
Python for R Users in the Social Sciences: Lesson 3
Aaron Erlich

March 17, 2013

1 Dictionaries
Dictionaries look very different than the storage logic of an R data matrix, but they share something
in common. In R if you have a data frame and you want to access a specific variable you can find
it by using the $ sign. Dictionaries is a type of data that store data has a key, value pair. The
key is kind of like a variable name and the value is the data value. A value can be a string, a list,
another dictionary (nested) !, or a data type we are soon going to meet: the tuple.

We learned that lists are mutable. Dictionaries are also mutable. While lists are defined by
Python with the square brackets [], dictionaries are defined by the curly braces { }. We can
access a dictionary’s values by using the square brackets and the name of the key values. We can
also access all the keys by using the keys() method and the values with the values() method.

Let’s look at a very small data frame in R.

> DOI <- c(1963, 1776)
> pop <- c(4e+07, 3e+08)
> subnat <- c("Kilifi, Nairobi", "WA, ME")
> countryMatrix <- matrix(c(DOI, pop, subnat), nrow = 2, ncol = 3,
+ dimnames = list(c("USA", "KEN"), c("DOI", "pop", "subnat")))
> print(countryMatrix)

DOI pop subnat
USA "1963" "4e+07" "Kilifi, Nairobi"
KEN "1776" "3e+08" "WA, ME"

We can see immediately that the typical matrix for data with multiple non-orthogonal dimen-
sions is going to be difficult to deal with in an R matrix. We could add an extra column for each
subnational unit. But that would lead to a lot of NAs in the data set. Let’s see how the Python
dictionary would handle this.

1 >>> KEN = {'DOI': 1963, 'pop': 40000000, "subnat": ['Kilifi', 'Nairobi']}
2 >>> print(KEN) #order not maintained
3 {'DOI': 1963, 'subnat': ['Kilifi', 'Nairobi'], 'pop': 40000000}
4 >>> print(KEN['pop'])
5 40000000
6 >>> print(KEN.keys())

1

7 ['DOI', 'subnat', 'pop']
8 >>> print(KEN.values())
9 [1963, ['Kilifi', 'Nairobi'], 40000000]

Like lists we can also add an element into our dictionary or add to nested objects. We do this
but using brackets. To reiterate, the brackets reference a key in a dictionary. This use of brackets
has no relationship to a list.

1 >>> USA = {'DOI': 1776, 'pop': 300000000, "subnat": ['WA', 'ME']}
2 >>> USA['flagname'] = "Stars and Strips" #add an element with the key "flagname"
3 >>> USA['subnat'].append('OR')
4 >>> print(USA['flagname'], USA['subnat'])
5 ('Stars and Strips', ['WA', 'ME', 'OR'])

We could also put our two dicionaries into a list. Then ’subnat’ would be a list in a dictionary
in a list. There are often quite deeply nested sets of dictionaries and lists in Python. Let’s calculate
the number of years from independence in our two countries.

1 >>> USA = {'DOI': 1776, 'pop': 300000000, "subnat": ['WA', 'ME']}
2 >>> KEN = {'DOI': 1963, 'pop': 40000000, "subnat": ['Kilifi', 'Nairobi']}
3 >>> countries = [USA, KEN]
4 >>> [2013-country['DOI'] for country in countries]
5 [237, 50]

As you can see this approach is a fundamentally different way of storing data than we would
store in R. It has many nice properties, however, for data analysis we will want to return to our
more commonly used structures. However, in the process of organizing our munging our data, we
will definitely come across and use dictionaries.

2 Tuples
What the heck is a tuple? And how do you pronounce it? Well, there seems to be some variation
but pronounce the words ”two” and ”pull” and you will have the basic idea. The basic idea behind
tuples is that they are immutable lists. And how does Python recognize they are tuples? By
putting them in normal parentheses—like () Besides potentially encountering tuples when you
call some function, you will want tuples if you are going to pass data around for different functions
to access and you want to make sure it doesn’t get changed int the process

1 >>> countryCodes = ('RUS', 'AFG', 'GER')
2 >>> type(countryCodes)
3 <type 'tuple'>
4 >>> countryCodes.append('GEO')
5 Traceback (most recent call last):
6 File "<stdin>", line 1, in <module>
7 AttributeError: 'tuple' object has no attribute 'append'

2

Here we see that we cannot append anything to our tuple because it is immutable. Tuples
probably will not come up immediately, but keep them in the back of your head.

3

	Dictionaries
	Tuples

