
Introduction to Artificial Learning and Computer
Vision

Andreu Casas

Session Outline

1 Artificial Learning

Notes Artificial Intelligence. Sounds fancy, but how does it work?
Module From traditional to artificial learning: predicting which bills will

become law

2 Computer Vision

Notes Convolutional Neural Networks
Module Classifying images with a CNN trained on ImageNet

Artificial Learning
Why?

In the last few years Artificial Neural Networks and deep learning
have drastically improved machine-learning performance.

I Speech-recognition (e.g. Siri, Echo, Alexa)

I Translation (e.g. Google translator)

I Image recognition (e.g. Facebook’s facial recognition photo
tagging)

Artificial Learning
In “conventional” machine learning, we only use a single parameter
matrix: 1 variable = 1 coefficient.

Linear Model: regression formula

yi = β0 + β1x1 + β2x2 + εi

Artificial Learning
In “conventional” machine learning, we only use a single parameter
matrix: 1 variable = 1 coefficient.

Linear Model: compact matrix form

Y = Xβ

y1
y2
y3
y4
...
yn

=

1 x11 x12
1 x21 x22
1 x31 x22
1 x41 x22
...

...
1 xn1 xn2

∗

β0β1
β2

Artificial Learning
In “conventional” machine learning, we only use a single parameter
matrix: 1 variable = 1 coefficient.

I Interested in finding the parameter matrix β that minimizes
predictive error

I This is easy when using a Least Square regression because
there is an analytic solution

β = (X′X)−1X′y

I We can use MLE to find this parameter matrix for more
complex general linear models

Y = logit(Xβ)

Artificial Learning
Conventional machine learning only take us so far... what about
extending the learning process?

What if we use the output of a first model as input of a second
model...

Ŷ1 = X1β1

Ŷ2 = X2β2

where

Ŷ1 = X2

and we try to minimize Y − Ŷ2 instead of Y − Ŷ1?

This is what we call a Neural Network or Artificial Neural Network!

Artificial Learning
Matrix multiplication is the key to understand neural nets!

When you multiply matrices remember that:

I the number of columns in the first matrix has to be the same
than the number of rows in the second matrix

I the number of rows of the resulting matrix will equal the
number of rows of the first matrix, and the number of columns
will equal the number of columns of the second matrix

A[n, k] ∗ B[k , z] = C [n, z]

Artificial Learning
Matrix multiplication is the key to understand neural nets!

Instead of a simple linear or general linear model we can have a
model that looks like this...

Sigmoid(X1[1000, 4] β1[4, 250]) β2[250, 1] = Y[1000, 1]

...

(1) X1[1000, 4] β1[4, 250] → X2[1000, 250]

(2) Sigmoid(X2[1000, 250]) → X2b[1000, 250]

(3) X2b[1000, 250] β2[250, 1] → Ŷ[1000, 1]

We calculate the parameters in the matrices β1 and β2 using e.g.
Stochastic Gradient Descent → iterating until convergence

Artificial Learning
Some basic terminology... different words for some familiar concepts

I input layer: the original data matrix (X)

I weight/s: a single parameter (βij) / parameter matrix (β)

I bias: the intercept parameter matrix (α or β0)

I ReLu, Sigmoid, Tanh: non-linear transformation we apply to
X matrices. Also known as activation functions

I hidden layer: X1,X2, ... a new intermediate representation of
the input

I loss function: the function we want to minimize (e.g. Ŷ−Y)

I regularization: transformations we apply to the loss function
(e.g. |Ŷ − Y| → L1 and (Ŷ − Y)2 → L2)

I dropout: setting some βij from a β matrix to 0 at random

I forward propagation: performing all matrix multiplications

I backpropagation: calculating Stochastic Gradient Descent

I graph: a model

Artificial Learning
Some more terminology and... hyperparemeters, the dark mysteries of
neural nets

I train-validation-test split: 80-10-10? 50-25-25?

I batch size: the number of training observations we use for
training in a given iteration

I epochs: number of training iterations

I dropout rate: the probability re-initializing a given weight

I learning rate: by how much we update the weights at each
training iteration

There are some conventions people follow. Since we are preforming
supervised training, we always look for the hyperparemeters that
achieve the highest out-of-sample accuracy.

Artificial Learning
Neural nets are often represented this way

To be fair, the term “deep learning” should be used only when the
neural networks have a several hidden layers. But how deep does a
neural net to be in order to be considered deep learning?

Artificial Learning
Fine tuning or transfer learning

Slightly tweaking an already trained neural net to predict a
different outcome

I Retraining the whole neural net with new data

I Retraining part of the neural net with new data

I Adding or changing layers

Artificial Learning
Let’s play with a neural net!

[Module]
From traditional to artificial learning: predicting

which bills will become law

Convolutional Neural Nets for Computer Vision
Two main differences

(1) Images as inputs: 3-dimensional matrices (width x height x depth)

X =

x111 x112 . . . x11n
x121 x122 . . . x12n
x131 x132 . . . x13n
x141 x142 . . . x14n
...

...
x1n1 x1n2 . . . x1nn

,

x211 x212 . . . x21n
x221 x222 . . . x22n
x231 x232 . . . x23n
x241 x242 . . . x24n
...

...
x2n1 x2n2 . . . x2nn

,

x311 x312 . . . x31n
x321 x322 . . . x32n
x331 x332 . . . x33n
x341 x342 . . . x34n
...

...
x3n1 x3n2 . . . x3nn

Convolutional Neural Nets for Computer Vision
Two main differences

(2) Weights (filters) are not connected to the whole input
volume: convolution.

Convolutional Neural Nets for Computer Vision
Some new terminology... and more hyperparameters

I input volume: a 3-dimensional input

I convolutional layer: a 3-dimensional layer where
convolutional filters are applied to the input volume. FxFxK
where F is the width and height of the filter, and K is the
number of filters in the layer → 3x3x2 in the previous example

I stride: the number of pixels we move the filter at a time.
This is 2 in the previous example

I zero-padding: adding zeros around the input border (it’s still
unclear to me why we do this)

I pooling layer: a layer where we reduce the size the output of
a convolutional layer. From 224x224x64 to 112x112x64 for
example.

Convolutional Neural Nets for Computer Vision
Some new terminology... and more hyperparameters

I fully connected layer: a layer of weights that are connected
to the whole input volume. These are usually at the end of a
network

I softmax: a multi-class classifier. This is basically a
multinomial logit model that uses the output of the last
fully-connected layer to predict the final classes of interest

Convolutional Neural Nets for Computer Vision
This is how a ConvNet looks like

Convolutional Neural Nets for Computer Vision
VGG16’s architecture

Convolutional Neural Nets for Computer Vision
Let’s practice!

[Module]
Classifying images with VGG16

