importantly,
because these crawls contain snapshots of each page, researchers could hypothetically examine
language that agencies or individuals chose to remove - something scraping those same pages
now could not provide. The challenge researchers face is finding the hidden gems in a resource
that cannot be easily explored.

3 Big Data and Distributed Computing

.GOV is an excellent platform for learning about “big data” analysis techniques. The basic
challenge is that the dataset is too large (90,000 gigabytes) to download and explore. Big data
is stored and managed differently. Traditional databases (aka “structured data” are organized
into neat rows and ColumnsE-] Big data projects rely on more flexible data storage processes
where portions of the data are distributed across a cluster of computers. Each computer in
the cluster is a node, and portions of the data are stored in “buckets” or “bins” within each
node (see Figure . To access the data, researchers use special software to send simultaneous
requests to the different nodes. The piecemeal results of these multiple queries are then recom-
bined into a much smaller, single working file.

1See Sagiroglu Sinanc: https://xa.yimg.com/kq/groups/72986399/1585974627 /name/06567202 . pdf

https://xa.yimg.com/kq/groups/72986399/1585974627/name/06567202.pdf

Figure 3: Hadoop System for .GOV

Hadoop Cluster Node M:nagers

Data Nodes

SSH Name Node Hadoop Slave

Resource Manager Hadoap Slave

Hadoop Slave

Hadoop Slave

3.1 Querying .GOV

The .GOV database is currently hosted on a Hadoop computing cluster operated by a commer-
cial datacloud service, Altiscale (www.altiscale.com). Within the cluster housing .GOV, the
data are distributed across nine separate “buckets.” Each bucket contains thousands of large
(100mb) WARC (Web Archive Container) files (or ‘ARC’ files for earlier records). Each of these
WARUC files then contain thousands of individual webpage capture records. As mentioned, each
capture record includes the parsed text, the URLs found on the page, the full content of the
capture (including images and video files); and the CDX index file. The CDX file includes
useful metadata bout specific records that can be used to find and exclude particular records,
such as the URL, timestamp, Content Digest, MIME type, HTTP Status Code, and the WARC
file where it is located.

The data are accessed using Apache software programs. Apache Pig and Hive are SQL-
based languages that can be used for basic data processing such as joining or merging files,
searching for specific URLs, and more generally retrieving data of interest. Many Apache com-
mands will be familiar to users with working knowledge of SQL, R or Python. To search all of
the capture records in the .GOV database, one must write a query to search thousands WARC
files across each of the nine buckets.

3.2 Obtaining a key and creating a workbench

Here we describe the big picture process of querying .GOV. In the next section, we present
some preliminary findings using the parsed text data. The specific annotated scripts used to
accomplish the latter can be found in the on-line Appendix.

www.altiscale.com

Users must first gain access to the Altiscale computing cluster by requesting an “ssh” key
(detailed on Altiscale’s website: https://documentation.altiscale.com/getting-started
- you have to email accounts@altiscale.com to request a key). Each key owner is granted a local
workbench (an Apache Work Station (AWS)) on the cluster that is similar to the “desktop” of
a personal computer and contains the Apache software programs needed to query the database.
About 20 gb of storage is also provided (the .GOV database is about 4500 times larger).

3.3 Writing scripts to extract information

1. Specifying what is to be collected

Apache Hive and Pig are used execute SQL queries. This can be done on the command
line directly (there is no GUI option), but it is easier to write and store scripts on the work-
bench, and then write a command to execute them across the buckets of interest. For example,
one can write an Apache Pig script that requests each parsed text file from a specified URL
(e.g. whitehouse.gov), separates the parsed text fields (“date” “URL” “content” “title” etc.),
searches each field for each record for a keyword or regular expression, and then counts how
many times a match occurs. The full parsed text could also be downloaded in order to explore
the content in more detail later. But with so much data (1.1 billion pages), such a collection
can quickly become too large to export.

The functionality of Pig and Hive (like SQL) is limited. For example, Pig will return
and count the webpage captures that contain a keyword (true/false) for a date range (e.g., per
month/year), but it can’t compute the frequency of keyword mentions. To do more detailed or
custom analysis, researchers can write user defined functions (UDFs) in Python. The Python
script is stored on the workbench as a .py file and then called by the Pig scriptF_Z]

Processing time is a major consideration. Even simple jobs such as keyword counts can
take hours or even days to run over so much data. More computationally intensive methods,
such as topic models may be impractical. The best way to discover whether a script is going
to work and how long it will take is to test it on a subset of the data, such as on just one
WARC file in one of the buckets. Running a complete job without testing it is likely to lead to
many hours or days of waiting only to discover that it did not work. Linux “Screen” (already
installed on the cluster) can then be used to run the script across the cluster remotely (so that
your own computer can be used for other things)F—_g]

2. Providing instructions about where to search on the cluster

The CDX files provide guidance that makes it possible to limit queries to particular URLs,
date ranges, WARC files ethE] For queries than cannot be restricted in advance (e.g. the re-
search objective is to identify all parsed text files that contain a particular keyword), breaking
a job into steps can be more efficient. For example, the first query might identify and produce
a list of all of the URLs that contain the keyword. The next query would focus on extracting

12See https://wiki.apache.org/Pig/UDFManual and https://Pig.apache.org/docs/r0.11.0/udf .html

3For instuctions about how to use Screen see: https://www.rackaid.com/blog/
linux-screen-tutorial-and-how-to/#detach

**Instructions for querying the CDX file can be found at https://webarchive.jira.com/wiki/display/
Iresearch/IA+-+G0OV+dataset+-+Altiscale

https://documentation.altiscale.com/getting-started
whitehouse.gov
https://wiki.apache.org/Pig/UDFManual
https://Pig.apache.org/docs/r0.11.0/udf.html
https://www.rackaid.com/blog/linux-screen-tutorial-and-how-to/##detach
https://www.rackaid.com/blog/linux-screen-tutorial-and-how-to/##detach
https://webarchive.jira.com/wiki/display/Iresearch/IA+-+GOV+dataset+-+Altiscale
https://webarchive.jira.com/wiki/display/Iresearch/IA+-+GOV+dataset+-+Altiscale

the relevant information (such as keyword and total word counts) from that more limited set
of URLs.

3. Concatenating and exporting the results

Query results for each WARC or ARC file (containing thousands of captures) are stored
separately on the cluster. Additional scripts must be written to conctenate them. Whether the
results can be exported can also be calcuated at this pointF_SI If they cannot, Apache Girafe
(http://giraph.apache.org/) is designed to facilitate analyses and graphing on the cluster.

4 Application: Government Attention to the Financial Crisis,
Terrorism, and Climate Change

As a starting point to discovering what’s in .GOV, we investigate keyword frequencies for three
recent issues in American politics. We hope to observe patterns consistent with what is generally
known about the issues, and perhaps more novel patterns that begin to illustrate the potential
of this new data source.

4.1 Collecting the data

We first created a limited list of top level URLs (departments, agencies and political insti-
tutions) relevant to the three issues. For example, the regular expression “house.gov” theo-
retically captures every webpage of every branch of the official website of the U.S. House of
Representatives that the TA collected. This includes, among other things, every Represen-
tative’s official website (e.g., pelosi.house.gov) and every House committee’s website (e.g.,
agriculture.house.gov). Aggregating results during the collection process in this way means
that we cannot pull out just the results for a particular member or committee’s website. That
would require a different query using more specific URLs.

We then counted keyword mentions on every subpage of that root URL. We first devel-
oped broad lists of keywords related to the three issues. After obtaining results, we created
more refined lists by dropping terms that seemed problematic or were used less often (see on-
line appendix). For example, we dropped “security” from the terrorism keyword list because it
was too general (e.g., financial security). Running the query over all WARC files took about
five days of processing time. All together, the results reported below are based on 8.3 billion
keyword hits generated by searching about 600 billion words found on the parsed text pages of
the specified URLs.

Focusing on raw counts of keywords gives more weight to larger domains. Any changes in
attention to terrorism at the much larger State Department will swamp changes at the Bureau
of Alcohol, Tobacco and Firearms (ATF). We focus on the proportion of attention given to
the issue within an agency or political institution, by dividing the number of keyword hits by
total website words. A proportion-based approach also does a better job of controlling for the

Instructions for exporting documents from the Altiscale cluster can be found here: http://documentation.
altiscale.com/exporting-data-from-your-altiscale-cluster

http://giraph.apache.org/
pelosi.house.gov
agriculture.house.gov
http://documentation.altiscale.com/ exporting-data-from-your-altiscale-cluster
http://documentation.altiscale.com/ exporting-data-from-your-altiscale-cluster

expanding size of government web presence.

4.1.1 Overall Trends

One way to begin to assess the validity of using website content to study political attention is
to ask whether changes in content correlate with known events. For each issue in Figure [we
identified the URLs (federal government organizations) thought to play a role on the issue (see
Appendix II for these lists and URLs). The graphs then report average proportions of attention
across these URLSE Financial crisis term usage (as a proportion of all terms) spikes upward in
2007-08 as expected (and also in 2001 when there was another stock market decline). Attention
to terrorism similarly increases after 9/11/2001, but government-wide attention to terrorism
increases most dramatically from 2005 to 2006. Institutionalization is almost certainly part
of the explanation. We are capturing attention to terrorism (relative to other issues) on the
websites of government agencies. The Department of Homeland Security was not created until
2003 and one of the purposes of its creation was to re-orient the missions of existing agencies
(such as FEMA) towards preventing and responding to terrorism. In addition, while 9/11 was
an important focusing event for the US, terrorism worldwide continued to increase post 9/11.
As we might expect, there is no evidence of equivalent shocks for climate change.

16The different proportions for the different issues are not comparable because they are dependent on the
keyword lists.

Figure 4: Issue Attention Across .GOV

0.00025
2e-04 —
Terrorigmerms

20.00015 .
c
[J]
o)
o
o
Lo
£
© le-04

56-05 B e Change Terms

0 T T T T T
2000 2002 2004 2006 2008 2010 2012
Year

Diffusion of Attention to Terrorism

Political scientists have long been interested in how “focusing events” impact political atten-
tion (Birkland 1998). Many studies have examined the impact of 9/11 on the organization
and activities of specific government agencies and departments. Here, we ask how attention to
terrorism spread across government departments and agencies. Entropy is a measure disorder
that is frequently used to study the dispersion of political attention (Boydstun et al. 2014).
Figure [5| confirms that attention to terrorism in the federal government became more dispersed

post 9/11@

7 Qur measure is based on the proportion of domain content for 23 departments and agencies, where entropy
is based on each domain’s proportion of the sum of all agencies’ proportions.

Figure 5: Diffusion in Attention Across .GOV

2.8

2.7

25

Entropy of Terrorism Attention

2.3

\ \ \
2000 2002 2004 2006 2008 2010 2012
Year

A Financial “Bubble”?

One of the questions raised in congressional hearings after the 2007-08 financial crisis was
whether it could have been anticipated and averted. A related question is whether government
agencies saw it coming. As an historical archive, .GOV may provide some clues. Here we sim-
ply examine “bubble” mentions across organizations (as a proportion of total website words).
Figure [0] indicates that references to bubbles spike in the elected branches after the meltdown,
whereas bubble mentions at the four agencies most responsible for the economy increase 2-3
years ahead of the crisis. Bubbles also see increased attention at the Federal Reserve before the
stock market sell-off in 2001.

10

Figure 6: Attention to Financial Crisis Across .GOV

8e-05

6e-05
% Federal Reserve
Qo
]
m
©
3
c 4e-05
()
>
o
g
i
£
o

2e-05

/
/
ol Qfmgress
I % SORLRLEEEEEL A__FDIC
= 4:5@_
0 \ \ \ \ \
2000 2002 2004 2006 2008 2010 2012

Year

11

Framing Climate Change

Early in President G.W. Bush’s first term of office, pollster Frank Luntz advised Republicans
to talk about “climate change” rather than “global warming” because focus groups saw the
latter as more of a threat (Leiserowitz et al. 2014, 7). Subsequent academic research also found
that the public is somewhat more likely to support action to address global warming. How-
ever, it seems as though conservatives also spend much of their time ridiculing global warming.
Recently Senator James Inhofe (R-OK) brought a snowball to the Senate floor to question sci-
entists’ claims that 2016 was one of the warmest years on record (Bump 2015). If conservatives
have discredited global warming in the eyes of the public, then proponents of climate action
may have less incentive to use that frame.

In Figure [7] values above .50 indicate that climate change mentions are more common
than global warming mentions. ” Agencies” refers to the average emphasis on climate change
for four agencies with central roles (the EPA, NSF, NOAA, and NASA). According to Figure
[7} scientific agencies have always emphasized climate change over global warming, with climate
change increasingly favored in recent years. For the elected branches, the patterns are more
variable and seem to support the notion that conservatives control the global warming frame.
In Congress, global warming has been a more popular frame during periods of Republican
control (2001-2008; 2011-2013) and has been used more often over time. The patterns for the
White House do not support what Luntz advised. Global warming receives more attention than
climate change for most of the years of the Bush administration. The Obama administration,
in contrast, has gone all in for climate change. Although preliminary, these results do suggest
that conservatives have defanged what was once the most effective frame for winning public
support for climate action.

12

Figure 7: Attention To Climate Change Across .GOV

0.8

0.6

Conyess

Climate Change versus Global Warming Emphasis

04

0.3

\ \ \
2000 2002 2004 2006 2008 2010 2012
Year

5 Conclusion

Accessing this big data resource requires new skills and a new mindset. In terms of skills, we
hope that our description of the process and working scripts lower the bar. In terms of mindset,
political scientists working with statistical methods are used to immediate results. Exploring
.GOV in this way is not an option (the Wayback Machine is probably the best way to get a
sense of what’s in .GOV, and it can take days or even weeks to run a query). On the other hand,
.GOV contains insights available nowhere else. Although the current database has important
limitations, the Internet Archive recently embarked on a collaboration with many partners to
scrape all federal government agencies as completely as possible prior the end of the Obama
administration. If this effort is successful and if similar efforts follow in subsequent years, .GOV
will be an even more valuable resource for investigating a wide range of questions about the
federal bureaucracy and federal programs.

13

References

“Bash Shell Basic Commands.” GNU Software. http://wuw.gnu.org/software/bash/manual/
bash.pdf

Boydstun, A. E., Bevan, S. and Thomas, H. F. (2014), “The Importance of Attention Diversity
and How to Measure It.” Policy Studies Journal, 42: 173-196. doi: 10.1111/psj.12055

Bump, P. “Jim Inhofe’s Snowball Has Disproven Climate Change Once and for All.” Washing-
ton Post. The Washington Post, 26 Feb. 2015. Web. 28 June 2016.

Birkland, T. A. (1998). “Focusing events, mobilization, and agenda setting. Journal of public
policy.” 18(01), 53-74.

Edwards, J., McCurley, K. S., and Tomlin, J. A. (2001). “An adaptive model for optimiz-
ing performance of an incremental web crawler”. Tenth Conference on World Wide Web (Hong

Kong: Elsevier Science): 106-113.

“The History of the Internet.” The Internet Socieity. http://www.internetsociety.org/
internet/what-internet/history-internet/brief-history-internet

“The Internet Archive.” Internet Archive. https://archive.org/

Kahn, R. (1972). “Communications Principles for Operating Systems.” Internal BBN memo-
randum.

Leiner et al. “Brief History of the Internet.” http://www.internetsociety.org/sites/
default/files/Brief _History_of_the_Internet.pdf

Leiserowitz, A. WHAT’S IN A NAME? GLOBAL WARMING VERSUS CLIMATE CHANGE.
Rep. Yale Project on Climate Change Communication, May 2014. Web. 28 June 2016.

Licklider, J. C. (1963). “Memorandum for members and affiliates of the intergalactic computer
network.” M. a. A. ot IC Network (Ed.). Washington DC: KurzweilAl ne.

Najork, M and J. L. Wiener. (2001). “Breadth-first crawling yields high-quality pages.” Tenth
Conference on World Wide Web, (Hong Kong: Elsevier Science): 114-118.

“Pig Manual.” Apache Systemshttps://pig.apache.org/docs/r0.7.0/piglatin_refl.html

“The Rise of 3G.” THE WORLD IN 2010. International Telecommunication Union (ITU)).
<www.itu.int/ITU-D/ict/material/FactsFigures2010.pdf>.

Sagiroglu, S., Sinanc, D. (2013, May). “Big data: A review.” In Collaboration Technolo-

gies and Systems (CTS), 2013 International Conference on (pp. 42-47). IEEE. https://xa.
yimg.com/kq/groups/72986399/1585974627 /name/06567202. pdf

14

http://www.gnu.org/software/bash/manual/bash.pdf
http://www.gnu.org/software/bash/manual/bash.pdf
http://www.internetsociety.org/internet/what-internet/history-internet/brief-history-internet
http://www.internetsociety.org/internet/what-internet/history-internet/brief-history-internet
https://archive.org/
http://www.internetsociety.org/sites/default/files/Brief_History_of_the_Internet.pdf
http://www.internetsociety.org/sites/default/files/Brief_History_of_the_Internet.pdf
https://pig.apache.org/docs/r0.7.0/piglatin_ref1.html
<www.itu.int/ITU-D/ict/material/FactsFigures2010.pdf>
https://xa.yimg.com/kq/groups/72986399/1585974627/name/06567202.pdf
https://xa.yimg.com/kq/groups/72986399/1585974627/name/06567202.pdf

“A “ssh” key (Secure Shell)” (2006). http://tools.ietf.org/html/rfc4252

Vance, A. (2009). “Hadoop, a Free Software Program, Finds Uses Beyond Search”. The
New York Times.

15

http://tools.ietf.org/html/rfc4252

A Appendix I

The following script flags all webpages that include one or more mentions of the term ‘climate
change’ and stores the full text of those captures. We begin with an overview of the process of
running jobs on the cluster, and then provide specific code. For questions, please contact the
authors.

A.1 Overview

Running scripts on the cluster requires a basic understanding of bash (Unix) shell commands
using the Command Line on a home computer (on a Mac, this is the program “Terminal”).
For a basic run down of bash commands, see http://cli.learncodethehardway.org/bash_
cheat_sheet.pdf.

Begin by opening a bash shell on a home desktop, and using an ssh key obtained from
Altiscale to log in. Once logged in, you will be on your personal workbench and now have to use a
script editor (such as Vihttp://www.catonmat.net/download/bash-vi-editing-mode-cheat-
sheet.pdf). Come up with a name for the script, open the editor, and then either paste or
write the desired script in the editor, close and save the file (to your personal workbench on
the cluster).

Scripts must be written in Hadoop-accesable languages, such as Apache Pig, Hive, Gi-
raph or Oozie. Apache langagues are SQL-like, which means if you have experience with SQL,
MySQL, SQLlite or PostgreSQL (or R or Python), the jump should not be too big. For text
processing, Apache Pig is most appropriate, whereas for link anaylsis, Hive is best. The script
below is written in Apache Pig and a manual can be found at https://pig.apache.org/.
For an example of some scripts written for this cluster, see https://webarchive. jira.com/
wiki/display/Iresearch/IA+-+G0OV+dataset+-+Altiscale. May be easiest to it “clone” the
“archive analysis” file hosted on GitHub from Vinay Goel https://github.com/vinaygoel
or three basic scripts from Emily Gade https://github.com/ekgade/.govDataAnalysis|and
use those as a launchpoint. If you don’t know how to use GitHub, see here: https://guides.
github.com/activities/hello-world/(it is actually quite straightforward).

Because Apache languages have limited functionality, users may want to write user de-
fined functions in a program like Python. A tutorial about how to do this can be found at
https://help.mortardata.com/technologies/pig/writing_python_udfs.

Once a script is written, you will want to run it on a segment of the cluster. This re-
quires another set of Unix style Hadoop shell commands (see http://hadoop.apache.org/
docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html). Users must
then specify the file path(s), the desired output directory, and where the script can be found.

A.2 Getting a Key

As discussed above, this script is run from your workbench on the cluster. To gain acesss,
you will need to set up an SSH “key” with Altiscale (see http://documentation.altiscale.

16

http://cli.learncodethehardway.org/bash_cheat_sheet.pdf
http://cli.learncodethehardway.org/bash_cheat_sheet.pdf
http://www.catonmat.net/download/bash-vi-editing-mode-cheat
https://pig.apache.org/
https://webarchive.jira.com/wiki/display/Iresearch/IA+-+GOV+dataset+-+Altiscale
https://webarchive.jira.com/wiki/display/Iresearch/IA+-+GOV+dataset+-+Altiscale
https://github.com/vinaygoel
https://github.com/ekgade/.govDataAnalysis
https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/hello-world/
https://help.mortardata.com/technologies/pig/writing_python_udfs
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html
http://documentation.altiscale.com/configure-ssh-from-mac-linux
http://documentation.altiscale.com/configure-ssh-from-mac-linux
http://documentation.altiscale.com/configure-ssh-from-mac-linux

com/configure-ssh-from-mac-1linux). Once you have obtained and sent your SSH key to
Alitscale, you can log in using any bash shell from your desktop with the commmand “ssh
altiscale”.

A.3 Locating the Data

The Altiscale cluster houses 9 “buckets” of .GOV data. Each bucket contains hundreds or
thousands of Web Archive Files (older version are “ARC” files, newer version are “WARC”
files, but they have all the same fields). Each WARC/ARC file contains captures from the same
crawl, but it (a) won’t contain all of the captures from a given crawl, and (b) since the crawl is

doing a lot of things simultaneously, captures of a single site can be located in diffrerent WARC
files.

With so much data, there is no simple “table” or directory that can be consulted to
locate a specific web page. The best way to find specific pages is to use Hive to query
the CDX database. See Vinay Goel’s GitHub for details about how to query CDX: https:
//github.com/vinaygoel/archive-analysis/tree/master/hive/cdx. If a user know ex-
actly what he or she wants (all the captures of the whitehouse.gov mainpage, or all the captures
from September 11, 2001), the CDX can tell you where to find them. Otherwise, users will
want to query all of the buckets because there is no easy way to learn where results are stored.
(Though we advise first testing scripts on a single bucket or WARC file.)

First, use the command line with SSH interface to query the data directories and see
which buckets or files to run a job over. This requires the Hadoop syntax to “talk” to the
cluster where all the data is stored. The cluster has a user-specific directory where users can
store the results of scrapes. A user’s local work bench does not have enough space to save them.

Whenever users “talk” from a user’s local workbench to the main cluster, users need to
use ‘hadoop fs -’ and then the bash shell command of interest. For a list of Hadoop-friendly bash
shell comands, see: http://hadoop.apache.org/docs/currentl/file_system_shell.html.
For example, the line of code

hadoop fs -1s

pulls a listing of the files in your personal saved portion of the cluster (in addition to the local
workbench, each user has a file directory to save the results). As well,

hadoop fs -1s /dataset-derived/gov/parsed/arcs/bucket-2/

would draw up all the files in Bucket 2 of the parsed text ARCS directory.

A.4 Defining Search Terms

Scripts that deal with text are best written in Apache Pig. Hadoop also supports Apache Hive,
Giraffe and Spark. To find and collect terms or URLs of interest, users will need to write a
script. For example, users might write a script to flag any captures that have a mention of a
global warming term, and return the date of the capture, URL, page title, checksum, and the
parsed text. This script is saved on your local workbench and needs to have a .pig suffix. Users
will need to use some sort of bash editor to write and store the script such as vi (details about

17

http://documentation.altiscale.com/configure-ssh-from-mac-linux
http://documentation.altiscale.com/configure-ssh-from-mac-linux
http://documentation.altiscale.com/configure-ssh-from-mac-linux
https://github.com/vinaygoel/archive-analysis/tree/master/hive/cdx
https://github.com/vinaygoel/archive-analysis/tree/master/hive/cdx
http://hadoop.apache.org/docs/current1/file_system_shell.html

how to use vi can be found above). Script is below. The first four lines are defaults and also
set the memory.

Script begins:

SET default_parallel 100;

SET mapreduce.map.memory.mb 8192;

SET mapred.max.map.failures.percent 10;

REGISTER lib/ia-porky-jar-with-dependencies. jar;

DEFINE FROMJSON org.archive.porky.FromJSON() ;

DEFINE SequenceFileloader org.archive.porky.SequenceFileLoader();
DEFINE SURTURL org.archive.porky.SurtUrlKey();

The sequence file loader pulls the files out of the ARC/WARC format and makes them readable.
Note, when they were put into the ARC/WARC format, the were run through a HTML parser
to remove the HI'ML boilerplate. However, if the file was not in HTML to begin with, the
parser will just produce symbols and this won’t fix it. Users will have to deal with those issues
separately.

When loading data on the command line (instructions below), give the data a name (here
$I_Parsed_Data) and make sure to use the same “name” for the data in the command line
command. This is a stand-in for the name of the directory or file over which you will run a
script.

Archive = LOAD "\$I_PARSED_DATA" USING SequenceFileLoader()

AS (key:chararray, value:chararray);

Archive = FOREACH Archive GENERATE FROMJSON(value) AS m:[];

Archive = FILTER Archive BY m#‘errorMessage’ is null;

ExtractedCounts = FOREACH Archive GENERATE m#‘url’ AS src:chararray,
SURTURL (m# ‘url’) AS surt:chararray,

REPLACE(m#‘digest’, ‘shal:’,’’) AS checksum:chararray,

SUBSTRING (m#‘date’, 0, 8) AS date:chararray,

REPLACE (m#‘code’, ‘["\\p{Graph}]’, ¢ ’) AS code:chararray,
REPLACE(m#‘title’, ‘["\\p{Graphl}]’, ¢ ’) AS title:chararray,

REPLACE (m#‘description’, ‘["\\p{Graph}]’, ¢ ’)AS description:chararray,
REPLACE (m#‘content’, ‘["\\p{Graphl}]’, ¢ ’) AS content:chararray;

The above code block says: for each value and key pair, pull out the following fields. Chararray
means character array - so a list of characters with no limits on what sort of content may be
included in that field. The next line selects the first eight characters of the date string (year,
month, day). The full format is year, month, day, hour, second. Unicode errors can wreck havoc
on script and outputs. The regular expression pGraph means “all printed characters”— e.g.,
NOT new lines, carriage returns, etc. So, this query finds anything that is not text, punctua-
tion and white space, and replaces it with a space. Also note that because Pig is under-written
in Java, users need two escape characters in these scripts (whereas only one is needed in Python).

UniqueCaptures = FILTER ExtractedCounts BY content

18

MATCHES °.*naturall\s+disaster.*’ OR content MATCHES
¢ .*desertification.*’ OR content MATCHES
‘.xclimate\\s+change.*’ OR content MATCHES

¢ .*pollution.*’ OR content MATCHES

¢ .*ocean\\s+acidification.*’ OR content MATCHES

¢ .*anthropocene.*’ OR content MATCHES

¢ .*xanthropogenic.*’ OR content MATCHES

¢ .xgreenhouse\\s+gas.*’ OR content MATCHES
‘.*climategate.*’ OR content MATCHES
¢.*xclimatic\\s+research\\s+unit.*’ OR content MATCHES
¢ .xsecurity\\s+of\\s+food.*’ OR content MATCHES

¢ .xglobal\\s+warming.*’ OR content MATCHES

¢ .xfresh\\s+water.*’ OR content MATCHES

¢ .*forest\\s+conservation.*’ OR content MATCHES
.xfood\\s+security.*’;

This filters out the pages with key words of interest (in this case words related to climate
change) and keeps only those pages.

STORE UniqueCaptures INTO ‘\$0_DATA_DIR’ USING PigStorage(’\u0001’);\\

This stores the counts the file name given to it. The “using pigstorage” function allows users
to set their own delimiters. I chose a Unicode delimiter because commas/tabs show up in the
existing text. And, since I stripped out all Unicode above, this should be clearly a new field.

Save this script to your local workbench.

Another option would be to count all the mentions of specific terms. Instead of the above, users
would run:

SET default_parallel 100;

SET mapreduce.map.memory.mb 8192;

SET mapred.max.map.failures.percent 10;

REGISTER 1lib/ia-porky-jar-with-dependencies.jar;

This line allows you to load user defined fuctions from a Python file:

REGISTER ‘UDFs.py’ USING jython AS myfuncs;
DEFINE FROMJSON org.archive.porky.FromJSON() ;

DEFINE SequenceFileloader org.archive.porky.SequenceFileLoader();
DEFINE SURTURL org.archive.porky.SurtUrlKey();
Archive = LOAD ‘\$I_PARSED_DATA’ USING SequenceFileLoader ()
AS (key:chararray, value:chararray);
Archive = FOREACH Archive GENERATE FROMJSON(value) AS m:[];
Archive = FILTER Archive BY m#‘errorMessage’ is null;
ExtractedCounts = FOREACH Archive GENERATE m#‘url’ AS src:chararray,
SURTURL (m# ‘url’) AS surt:chararray,
REPLACE(m#°‘digest’, ‘shal:’,‘’) AS checksum:chararray,

19

SUBSTRING (m#‘date’, 0, 8) AS date:chararray,

REPLACE (m#‘code’, ‘["\\p{Graph}]’, ¢ ’) AS code:chararray,
REPLACE(m#‘title’, ‘[“\\p{Graph}]’, ¢ ’) AS title:chararray,

REPLACE (m#‘description’, ‘[~\\p{Graph}]’, ¢ ’)AS description:chararray,
REPLACE (m# ‘content’, ‘["\\p{Graph}]’, ¢ ’) AS content:chararray;

If a user has function which selects certain URLs of interest and groups all other URLs as
“other”, they would run it only on the URL field. And, if a user has a function that collects
words of interest and counts them as well as total words, the user should run that through the
content field. Code for using those UDFs would look something like this:

UniqueCaptures = FOREACH ExtractedCounts GENERATE myfuncs.pickURLs(src),
src AS src,
surt AS surt,
checksum AS checksum,
date AS date,
myfuncs.Threat_countWords(content) ;

)

In Pig, and the default delimiter is ’ (new line) but many ‘" appear in text. So one must get
rid of all the new lines in the text. This will affect our ablity to do text parsing by paragraph,
but sentences will still be possible. Code to get rid of the * (new line deliminaters) which are
causing problems with reading in tables might look something like this:

UniqueCaptures = FOREACH UniqueCaptures GENERATE REPLACE(content, ‘\n’, ¢ ’);

To get TOTAL number of counts of webpages, rather than simply unique observations, merge
with checksum data:

Checksum = LOAD ‘\$I_CHECKSUM_DATA’ USING PigStorage() AS (surt:chararray,
date:chararray, checksum:chararray);

CountsJoinChecksum = JOIN UniqueCaptures BY (surt,
checksum), Checksum BY (surt, checksum);

FullCounts = FOREACH CountsJoinChecksum GENERATE
UniqueCaptures::src as src,
Checksum: :date as date,
UniqueCaptures::counts as counts,
UniqueCaptures: :URLs as URLs;

This would sort counts by original “source” or URL:
GroupedCounts = GROUP FullCounts BY src;
This fills in the missing counts and stores results:

GroupedCounts = FOREACH GroupedCounts GENERATE
group AS src,
FLATTEN (myfuncs.fillInCounts(FullCounts)) AS (year:int,
month:int, word:chararray, count:int, filled:int,
afterlast:int, URLs:chararray);

STORE GroupedCounts INTO ‘\$0_DATA_DIR’;

The UDFs mention here (pickURLs, Threat_countWords, and FillinCounts) are written in
Python and can be seen in at the bottom of this Appendix.

20

A.5 Running the Script

To run this script, type the following code into the command line, after having logged in the
Altiscale cluster with your ssh key. Users will select the file or bucket they want to run the
script over, and type in an “output” directory (this will appear on your home/saved data on the
cluster, not on your local workbench). Finally, users need to tell Hadoop which script they want
to run. The I_.PARSED_DATA was defined as the location of the data to run the script over in
the script above. Here we telling the computer that this bucket is the PARSED _DATA. Next,
one must load the CHECKSUM data, and finally, give the output directory, and the location
of your script.

The following should be run all as one line:

pig -p I_PARSED_DATA=/dataset-derived/gov/parsed/arcs/bucket-2/
-p I_CHECKSUM_DATA=/dataset/gov/url-ts-checksum/

-p O_DATA_DIR=place_where_you_want_the_file_to_end_up
location_of_your_script/scriptname.pig

A.6 Exporting Results

Lastly, to remove results from the cluster users need to open a new Unix shell on their local
machine that is NOT logged in to the cluster with their ssh key. Then type the location of the
file they’d like to copy and give it a file path for where they’d like to put it on their desktop.
For example:

The following should be run all as one line:

scp -r altiscale:”/results_location
/location_on_your_computer_you_want_to_move_results_to/

For additional scripts and for those with programing experience, see Vinay Goel’s GitHub at
https://github.com/vinaygoel/archive-analysis. For stepwise instruction of a wordcount
script, see Emily Gade’s GitHub at https://github.com/ekgade/.govDataAnalysis

Python UDFs:

#import packages

from collections import defaultdict
import sys

import re

#define output schema so the UDF can talk to Pig
Q@outputSchema("URLs:chararray")

define Function
def pickURLs(url):
try:
these can be any regular expressions
keyURLs = [
‘state\.gov’,

21

https://github.com/vinaygoel/archive-analysis
https://github.com/ekgade/.govDataAnalysis

‘treasury\.gov’,
‘defense\.gov’,
‘dod\.gov’,
‘usdoj\.gov’,
‘doi\.gov’,
‘usda\.gov’,
‘commerce\.gov’,
‘dol\.gov’,
‘hhs\.gov’,
‘dot\.gov’,
‘energy\.gov’,
‘ed\.gov’,
‘va\.gov’,
‘dhs\.gov’,
‘whitehouse\.gov’,
‘\.senate\.gov’,
‘\.house\.gov’]

URLs = []
for i in range(len(keyURLs)):
tmp = len(re.findall(keyURLs[i], url, re.IGNORECASE))
if tmp > O:
return keyURLs[i]
return ‘other’

counting words

#define output schema as a "bag" with the word and then the count of the word
@outputSchema("counts:bag{tuple(word:chararray,count:int)}")

def Threat_countWords(content):
try:

these can be any regular expressions

Threat_Words = [
‘(natural\sdisaster)’,
‘(global\swarming) ’,
¢ (fresh\swater)’,
‘(forest\sconservation)’,
‘(food\ssecurity)’,
¢ (security\sof\sfood)’,
‘desertification’,
¢ (intergovernmental\spanel\son\sclimate\schange)’,
‘(climatic\sresearch\sunit)’,
‘climategate’,
¢ (greenhouse\sgas) ’,
‘anthropogenic’,
‘anthropocene’,
‘(ocean\sacidification)’,

22

‘pollution’,
“(climate\schange)’]

#if you want a total of each URL or page, include a total count
threat_counts = defaultdict(int)
threat_counts[‘total’] = 0

if not content or not isinstance(content, unicode):
return [((‘total’), 0)]
threat_counts[‘total’] = len(content.split())

for i in range(len(Threat_Words)):
tmp = len(re.findall(Threat_Words[i], content, re.IGNORECASE))
if tmp > O:
threat_counts[Threat_Words[i]] = tmp

Convert counts to bag
countBag = []
for word in threat_counts.keys():
countBag.append((word, threat_counts[word]))
return countBag

filling in counts using CHECKSUM and carrying over counts
from the "last seen" count

Q@outputSchema("counts:bag{tuple(year:int, month:int, word:chararray, count:int,
filled:int, afterLast:int, URLs:chararray)}")

def fillInCounts(data):
try:
outBag = []
firstYear = 2013
firstMonth = 9
lastYear = 0
lastMonth = 0
used to compute averages for months with multiple captures
word -> (year, month) -> count
counts = defaultdict(lambda : defaultdict(list))
lastCapture0fMonth = defaultdict(int)
end0fMonthCounts = defaultdict(lambda : defaultdict(lambda:
dict({‘date’:0, ‘count’:0})))
seenDates = {}
#task for max observed date
for (src, date, wordCounts, urls) in data:
for (word, countTmp) in wordCounts:
year = int(date[0:4])
month = int(date[4:6])
if isinstance(countTmp,str) or isinstance(countTmp,int):

23

count = int(countTmp)
else:
continue

ymtup = (year, month)
counts [word] [ymtup] . append (count)

if date > lastCaptureOfMonth[ymtup] :
lastCapture0fMonth [ymtup] = date

if date > endOfMonthCounts[word] [ymtup] [’date’]:
end0fMonthCounts [word] [ymtup] [’date’] = date
end0fMonthCounts [word] [ymtup] [’count’] = count

seenDates[(year,month)] = True

if year < firstYear:
firstYear = year
firstMonth = month

elif year == firstYear and month < firstMonth:
firstMonth = month

elif year > lastYear:
lastYear = year
lastMonth = month

elif year == lastYear and month > lastMonth:
lastMonth = month

for word in counts.keys(Q):
The data was collected until Sep 2013
make sure that you aren’t continueing into the future
years = range(firstYear, 2014)
useCount = 0
afterLast = False
filled = False
ymLastUsed = (0,0)
for y in years:
if y > lastYear:
afterLast = True
if y == firstYear:
mStart = firstMonth

else:

mStart = 1
if y == 2013:

mEnd = 9
else:

mEnd = 12

for m in range(mStart, mEnd+1):
if y == lastYear and m > lastMonth:
pass

24

H H H H H

if (y,m) in seenDates:

Output sum, as we will divide by sum of totals later

useCount = sum(counts[word] [(y,m)])

ymLastUsed = (y,m)

filled = False

else:

If we didn’t see this date in the capture, we want to use the last capture we saw
previously (we might have two captures in Feb, so for Feb we output both,
but to fill-in for March we would only output the final Feb count)
Automatically output an assumed total for each month (other words

may no longer exist)

if endO0fMonthCounts [word] [ymLastUsed] [’date’] ==
lastCaptureOfMonth [ymLastUsed] :
useCount = end0fMonthCounts [word] [ymLastUsed] [’count’]
else:
continue
filled = True
if useCount ==
continue
outBag.append((y, m, word, useCount, int(filled), int(afterLast), urls))

25

Financial

cftc\.gov

doj\.gov
fanniemae\.com
fasb\.org

fdic\.gov
federalreserve\.gov
ffiec\.gov

fhfa\.gov

fhfb\.gov

finra\.org
freddiemac\.com
fslic

ftc\.gov

gao\.gov
ginniemae\.gov
gsa\.gov

hhs\.gov
homeloans\.va\.gov

makinghomeaffordable\.

ncual.gov
sec\.gov
sipc\.org
treasury\.gov

B Appendix II: Lists of URLs and Terms

Figure 8: URLS

Terrorism
atf\.gov
cdc\.gov
cia\.gov
defense\.gov
dod\.gov
doe\.gov
doj\.gov
dot\.gov
eia\.gov
faa\.gov
fhi\.gov
fema\.gov
gao\.gov
gsa\.gov
ice\.gov
nsa\.gov
nsf\.gov

secretservice\.gov

state\.gov
treasury\.gov
usaid\.gov
usda\.gov
usphs\.gov

26

Climate
doe\.gov
doi\.gov
dot\.gov
eia\.gov
epa\.gov
fema\.gov
fws\.gov
gao\.gov
gsa\.gov
nasa\.gov
noaa\.gov
nps\.gov
nsf\.gov
occ\.gov
state\.gov
usaid\.gov
usda\.gov

usgs\.gov

Figure 9: Terrorism Terms

(9/11%)

(ah-ga*)
(alien\ssmuggl*)
(arms\sprolifer®)
(arms\ssmuggl®)
(arms\stransfer®)
(assassin®)

(atrocit®)
(authoritarian\spopul®)
(ballistic\smissile)
(bin\sladen)
(biological\sweapon™®)
(biopreparedness)
(bioregulator*)
(biosecurity)
(bioterror®)
(bordenssecurity)
(catastrophicishealth\seve
(chemical\sweapon®)
(collateralize™)
(conventionahsarm®)
(counterterror®)
(critical\sinfrastructure)
(cyber\-attack®)
(cybensattack*)
(cyberattack)
(cybersecurit®)
(cyberterror®)
(cyberwar*)
(cyberwarfare)
(dirty\sbomb)
(disease™®)
(dual\-use\sgood*)
(electronic\swar*)
(fissile\smaterial)
(food\ssecurity)
(fragile\sstate*)
(fundamentalis®)
(genocide*)

(hijack*)
(hostile\sstate*)
(ifsyoulsseelssomethingy,
(illegalismigration)

(improvisedisexplosive\sde

(insurgen®)
(irresponsible\sstate®)
(jihad)

(known\sand\ssuspectediste

(ksts)

(massiscasualt*)
(massive\scasualt®)
(military\sforce®)
(non\-state\sactor®)
(pandemic*)

(proliferat*)

(proliferation)
(radiological)

(securitiz*)

(security)
(septembenis11¥)
(suspicious\sactivity)
(taliban)

(terror*)

(terrorism)

(terrorist)

(threat*)
(viclat[a-z]+?\s?0?f?\sint
(violat[a-z]+Ns70?f\su?n
(viclentisconflict)
(violent\sextremis*)
(weapon[a-z]+?\sofismassis
(wmd)
(zoonotic\sdisease*)

SELECT TERMS

(proliferat™)
(septembernis11¥)

(terrorism)

(terrorist)
(weapon[a-z]+?\sofismass\s
(wmd)

27

Figure 10: Finance Terms

(adjustable\-rate\smortgag
(bailout*)

(bubble)
(capital\srequirement®)
(cdo)
(conservatorship)
(default)
(exposure)
(fannie\smae)
(financial\sfraud)
(foreclosure)
(freddie\smac)
(ginnie\smae)
(haircut)
(homeisprice™®)
(insolvent)
(lehman)

(leverag®)
(liguidity)
(mortgage-bhacked)
(panic)

(plunge)
(predatory)
(receivership)
(shadow)
(sluggish\seconomicisgrowt
(solvency)
(speculat®)
(sub\-prime)
(subprime)
(systemic\srisk)
(toxic)

SELECT TERMS
(bubble)
(default)
(fannie\smae)
(foreclosure)
(freddie\smac)
(haircut)
(lehman)
(liguidity)
(subprime)
(systemic\srisk)

28

Figure 11: Climate Terms

(adaptation)
(alternativetsenergy)
(anthropoc®)
(anthropog™®)
(carbon)

(cfe)
(clean\senergy)
(climate)
(climate\schange)
(climategate)

(co2)
(desertification)
(emission®)
(energy\sefficiency)
(fresh\swater)
(global\swarm®)
(greenhouse)

(gse)
(hockey\sstick)
(hydrocarbon®)
(ipcce)

(kyoto)

(methane)
(mitigation)

(ozone)
(sealslevelsrise)
(sea\ssurface)
(unfcc)
(unitedisnations\sframewor
(warming)

SELECT TERMS
(anthropoc®)
(anthropog®)

(cfc)
(climate\schange)
(co2)
(globaliswarm®)
(greenhouse)
(ipcc)

(kyoto)

(ozone)

29

	Introduction
	The Internet Archive

	.GOV: Government on the Internet
	Messy Data

	Big Data and Distributed Computing
	Querying .GOV
	Obtaining a key and creating a workbench
	Writing scripts to extract information

	Application: Government Attention to the Financial Crisis, Terrorism, and Climate Change
	Collecting the data
	Overall Trends

	Conclusion
	Appendix I
	Overview
	Getting a Key
	Locating the Data
	Defining Search Terms
	Running the Script
	Exporting Results

	Appendix II: Lists of URLs and Terms

