
A Appendix I

The following script flags all webpages that include one or more mentions of the term ‘climate
change’ and stores the full text of those captures. We begin with an overview of the process of
running jobs on the cluster, and then provide specific code. For questions, please contact the
authors.

A.1 Overview

Running scripts on the cluster requires a basic understanding of bash (Unix) shell commands
using the Command Line on a home computer (on a Mac, this is the program “Terminal”).
For a basic run down of bash commands, see http://cli.learncodethehardway.org/bash_

cheat_sheet.pdf.

Begin by opening a bash shell on a home desktop, and using an ssh key obtained from
Altiscale to log in. Once logged in, you will be on your personal workbench and now have to use a
script editor (such as Vi http://www.catonmat.net/download/bash-vi-editing-mode-cheat-
sheet.pdf). Come up with a name for the script, open the editor, and then either paste or
write the desired script in the editor, close and save the file (to your personal workbench on
the cluster).

Scripts must be written in Hadoop-accesable languages, such as Apache Pig, Hive, Gi-
raph or Oozie. Apache langagues are SQL-like, which means if you have experience with SQL,
MySQL, SQLlite or PostgreSQL (or R or Python), the jump should not be too big. For text
processing, Apache Pig is most appropriate, whereas for link anaylsis, Hive is best. The script
below is written in Apache Pig and a manual can be found at https://pig.apache.org/.
For an example of some scripts written for this cluster, see https://webarchive.jira.com/

wiki/display/Iresearch/IA+-+GOV+dataset+-+Altiscale. May be easiest to it “clone” the
“archive analysis” file hosted on GitHub from Vinay Goel https://github.com/vinaygoel
or three basic scripts from Emily Gade https://github.com/ekgade/.govDataAnalysis and
use those as a launchpoint. If you don’t know how to use GitHub, see here: https://guides.
github.com/activities/hello-world/(it is actually quite straightforward).

Because Apache languages have limited functionality, users may want to write user de-
fined functions in a program like Python. A tutorial about how to do this can be found at
https://help.mortardata.com/technologies/pig/writing_python_udfs.

Once a script is written, you will want to run it on a segment of the cluster. This re-
quires another set of Unix style Hadoop shell commands (see http://hadoop.apache.org/

docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html). Users must
then specify the file path(s), the desired output directory, and where the script can be found.

A.2 Getting a Key

As discussed above, this script is run from your workbench on the cluster. To gain acesss,
you will need to set up an SSH “key” with Altiscale (see http://documentation.altiscale.

16

http://cli.learncodethehardway.org/bash_cheat_sheet.pdf
http://cli.learncodethehardway.org/bash_cheat_sheet.pdf
http://www.catonmat.net/download/bash-vi-editing-mode-cheat
https://pig.apache.org/
https://webarchive.jira.com/wiki/display/Iresearch/IA+-+GOV+dataset+-+Altiscale
https://webarchive.jira.com/wiki/display/Iresearch/IA+-+GOV+dataset+-+Altiscale
https://github.com/vinaygoel
https://github.com/ekgade/.govDataAnalysis
https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/hello-world/
https://help.mortardata.com/technologies/pig/writing_python_udfs
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html
http://documentation.altiscale.com/configure-ssh-from-mac-linux
http://documentation.altiscale.com/configure-ssh-from-mac-linux
http://documentation.altiscale.com/configure-ssh-from-mac-linux

com/configure-ssh-from-mac-linux). Once you have obtained and sent your SSH key to
Alitscale, you can log in using any bash shell from your desktop with the commmand “ssh
altiscale”.

A.3 Locating the Data

The Altiscale cluster houses 9 “buckets” of .GOV data. Each bucket contains hundreds or
thousands of Web Archive Files (older version are “ARC” files, newer version are “WARC”
files, but they have all the same fields). Each WARC/ARC file contains captures from the same
crawl, but it (a) won’t contain all of the captures from a given crawl, and (b) since the crawl is
doing a lot of things simultaneously, captures of a single site can be located in diffrerent WARC
files.

With so much data, there is no simple “table” or directory that can be consulted to
locate a specific web page. The best way to find specific pages is to use Hive to query
the CDX database. See Vinay Goel’s GitHub for details about how to query CDX: https:
//github.com/vinaygoel/archive-analysis/tree/master/hive/cdx. If a user know ex-
actly what he or she wants (all the captures of the whitehouse.gov mainpage, or all the captures
from September 11, 2001), the CDX can tell you where to find them. Otherwise, users will
want to query all of the buckets because there is no easy way to learn where results are stored.
(Though we advise first testing scripts on a single bucket or WARC file.)

First, use the command line with SSH interface to query the data directories and see
which buckets or files to run a job over. This requires the Hadoop syntax to “talk” to the
cluster where all the data is stored. The cluster has a user-specific directory where users can
store the results of scrapes. A user’s local work bench does not have enough space to save them.

Whenever users “talk” from a user’s local workbench to the main cluster, users need to
use ‘hadoop fs -’ and then the bash shell command of interest. For a list of Hadoop-friendly bash
shell comands, see: http://hadoop.apache.org/docs/current1/file_system_shell.html.
For example, the line of code

hadoop fs -ls

pulls a listing of the files in your personal saved portion of the cluster (in addition to the local
workbench, each user has a file directory to save the results). As well,

hadoop fs -ls /dataset-derived/gov/parsed/arcs/bucket-2/

would draw up all the files in Bucket 2 of the parsed text ARCS directory.

A.4 Defining Search Terms

Scripts that deal with text are best written in Apache Pig. Hadoop also supports Apache Hive,
Giraffe and Spark. To find and collect terms or URLs of interest, users will need to write a
script. For example, users might write a script to flag any captures that have a mention of a
global warming term, and return the date of the capture, URL, page title, checksum, and the
parsed text. This script is saved on your local workbench and needs to have a .pig suffix. Users
will need to use some sort of bash editor to write and store the script such as vi (details about

17

http://documentation.altiscale.com/configure-ssh-from-mac-linux
http://documentation.altiscale.com/configure-ssh-from-mac-linux
http://documentation.altiscale.com/configure-ssh-from-mac-linux
https://github.com/vinaygoel/archive-analysis/tree/master/hive/cdx
https://github.com/vinaygoel/archive-analysis/tree/master/hive/cdx
http://hadoop.apache.org/docs/current1/file_system_shell.html

how to use vi can be found above). Script is below. The first four lines are defaults and also
set the memory.

Script begins:

SET default_parallel 100;

SET mapreduce.map.memory.mb 8192;

SET mapred.max.map.failures.percent 10;

REGISTER lib/ia-porky-jar-with-dependencies.jar;

DEFINE FROMJSON org.archive.porky.FromJSON();

DEFINE SequenceFileLoader org.archive.porky.SequenceFileLoader();

DEFINE SURTURL org.archive.porky.SurtUrlKey();

The sequence file loader pulls the files out of the ARC/WARC format and makes them readable.
Note, when they were put into the ARC/WARC format, the were run through a HTML parser
to remove the HTML boilerplate. However, if the file was not in HTML to begin with, the
parser will just produce symbols and this won’t fix it. Users will have to deal with those issues
separately.

When loading data on the command line (instructions below), give the data a name (here
$I Parsed Data) and make sure to use the same “name” for the data in the command line
command. This is a stand-in for the name of the directory or file over which you will run a
script.

Archive = LOAD "\$I_PARSED_DATA" USING SequenceFileLoader()

AS (key:chararray, value:chararray);

Archive = FOREACH Archive GENERATE FROMJSON(value) AS m:[];

Archive = FILTER Archive BY m#‘errorMessage’ is null;

ExtractedCounts = FOREACH Archive GENERATE m#‘url’ AS src:chararray,

SURTURL(m#‘url’) AS surt:chararray,

REPLACE(m#‘digest’,‘sha1:’,’’) AS checksum:chararray,

SUBSTRING(m#‘date’, 0, 8) AS date:chararray,

REPLACE(m#‘code’, ‘[^\\p{Graph}]’, ‘ ’) AS code:chararray,

REPLACE(m#‘title’, ‘[^\\p{Graph}]’, ‘ ’) AS title:chararray,

REPLACE(m#‘description’, ‘[^\\p{Graph}]’, ‘ ’)AS description:chararray,

REPLACE(m#‘content’, ‘[^\\p{Graph}]’, ‘ ’) AS content:chararray;

The above code block says: for each value and key pair, pull out the following fields. Chararray
means character array - so a list of characters with no limits on what sort of content may be
included in that field. The next line selects the first eight characters of the date string (year,
month, day). The full format is year, month, day, hour, second. Unicode errors can wreck havoc
on script and outputs. The regular expression pGraph means “all printed characters”– e.g.,
NOT new lines, carriage returns, etc. So, this query finds anything that is not text, punctua-
tion and white space, and replaces it with a space. Also note that because Pig is under-written
in Java, users need two escape characters in these scripts (whereas only one is needed in Python).

UniqueCaptures = FILTER ExtractedCounts BY content

18

MATCHES ‘.*natural\\s+disaster.*’ OR content MATCHES

‘.*desertification.*’ OR content MATCHES

‘.*climate\\s+change.*’ OR content MATCHES

‘.*pollution.*’ OR content MATCHES

‘.*ocean\\s+acidification.*’ OR content MATCHES

‘.*anthropocene.*’ OR content MATCHES

‘.*anthropogenic.*’ OR content MATCHES

‘.*greenhouse\\s+gas.*’ OR content MATCHES

‘.*climategate.*’ OR content MATCHES

‘.*climatic\\s+research\\s+unit.*’ OR content MATCHES

‘.*security\\s+of\\s+food.*’ OR content MATCHES

‘.*global\\s+warming.*’ OR content MATCHES

‘.*fresh\\s+water.*’ OR content MATCHES

‘.*forest\\s+conservation.*’ OR content MATCHES

‘.*food\\s+security.*’;

This filters out the pages with key words of interest (in this case words related to climate
change) and keeps only those pages.

STORE UniqueCaptures INTO ‘\$O_DATA_DIR’ USING PigStorage(’\u0001’);\\

This stores the counts the file name given to it. The “using pigstorage” function allows users
to set their own delimiters. I chose a Unicode delimiter because commas/tabs show up in the
existing text. And, since I stripped out all Unicode above, this should be clearly a new field.

Save this script to your local workbench.

Another option would be to count all the mentions of specific terms. Instead of the above, users
would run:

SET default_parallel 100;

SET mapreduce.map.memory.mb 8192;

SET mapred.max.map.failures.percent 10;

REGISTER lib/ia-porky-jar-with-dependencies.jar;

This line allows you to load user defined fuctions from a Python file:

REGISTER ‘UDFs.py’ USING jython AS myfuncs;

DEFINE FROMJSON org.archive.porky.FromJSON();

DEFINE SequenceFileLoader org.archive.porky.SequenceFileLoader();

DEFINE SURTURL org.archive.porky.SurtUrlKey();

Archive = LOAD ‘\$I_PARSED_DATA’ USING SequenceFileLoader()

AS (key:chararray, value:chararray);

Archive = FOREACH Archive GENERATE FROMJSON(value) AS m:[];

Archive = FILTER Archive BY m#‘errorMessage’ is null;

ExtractedCounts = FOREACH Archive GENERATE m#‘url’ AS src:chararray,

SURTURL(m#‘url’) AS surt:chararray,

REPLACE(m#‘digest’,‘sha1:’,‘’) AS checksum:chararray,

19

SUBSTRING(m#‘date’, 0, 8) AS date:chararray,

REPLACE(m#‘code’, ‘[^\\p{Graph}]’, ‘ ’) AS code:chararray,

REPLACE(m#‘title’, ‘[^\\p{Graph}]’, ‘ ’) AS title:chararray,

REPLACE(m#‘description’, ‘[^\\p{Graph}]’, ‘ ’)AS description:chararray,

REPLACE(m#‘content’, ‘[^\\p{Graph}]’, ‘ ’) AS content:chararray;

If a user has function which selects certain URLs of interest and groups all other URLs as
“other”, they would run it only on the URL field. And, if a user has a function that collects
words of interest and counts them as well as total words, the user should run that through the
content field. Code for using those UDFs would look something like this:

UniqueCaptures = FOREACH ExtractedCounts GENERATE myfuncs.pickURLs(src),

src AS src,

surt AS surt,

checksum AS checksum,

date AS date,

myfuncs.Threat_countWords(content);

In Pig, and the default delimiter is ‘’ (new line) but many ‘’ appear in text. So one must get
rid of all the new lines in the text. This will affect our ablity to do text parsing by paragraph,
but sentences will still be possible. Code to get rid of the ‘’ (new line deliminaters) which are
causing problems with reading in tables might look something like this:

UniqueCaptures = FOREACH UniqueCaptures GENERATE REPLACE(content, ‘\n’, ‘ ’);

To get TOTAL number of counts of webpages, rather than simply unique observations, merge
with checksum data:

Checksum = LOAD ‘\$I_CHECKSUM_DATA’ USING PigStorage() AS (surt:chararray,

date:chararray, checksum:chararray);

CountsJoinChecksum = JOIN UniqueCaptures BY (surt,

checksum), Checksum BY (surt, checksum);

FullCounts = FOREACH CountsJoinChecksum GENERATE

UniqueCaptures::src as src,

Checksum::date as date,

UniqueCaptures::counts as counts,

UniqueCaptures::URLs as URLs;

This would sort counts by original “source” or URL:

GroupedCounts = GROUP FullCounts BY src;

This fills in the missing counts and stores results:

GroupedCounts = FOREACH GroupedCounts GENERATE

group AS src,

FLATTEN(myfuncs.fillInCounts(FullCounts)) AS (year:int,

month:int, word:chararray, count:int, filled:int,

afterlast:int, URLs:chararray);

STORE GroupedCounts INTO ‘\$O_DATA_DIR’;

The UDFs mention here (pickURLs, Threat countWords, and FillinCounts) are written in
Python and can be seen in at the bottom of this Appendix.

20

A.5 Running the Script

To run this script, type the following code into the command line, after having logged in the
Altiscale cluster with your ssh key. Users will select the file or bucket they want to run the
script over, and type in an “output” directory (this will appear on your home/saved data on the
cluster, not on your local workbench). Finally, users need to tell Hadoop which script they want
to run. The I PARSED DATA was defined as the location of the data to run the script over in
the script above. Here we telling the computer that this bucket is the I PARSED DATA. Next,
one must load the CHECKSUM data, and finally, give the output directory, and the location
of your script.

The following should be run all as one line:

pig -p I_PARSED_DATA=/dataset-derived/gov/parsed/arcs/bucket-2/

-p I_CHECKSUM_DATA=/dataset/gov/url-ts-checksum/

-p O_DATA_DIR=place_where_you_want_the_file_to_end_up

location_of_your_script/scriptname.pig

A.6 Exporting Results

Lastly, to remove results from the cluster users need to open a new Unix shell on their local
machine that is NOT logged in to the cluster with their ssh key. Then type the location of the
file they’d like to copy and give it a file path for where they’d like to put it on their desktop.
For example:

The following should be run all as one line:

scp -r altiscale:~/results_location

/location_on_your_computer_you_want_to_move_results_to/

For additional scripts and for those with programing experience, see Vinay Goel’s GitHub at
https://github.com/vinaygoel/archive-analysis. For stepwise instruction of a wordcount
script, see Emily Gade’s GitHub at https://github.com/ekgade/.govDataAnalysis.

Python UDFs:

#import packages

from collections import defaultdict

import sys

import re

#define output schema so the UDF can talk to Pig

@outputSchema("URLs:chararray")

define Function

def pickURLs(url):

try:

these can be any regular expressions

keyURLs = [

‘state\.gov’,

21

https://github.com/vinaygoel/archive-analysis
https://github.com/ekgade/.govDataAnalysis

‘treasury\.gov’,

‘defense\.gov’,

‘dod\.gov’,

‘usdoj\.gov’,

‘doi\.gov’,

‘usda\.gov’,

‘commerce\.gov’,

‘dol\.gov’,

‘hhs\.gov’,

‘dot\.gov’,

‘energy\.gov’,

‘ed\.gov’,

‘va\.gov’,

‘dhs\.gov’,

‘whitehouse\.gov’,

‘\.senate\.gov’,

‘\.house\.gov’]

URLs = []

for i in range(len(keyURLs)):

tmp = len(re.findall(keyURLs[i], url, re.IGNORECASE))

if tmp > 0:

return keyURLs[i]

return ‘other’

counting words

#define output schema as a "bag" with the word and then the count of the word

@outputSchema("counts:bag{tuple(word:chararray,count:int)}")

def Threat_countWords(content):

try:

these can be any regular expressions

Threat_Words = [

‘(natural\sdisaster)’,

‘(global\swarming)’,

‘(fresh\swater)’,

‘(forest\sconservation)’,

‘(food\ssecurity)’,

‘(security\sof\sfood)’,

‘desertification’,

‘(intergovernmental\spanel\son\sclimate\schange)’,

‘(climatic\sresearch\sunit)’,

‘climategate’,

‘(greenhouse\sgas)’,

‘anthropogenic’,

‘anthropocene’,

‘(ocean\sacidification)’,

22

‘pollution’,

‘(climate\schange)’]

#if you want a total of each URL or page, include a total count

threat_counts = defaultdict(int)

threat_counts[‘total’] = 0

if not content or not isinstance(content, unicode):

return [((‘total’), 0)]

threat_counts[‘total’] = len(content.split())

for i in range(len(Threat_Words)):

tmp = len(re.findall(Threat_Words[i], content, re.IGNORECASE))

if tmp > 0:

threat_counts[Threat_Words[i]] = tmp

Convert counts to bag

countBag = []

for word in threat_counts.keys():

countBag.append((word, threat_counts[word]))

return countBag

filling in counts using CHECKSUM and carrying over counts

from the "last seen" count

@outputSchema("counts:bag{tuple(year:int, month:int, word:chararray, count:int,

filled:int, afterLast:int, URLs:chararray)}")

def fillInCounts(data):

try:

outBag = []

firstYear = 2013

firstMonth = 9

lastYear = 0

lastMonth = 0

used to compute averages for months with multiple captures

word -> (year, month) -> count

counts = defaultdict(lambda : defaultdict(list))

lastCaptureOfMonth = defaultdict(int)

endOfMonthCounts = defaultdict(lambda : defaultdict(lambda:

dict({‘date’:0,‘count’:0})))

seenDates = {}

#ask for max observed date

for (src, date, wordCounts, urls) in data:

for (word, countTmp) in wordCounts:

year = int(date[0:4])

month = int(date[4:6])

if isinstance(countTmp,str) or isinstance(countTmp,int):

23

count = int(countTmp)

else:

continue

ymtup = (year, month)

counts[word][ymtup].append(count)

if date > lastCaptureOfMonth[ymtup]:

lastCaptureOfMonth[ymtup] = date

if date > endOfMonthCounts[word][ymtup][’date’]:

endOfMonthCounts[word][ymtup][’date’] = date

endOfMonthCounts[word][ymtup][’count’] = count

seenDates[(year,month)] = True

if year < firstYear:

firstYear = year

firstMonth = month

elif year == firstYear and month < firstMonth:

firstMonth = month

elif year > lastYear:

lastYear = year

lastMonth = month

elif year == lastYear and month > lastMonth:

lastMonth = month

for word in counts.keys():

The data was collected until Sep 2013

make sure that you aren’t continueing into the future

years = range(firstYear, 2014)

useCount = 0

afterLast = False

filled = False

ymLastUsed = (0,0)

for y in years:

if y > lastYear:

afterLast = True

if y == firstYear:

mStart = firstMonth

else:

mStart = 1

if y == 2013:

mEnd = 9

else:

mEnd = 12

for m in range(mStart, mEnd+1):

if y == lastYear and m > lastMonth:

pass

24

if (y,m) in seenDates:

Output sum, as we will divide by sum of totals later

useCount = sum(counts[word][(y,m)])

ymLastUsed = (y,m)

filled = False

else:

If we didn’t see this date in the capture, we want to use the last capture we saw

previously (we might have two captures in Feb, so for Feb we output both,

but to fill-in for March we would only output the final Feb count)

Automatically output an assumed total for each month (other words

may no longer exist)

if endOfMonthCounts[word][ymLastUsed][’date’] ==

lastCaptureOfMonth[ymLastUsed]:

useCount = endOfMonthCounts[word][ymLastUsed][’count’]

else:

continue

filled = True

if useCount == 0:

continue

outBag.append((y, m, word, useCount, int(filled), int(afterLast), urls))

25

B Appendix II: Lists of URLs and Terms

Figure 8: URLS

26

Figure 9: Terrorism Terms

27

Figure 10: Finance Terms

28

Figure 11: Climate Terms

29

