
Images as Data: Computer Vision for Social Science Research ∗

Andreu Casas and Nora Webb Williams

March 2017

WORK IN PROGRESS: PLEASE DO NOT CITE WITHOUT PERMISSION

Prepared for MPSA 2017, April 6-9

Abstract

Social scientists have long argued that images play a crucial role in politics. This role is
heightened by the bombardment of images that people experience today. Digitization has both
increased the presence of images in daily life and made it easier for scholars to access and collect
large quantities of pictures and videos. However, using images as data for social science inference
is an arduous task. Political scientists have therefore often turned to other data sources and
puzzles, leaving substantive theoretical questions unanswered. Fortunately, recent innovations
in computer vision can reduce the costs of using images as data. The goals of this project are
twofold. First, we build on existing computer vision methods to present a set of automatic
techniques that will aid political scientists working with images. We highlight the potential of
Convolutional Neural Nets for automatic object detection and recognition; for face detection
and recognition; and for visual sentiment analysis. Second, we apply these techniques to a novel
dataset of Black Lives Matter Twitter protest images, demonstrating the ability of computer
vision methods to replicate gold standard manual image labels.
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1 Introduction

Images play a crucial role in politics. For example, newspaper images raise awareness about political

topics and contribute to issue framing (Corrigall-Brown and Wilkes 2012; Brantner, Lobinger, and

Irmgard 2011), images of political candidates affect people’s perceptions and votes (Rosenberg et al.

1986), and protest images shared via social media contribute to the diffusion of social movements

and protests online (Kharroub and Bas 2015; Casas and Webb Williams 2017). Compared to other

forms of communication, images reduce information-processing costs and have a larger impact on

people’s attitudes and behavior (Kraidy2002; Graber 1996; Barry 2002; Grabe and Bucy 2009;

Iyer and Oldmeadow 2006; Gazzaniga 1998). However, although people today are bombarded with

more images than ever before in human history, systematic large-n studies of images in political

life are rare (see for some preliminary studies Kharroub and Bas 2015; Anastasopoulos et al. 2016;

Casas and Webb Williams 2017). This is in part due to the large costs associated with manually

labeling even small datasets of images for political science inference. We present a set of computer

vision methods to efficiently and automatically label thousands and even millions of images. We use

a sample dataset of social media images related to a Black Lives Matter protest to illustrate how

computer vision techniques can be used to study what is in an image, who is in an image, and what

emotions an image evokes.

Our paper provides an introduction to the cutting edge of computer vision research, with an

emphasis on deep machine learning.1 In particular, we provide a high-level explanation convolutional

neural networks (CNNs). Our focus is on the potential applications of CNNs in political science

research. Accessing these tools does require some start-up effort, but as we demonstrate, the potential

payoff is quite high. Following the conventions of computer science, we test the CNN image analysis

method using computational “experiments.” We provide an algorithm with a sample of images

for which we already have human-generated, manual, gold standard labels. Prior to labeling, pre-

processing steps include standardizing image size and removing duplicate images from the sample.

The generated labels and corresponding images are then partitioned into train and tests for the

supervised learning algorithms. The algorithm learns from the training set which image features

are associated with a particular label (or classification). The trained algorithm then provides a
1Computer vision is the broad branch of computer science that deals with images. Automatic image processing is

a growing portion of the field.
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predicted label for the held-out test set images. Comparing the predicted labels for the test set

to their known, gold standard labels allows us to evaluate the accuracy of the algorithm. Once an

algorithm is satisfactorily validated by predicting held-out labeled images, researchers can use the

trained algorithm to automatically label any remaining, unlabeled images.2

To demonstrate the potential for CNNs in political science research, we first highlight a few areas

of study where labeling and understanding images is of particular importance. We then describe

CNNs, with a focus on three particular applications: object recognition, face recognition, and visual

sentiment analysis. Finally, we test the methods on observational data from a Black Lives Matter

protest, conducting three separate experiments. Our goal is to see to what extent we are able to

replicate our manual image labels using automatic, CNN techniques.

1.1 Images in Social Science Research

Why might social scientists wish to work with images as data? And why might they want to work

with large quantities of images, such that manually labeling images becomes unfeasible? Many

possible goals spring to mind. Researchers might want to use images and the data they contain

as outcome variables, whether their aim is descriptive, predictive, or causal. Or researchers might

consider images as independent variables, as inputs that relate to some attitudinal or behavioral

outcome of interest. We cover these two broad categories in turn below.

The study of images is not a new phenomenon in social science research. Scholars in subfields

of communications, geography, sociology, history, economics and political science are well aware of

the power of images in shaping and reflecting the human experience. What is new, however, is the

digitization of images, the mass adoption of smart phones, and the omnipresence of the Internet,

which combine forces to provide vast corpora of images for research. Accordingly, our focus here

is less on clean uses of single images as data (e.g. showing an image as an experimental treatment

or using a historical map to demonstrate migration patterns) and more on the messy masses of

observational digital images. These masses, if properly treated, open up new avenues for broad,

big-picture research.
2The train-test strategy is a common approach and will be familiar to those used to working with text as data and

other machine learning subfields, see for example Benoit et al. 2016.
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1.1.1 Images as Dependent Variables

At a very basic level, the presence or absence of an image might be a political outcome of interest.

Which news stories are accompanied by a picture, and which are not? When do politicians include a

image with their tweets, and when do they not? More complex, perhaps more interesting, questions

might consider the content of images. When do news stories about protests include an image of the

police? When do politicians include a picture of their family with campaign materials?

Scholars could also use images as a source of information in building a separate dependent

variable. Images can help us estimate the size of an inauguration crowd, for example: pictures from

a variety of angles and times of day could be automatically compiled and analyzed to produce an

aggregate person count. And scholars of economic development increasingly use nighttime satellite

images to proxy for development, where brighter footprint indicates a better-off town or village

(newer analyses of luminosity data use CNNs, see Jean et al. 2016.)

1.1.2 Images as Independent Variables: Attitude and Behavior

As above, a basic treatment of images as an independent variable might wonder about the descriptive,

predictive, or causal effect that the simple presence of an image could have on an outcome of interest.

A more complex research question would ask which features of images have particularly strong

effects. Following a traditional divide in political science, we might ask how the type and content

of images are associated with variation in attitudes and behaviors. Prior work has considered how

images of war may have swayed public opinion, or how images of endangered species contribute to

viral activist campaigns. Altered images are a staple of conspiratorial discussions, used to convince

new adherents of the truth a some claim. Images might also impact concrete behaviors, such as

willingness to protest, vote, or donate money to a cause.

Small-n studies have touched upon many of the research questions above. But studying images

systematically to learn about their effects and determinants requires labeling a large quantity of

pictures. Manually labeling images is costly, making the potential to automatically label images

appealing. Recent computer science developments in deep learning now make this feasible (LeCun,

Bengio, and G. Hinton 2015). In the following section, we introduce the field of computer vision

and Convolutional Neural Nets.
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2 Computer Vision for Social Scientists

The field of computer vision has grown by leaps and bounds in the last decade. Some common goals

in computer vision research include object detection/recognition, face detection/recognition, and

visual sentiment analysis. While there are certainly other branches of computer vision that may be

of interest to social scientists, we have found these three tasks to be particularly relevant to political

science research. Recent advances in deep learning have contributed to radically improved accuracy

in each of these three subfields. Today most computer vision research is based on convolutional

neural networks (CNNs - ConvNets), a type of neural network perfectly designed to use images as

inputs. In the rest of this section we go over the basics of deep learning and CNNs, and highlight

the most relevant research on object recognition, face recognition, and visual sentiment analysis.3

2.1 Deep Learning and Convolutional Neutral Networks: The Basics

Deep learning algorithms use non-linear models to transform raw input (e.g. any data matrix, known

as the input layer) into abstract representations (hidden layers) in order to learn from new features

and better predict outcomes. Imagine a 100x2 matrix X with information about the height and

gender (columns) of 100 people (rows). Imagine another 100x1 matrix Y with information about

how fast these 100 people run a half-marathon. In conventional machine learning we could try

to predict their finish time given their height and gender using for example a simple linear model

(Y = Xβ) and finding a 2x1 coefficient matrix β that minimizes predictive squared error (Ordinary

Least Squares regression). However, if our interest is prediction, and not to study the specific

associations (βs) between height and gender on the outcome, we could also use a neutral network

to improve predictive accuracy.

First we would transform the raw data X into an intermediate abstract representation X2 by

applying the dot product between X and a 2x100 (e.g.) parameter matrix W1, and then we would

apply the dot product between the resulting X2 and a 100x1 matrix W2 to create a vector of

predictions Ŷ of the same size (100x1) as the outcome Y . We would then find W1 and W2 that

minimize predictive error (loss), and take advantage of the new 100x100 abstract intermediate

feature matrix X2 to learn more about the input and perform more accurate predictions. We would
3Resources to learn more about CNNs are increasingly available online. The authors particularly recommend the

posted materials accompanying Stanford University’s CS231n course at http://cs231n.stanford.edu/.
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also add a non-linear transformation of X2 in order to improve fit, for a final model that could look

as follows: Y = max(0, XW1)W2, where X2 = max(0, XW1) and max(0, X2) is a non-linearity

often used in deep learning. The parameter matrices W1 and W2 (known as weights) are usually

learned via Stochastic Gradient Descent (SGD) and chain rule is used to derive the gradient. This

means that we run the model multiple times (iterations), updating the weight parameters (forward

propagation) and calculating the gradient (backward propagation) each time, until the model loss

reaches a point of convergence.

A neural net has as many layers as the number of intermediate representations plus the output

layer. The previous example is a two-layer network because it only has one intermediate represen-

tation (X2) plus the model predictions (Ŷ ). The previous is also an example of a network with

fully-connected layers because we apply the dot product between all units of a given layer (e.g.

each data row in the input layer: {x1, x2, ..., x100}) and each unit of the following layer (e.g. each

parameter in the parameter matrix W1: {w1, w2, ..., }). 4

A convolutional neural network (CNN) is simply a type of neutral net with two main partic-

ularities. First, the inputs have 3 dimensions. In the previous example, the input had only two:

the number of rows (100) and columns (2) of the dataset. However, computer vision researchers

parse images into pixels and then represent each pixel as a triplet of red, green, and blue (RGB)

intensities (depth). This means that each image x has three dimensions: pixel width, pixel height,

and three color channels (e.g. 224x224x3), where x1,1,1 contains for example information about the

red intensity of the pixel in the top left corner of the image and x1,1,2 contains information about the

green intensity of the same pixel. Each pixel intensity representation xi,j,z is usually a standardized

integer ranging from 0 to 255. Figure 1 provides an illustration of how a one-dimensional image is

translated into a three-dimensional RGB input.
4See LeCun et al. (2015) and Schmidhuber (2015) for a more extensive overview of deep learning.
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Figure 1: An example of an image represented as a 3-dimension input

A second characteristic of a CNN is that most layers of the network are not fully connected to

the previous layer: these are known as convolutional layers. Instead, the weights in these layers

(known as filters) are of a smaller width and height than the input (e.g. 3x3x3 instead of 6x6x3)

and they are only fully connected to a particular local region of the input at a time. This reduces the

number of parameters to estimate and significantly decreases computation time. Dot products are

computed between the filter parameters and all possible regions of the input by “sliding" the filter

along its width and height, summing up the outcomes to create an output volume that becomes a

new input in the following layer. Figure 2 for example shows a 3x3 filter sliding horizontally and

vertically across what could be the Green pixel-intensity representation of a 6x6x3 image.

Figure 2: An example of a filter sliding in a convolutional. Credit: PyImagesSearch.

Apart from convolutional layers and some fully-connected layers at the end of the network, there

are two other type of layers often used in CNNs: pooling and RELU layers. Pooling layers are used

to reduce the size of the weights (parameter matrices) in order to facilitate estimation and speed up

7



computation. ReLu layers apply a non-linear transformation (f(x) = max(0, x)) to the output of

convolutional layers in order to improve fit.

In sum, this complex infrastructure of weights, non-linear transformations, and intermediate

representations of the raw input allow CNNs to learn about very specific pixel-level features that

help predict the outcome (such as an object class, a person, and an emotion class). CNNs with high

predictive accuracy are usually trained with hundreds of thousands (and even millions) of images and

have a substantive number of layers. A common training set for a 1,000 class object classification

task, ImageNet, has 1.3 million high-resolution images, and a CNN commonly used for object clas-

sification, VGG16, has 16 layers. The size of the training set and the depth of this CNNs mean that

powerful machines with multiple graphics processing units (GPUs) and high computational power

are needed for training. However, training CNNs from scratch is often unnecessary. Computer

vision scholars often share their highly accurate trained CNNs (such as LeNet, AlexNet, VGG16,

and VGG19). Then others can and adapt them to perform different classification tasks, such as

predicting a binary instead of a 1,000 class outcome, by simply changing the last fully connected

layer of the network and some minor re-training parameters. This is known as fine tuning and allow

others to also achieve high predictive accuracy by using much smaller training sets and less training

time and resources.

2.2 Three Applications of CNNs for Images as Data

In this paper, we focus on three classes of algorithms that have the potential to automatically assign

the type of image labels that are of interest to social scientists.

2.2.1 Object Recognition

Early computer vision object recognition methods had difficulty distinguishing between cats and

dogs (e.g. Golle 2008). With the help of CNNs, they can now accurately label a wide variety of

objects and even identify multiple objects within a single image (Krizhevsky, Sutskever, and G. E.

Hinton 2012; Ordonez et al. 2013; H. Li et al. 2015; Russakovsky, L.-J. Li, and Fei-Fei 2015; Chen

et al. 2015), see Figure 3 for an example. For social scientists, object recognition could be used

to determine the presence or absence of features with theoretical importance. For example, images

could be analyzed to detect whether flags are present at a protest, perhaps as a supplement to
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experimental studies about support for immigration policies (Wright and Citirn 2011). The gold

standard labeling process would ask annotators to label for objects that are relevant to the political

mechanisms of interest (such as crowds of people carrying protest signs or flags). Researchers could

also take advantages of existing corpora of labeled images, such as ImageNet, though specific political

objects of interest will likely not be labeled.

Figure 3: Object Recognition using a CNN trained with ImageNet data (from Krizhevsky,
Sutskever, and G. E. Hinton 2012)

2.2.2 Face Detection and Recognition

CNNs and other methods such as the Viola-Jones algorithm and Haar Cascades can be used to

accurately detect and count faces (Zhu and Ramanan 2012; H. Li et al. 2015; Anastasopoulos et al.

2016). Figure 4 provides an example. These methods can be used to count the number of people

present in an image.

Figure 4: Li et al’s 2015 Face Detection algorithm (from H. Li et al. 2015)

Once faces have been detected in an image, researchers can use CNNs for face recognition,

or noting the presence of specific persons in an image. As we demonstrate below, CNNs can be

trained to recognize specific individuals with a high degree of accuracy using the train-test method

with manual labels. In our case, as a preliminary step, we are attempting to recognize individuals
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without face detection (essentially conducting an object recognition test but with a specific person

as the object). Researchers interested in face recognition could also access existing sets of important

faces, such as Guo et al.’s (Guo et al. 2016) one million images of 100,000 celebrities, to see if

famous faces appear in their images. Manual face recognition is already done for Kremlinology-type

analyses of images from North Korea (Fisher and Patel 2017); CNNs offer the possibility of scaling

that recognition up to enormous corpora of images.

2.2.3 Visual Sentiment Analysis

Recent CNNs trained with pixel-level and image-level features (objects automatically detected in

the images) now do a moderately good job of predicting the emotions humans report when observing

images (60-70% accuracy) (Peng et al. 2015; You et al. 2015). This ability to connect image attributes

to emotions represents a significant advance over prior sentiment methods that focused exclusively

on facial expressions (such as Microsoft’s Emotion API). The ability to automatically label images

with evoked emotions has a great deal of potential for scholars of framing and media effects. For

training, scholars might turn to existing labeled datasets such as Cornell’s Emotion6. However,

existing datasets and analysis are often based on very clean images, see Figure 5 for an example.

When applying these methods to messy, real data, such as the Twitter images we collected from

a Black Lives Matter protest, visual sentiment analysis becomes both more interesting and more

difficult.

Figure 5: Visual Sentiment Analysis using CNN (from Peng et al. 2015)

3 A Political Science Application: Black Lives Matter Images

The following example, based on our own work, demonstrates the importance of studying images

and their characteristics as independent variables in order to understand a political phenomena of
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interest. We discuss the challenges of manually labeling images and the potential of computer vision

methods to replicate manually labeled results.5

3.1 Original study

Our aim in the project was to test the power of images in mobilizing online social movement partic-

ipation. While a number of prior scholars have argued that images are instrumental for protest and

social movement participation in the digital media age (Bimber, Flanagin, and Stohl 2005; Castells

2012; Bennett and Segerberg 2013; Kharroub and Bas 2015; Howard and Hussain 2013), systematic

studies of political images, or images in general, in social media are rare. How might images shared

via social media matter for online social movement mobilization?

To avoid selection on the dependent variable (e.g., retroactively choosing a protest or movement

with particularly moving images), we decided to study a protest before knowing whether it would

take off or whether it would have any images involved. The protest of interest was held on April

14, 2015 and was supported by the Black Lives Matter movement (BLM). Research in political

psychology and political behavior led us to expect that images could motivate protest mobilization

in three main ways, as summarized briefly below.

Emotional Trigger Mechanism: Emotions have been found to be important predictors of

political behavior (Lasswell 1930; Janis and Mann 1977; Sears 1987), including support for parties,

protests, and extremist groups (Valentino2011; Melucci 1996; Victoroff 2005; Goodwin and Jasper

2006). There are five politically-relevant emotions that political psychology research has been able

to distinguish both theoretically and empirically: anger, fear, sadness, enthusiasm, and disgust

(Valentino2011; Ekman 1992; Marcus, Neuman, and MacKuen 2000; Clifford and Wendell 2016).

We built on this existing literature to hypothesize that the emotionally evocative nature of images

would contribute to their mobilizing effects, especially those images evoking enthusiasm, anger, and

sadness.

Expectation of Success Mechanism. The prisoners’ dilemma poses a puzzle for social move-

ments: free riding should cause such movements to fail. Classic rational-choice theory predicts that

individuals will invest time and resources only if they expect their efforts to significantly impact

group success (Olson 1965). We therefore expected to find that images of protest crowds, involving
5The complete paper can be accessed at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2832805.
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large numbers of people, would act as a trigger for expectations of success.

Social Identity Mechanism. People are social beings and groups can provide a sense of

belonging. The desire for a “positive self concept” leads people to seek out and support the in-

groups with which they identify (Tajfel 1981; Tajfel 1982). Images of the Egyptian flag and the

Muslim Crescent helped to increase support for dissident groups during the Arab Spring (Kharroub

and Bas 2015, 7). We expected to find that group symbols, such as religious icons, raised fists, flags,

and logos would increase participation among people who identify with those groups.

There is a fourth theoretical mechanism that we did not explore in the original study, the Cue-

Taking Mechanism. Rational choice theory also predicts that rational citizens will rely on the

judgments of trusted experts or opinion leaders in lieu of becoming politically informed (Downs 1957).

Many subsequent studies offer evidence of the importance of heuristics and cue-taking in public

opinion formation (Katz and Lazarsfeld 1955; Zaller 1992; Nisbet and Kotcher 2009), voting and

political participation (Lupia 1992; Shachar and Nalebuff 1999) and protest movements (Obserschall

1973; McCarthy and Zald 1977). However, additional research finds that cue-taking may depend

on prior beliefs and how different individuals process information (Kuklinski and Hurley 1994). We

therefore also expect that images of admired opinion leaders could contribute to the diffusion of

online mobilizations.

The goal of this paper is not to discuss the validity of these theoretical mechanisms nor the

findings of the original study, but to see to what extent we are able to replicate our manual image

labels using automatic techniques. We focus on using computer vision methods to automatically

label images for the presence of protests (Expectation of Success mechanism), for the presence of a

particular opinion leader, John Legend (Cue-Taking mechanism), and for the emotions images evoke

(Emotional Trigger mechanism).

3.2 Data Collection and Manual Annotation

For a two week period around an April 14, 2015 Black Lives Matter (BLM) protest (“Shutdown

A14”), we collected all Twitter messages related to the protest (about 150,000 tweets).6 We then
6We collected messages mentioning at least one of the following keywords and hashtags: #shutdownA14, murder

by police, mass incarceration, shutdownA14, killer cops, police murder, #A14, stop business as usual, stolenlives,
massincarceration, stolen lives, #policebrutality #stolenlives, #blacklivesmatter, black lives. We designed the list of
keywords and hashtags by looking at the phrases and hashtags promoted online by the organizations responsible for
the protest.
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extracted and manually labeled all of the 9,500 unique images that were included in the tweets.

Each of the 1000 most-tweeted images were labeled by two undergraduate research assistants and

between three and eight additional crowd-sourced assistants (recruited from Amazon’s Mechanical

Turk). The remaining images were labeled by just one Mechanical Turk annotator. Each was labeled

for the number of people guessed to be in the image, the presence of symbols and logos, and for the

the degree (scale of 0-10) of fear, anger, disgust, sadness and enthusiasm it evoked in the annotator.

Information about the number of people present in the image and the emotional responses for images

that were labeled by more than one person were averaged across annotators to generate a single score

per image. For this paper we removed image files that were of a very small size (smaller than 5kb)

from the analysis since they may add confusion when training computer vision algorithms. The

final image dataset contains 8,148 unique images with labels for the number of people present in the

picture (numeric), whether symbols and logos are present (binary), and five emotion scores (ranging

from 0 to 10 for each emotion). We use these images to perform 3 computational experiments testing

the extent to which CNNs can be used to predict: (1) images of protests, (2) images of a particular

opinion leader (the singer John Legend), and (3) the emotions that images evoke.

3.3 Data for Computational Experiment (1): Predicting Images of Protests

In the original study we argued that images of people protesting and actively supporting the move-

ment on the street fostered online mobilization because they increased expectations of success about

the movement. We used the manual labels provided by the annotators to detect which images showed

on-street protests. We specifically considered an image to be about a protest if the annotators said

the picture had numerous people plus a symbol or a sign. In this first computational experiment we

are interested in automatically detecting protest images to replicate our manual labels.

We train the algorithm with true positives and true negatives: true positive images of protests/demonstrations

and true negative images that are not showing any protest. We select 100 true positives from the

dataset of 8,148 images by first selecting those images annotators reported to have more than 10

people and also a sign and/or a symbol, and then by selecting from that pool 100 images that clearly

show a protest/demonstration. We then select 100 true negatives from the remaining images that

have less than 10 people in them and have no sign nor symbol. The top row in Figure 6 contains four

examples of the true positives we use to train the protest classifier, and the bottom row contains
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four examples of the true negatives.

Figure 6: Examples of Images used as true positives and true negatives to train a computer vision
binary classifier predicting images of protest/demonstrations

3.4 Data for Computational Experiment (2): Predicting Images of an Opinion

Leader (John Legend)

When exploring the collected messages we noticed that a substantial amount of them had images

of known people who explicitly supported the BLM movement prior to the protest (such as John

Legend) and of known people who were actively involved in the organization of the April 14, 2015

mobilization (such as Dr. Cornel West). We want to know if we can use computer vision techniques

to automatically detect the presence of an opinion leader. We focus here on predicting images of

John Legend. The American singer and songwriter had given an speech against U.S. incarceration

policies when accepting the Oscar for best original song at the 87th Academy Awards, about a

month before the studied protest, becoming one of the front faces of the “Stop Mass Incarceration"

movement during the April 2015 mobilization.

We want to train a computer vision algorithm to predict whether a given image is a picture

of John Legend or not, so we construct a dataset of true positive and true negatives images to

train the algorithm. The Cue-Taking mechanism was not part of the original study and we did

not have information about whether a well-known person was present in our BLM images, but we

went through the 8,148 images selected for this study one more time and searched for images of

John Legend. We found 29 unique images. These were either headshots or images of him singing or

standing alone. To increase the size of the training set, we also collected another 71 similar images

of him from a Google image search, ending with a set of 100 true positives. We then selected similar

images (headshots and pictures of a single person standing) from our BLM dataset (n = 50) and
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from the Internet (n = 50) to use as true negatives.

Figure 7 contains some examples of the true positives and negatives selected to train the binary

computer vision classifier. The first row has pictures of John Legend from the BLM dataset, the

second row has true negatives selected also from the BLM dataset, and the third row has true

negatives selected from the Internet (pictures of Don Cheadle, Rihanna, Leonardo DiCaprio, and

Danny Glover).

Figure 7: Examples of Images used as true positives and true negatives to train a computer vision
binary classifier predicting pictures of John Legend

3.5 Data for Computational Experiment (3): Predicting the Emotions Images

Evoke

We face two main challenges when selecting images to train computer vision algorithms predicting

emotional reactions. First, annotators reported that numerous images in our BLM dataset did not

trigger any emotional reaction (that is, they received a score of 0 on every emotion). This means we

can only use these images as true negatives when training emotion classifiers. Second, some images

triggered more than one single emotion. These images may add confusion during training and make

it more difficult for computer vision algorithms to isolate what specific image features are linked to

each emotion. Figure 9a shows, for example, that annotators reported that about 35% of the BLM

images (2,876 out of 8,148) did not evoke any emotion, while about 50% (3,746) of images evoked

more than one emotion. They reported 1,516 images that evoked only a single emotion. Figure 9b
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shows how often annotators reported the an image evoked one of the given pairs of emotions. We

can see for example that images triggering anger often trigger sadness and disgust as well.

(a) Number of emotions triggered by the images
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Figure 8: Images in our dataset often trigger more than one emotion

We follow previous work on visual sentiment analysis in computer science (e.g. Peng et al.

2015) and choose images that “clearly" trigger each emotion as true positive cases to train emotion

classifiers. We select pictures for which the 0-10 score for the strongest emotion evoked in a picture

is higher than 3 (the max class must have a value higher than 3). We then further limited the

sample to images where the difference between the highest scoring emotion and the second highest

scoring emotion score is equal to or greater than 3 (these are images with a clear max class, with

less overlap between emotions). We then choose “neutral" images from the set of pictures that

annotators reported as not evoking any emotion as true negatives.

The advantage of this approach is that, compared to training with images that evoke multiple

emotions or to use images triggering other emotions as true negatives, it should be easier for a

computer vision algorithm to learn about image features that are predictive of each emotion. The

drawback is that we significantly reduce the size of the training set. Only 1,630 images fulfill the

criteria and they are not equally distributed across the five emotion categories. We end up with 103

true positives for anger, 127 for disgust, 862 for enthusiasm, 51 for fear, and 487 for sadness (see

Figure 10).
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Figure 10: Number of images that have each emotion as a max class (gray) versus “clear" max
class (3 point difference with the 2nd emotion score –in black–)

4 Method

We fine tune a pre-trained CNN seven times to create seven binary classifiers predicting: images

of protests (Experiment 1), images of John Legend (Experiment 2), and images triggering anger,

disgust, enthusiasm, fear, and sadness (Experiment 3). The pre-trained CNN was trained on 1.3

million high-resolution images from the LSVRC-2010 ImageNet dataset and was designed to predict

1,000 classes (Krizhevsky, Sutskever, and G. E. Hinton 2012). This trained CNN is commonly known

in the computer vision literature as AlexNet. The network is composed of five convolutional layers,

max-pooling layers, dropout layers, and three fully connected layers at the end (see Figure 11). For

each of our seven classifiers, we remove the last fully-connected layer to predict 2 instead of 1,000

classes. We allow very small updates of the weights in earlier layers and focus most of the learning

in the last added layer. We run 2,000 iterations (back and forward propagation) during the training

of each model. In all cases, training loss does not improve much after 2,000 iterations (see Appendix

I, Figure 16).
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Figure 11: AlexNet architecture

Table 1 summarizes the number of training and testing observations for each CNN we train.

Notice that in most cases we use only about a hundred true positives and a hundred true negatives.

As mentioned, this would be insufficient to train a CNN from scratch, especially in only 2,000

iterations, but this is when the potential for fine tuning an existing nets comes in very handy. Pre-

trained deep neural nets have already learned some good generic features such as edge detectors and

color blob detectors. In all cases we use 80% of the true positives and true negatives for training

and 20% for testing. In the following section of the paper we asses the extent to which we are able

to predict the correct labels (positive/negative) in the testing sets.

CNN-classifier Experiment N True Pos (train|test) True Neg (train|test)

Protest Exp. 1 200 100 (85|15) 100 (85|15)

Opinion Leader Exp. 2 200 100 (80|20) 100 (80|20)

Anger Exp. 3 206 103 (82|21) 103 (82|21)

Disgust Exp. 3 254 127 (102|25) 127 (102|25)

Enthusiasm Exp. 3 1,720 860 (690|172) 858 (687|171)

Fear Exp. 3 102 51 (41|10) 51 (41|10)

Sadness Exp. 3 972 487 (390|97) 485 (388|97)

Table 1: Description of the Computational Experiments in the paper

5 Results

After training the seven CNNs using the true positive and true negative observations in the training

sets, we use the models to predict the probability that images in the held-out test set are images
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of protests/demonstrations (Exp. 1), John Legend (Exp. 2), and images that evoke anger, disgust,

enthusiasm, fear, and sadness (Exp. 3). The last layer of all the CNNs is a SoftMax classifier that

returns the probability that a given image belongs to each of the two classes (positive/negative),

with the sum of the probability adding up to 1. We transform the probability for the positive class

into a dichotomous variable. Usually we use a 0.5 probability cut-off to build this dummy variable: if

for example the “protest model" predicts that there is a 0.51 probability that a given image contains

a protest/demonstration, then we would classify that image as being about a protest. However,

using a higher probability threshold may sometimes increase model accuracy.

In the rest of this section we report the results of the seven models based on the predicted

labels for the testing sets. We judge the results using three common validation measures in machine

learning: recall, precision, and accuracy. Recall is the percentage of true positives in the test set that

the model predicted as positives. Precision is the percentage of cases that the model predicted as

positives that are actually true positives, and Accuracy is the percentage of both predicted positives

and negatives that are actual true positives and negatives.

5.1 Computational Experiment (1): Predicting Images of Protests

In this computational experiment we trained the algorithm using 85% of the true positive and neg-

ative cases (n = 170) and we then evaluate the model’s predictive accuracy by classifying the 15%

of the observations that we reserved for testing (n = 30). If we use a > 0.5 probability threshold to

transform the SoftMax probability outcome into a protest dichotomous variable, we observe from the

confusion matrix in Table 2 that the model overestimates the presence of protests in images. Most

of the true positive cases are being predicted as positive cases of protest images (93% recall), but

a substantive number of true negatives (images with no protest) are being incorrectly predicted as

positives, resulting in a low model precision (58%). However, by changing the probability threshold

to > 0.6, we can retain the same recall and improve the precision to 74% (see Table 3). In a binary

setting like this one, slightly increasing the probability threshold makes sense because it means that

we want to ignore close positive predictions. In other words, we want to discard positive predictions

based on 49/51% calls. However, researchers should keep in mind that a larger probability threshold

increase may improve predictive accuracy for a particular test-set but not others, leading to over-

fitting. Figure 12 shows how changes in accuracy, precisions, and recall shift depending on which
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probability threshold is chosen.

Gold pFALSE pTRUE G.Total Recall

FALSE 5 10 15

TRUE 1 14 15 (93%)

pTotal 6 24 30

Precision (58%)

Table 2: Confusion matrix of predicted versus actual protest images, with > 0.5 threshold

Gold pFALSE pTRUE G.Total Recall

FALSE 10 5 15

TRUE 1 14 15 (93%)

pTotal 11 19 30

Precision (74%)

Table 3: Confusion matrix of predicted versus actual protest images, with > 0.6 threshold
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Figure 12: Precision, Recall and Accuracy of a binary classifier predicting protest images as we
move the probability threshold use to create a dichotomous variable
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5.2 Computational Experiment (2): Predicting Images of John Legend

The CNN predicting images of John Legend also produces very accurate results. Out of the 40

images that we do not use for training and leave out for testing (20 true positives and 20 true

negatives), the model correctly predicts 36 (18 true negatives and 18 true positives) for a precision,

recall, and overall accuracy of 90% (see Table4).

Gold pFALSE pTRUE G.Total Recall

FALSE 18 2 20

TRUE 2 18 20 (90%)

pTotal 20 20 40

Precision (90%)

Table 4: Confusion matrix comparing predicted versus actual images of John Legend

Table 4 shows the images that were incorrectly predicted. The two pictures on the left are false

negatives: images that the model should have predicted as having John Legend in them but did

not. The two pictures on the right are false positives: images that should have not been predicted

as having John Legend. The two false negatives on the left were probably caused by other extra

features present in the picture, such as John Legend’s baby, sunglasses, and hat, and the letters in

the second picture. We are less certain about what causes the two false positives. We suspect this

may be related to the people in the image having a very similar position to the position John Legend

has in the training images. In future iterations of the paper we will add an extra pre-processing step

before training the CNN: we will first use face detection methods to extract and only compare faces

present in images instead of the whole image (using for example a Viola-Jones algorithm). This is

a common step when training CNNs for face detection. We thought this step was not necessary in

this case because the John Legend images present in our BLM dataset were very neat. However,

introducing a face detection step may help get the accuracy closer to 100% and will likely be neces-

sary to detect notable individuals who are pictured in a crowd (such as Dr. Cornel West).
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Figure 13: False negatives (left) and false positives (right) predicted by the CNN trained to predict
images of John Legend

5.3 Computational Experiment (3): Predicting Emotions

Predicting the emotions images evoke is the most challenging task we undertake in this paper.

Predictive accuracy is not as high as in the first and second computational experiments. Table 5

presents the results. Recall for all of the emotions except for fear is greater than 60%, with the

disgust recall reaching 80%. Precision is notably lower for all of the emotions. This means that

the binary classifiers have a tendency to overestimate the positive probabilities for each emotion.

The classifiers predict as positives images that are actually negative (neutral) cases. As a result,

predictive accuracy is around 60% for disgust, enthusiasm and sadness, and 50% (a random coin

flip) for anger. The fear precision is 33% and recall is only 20%, which means that the model is

doing worse than a coin-flip because it is learning some misleading features from the training set.

Emotion Test Set (N) Pos (n) Neg (n) pPos (n) pNeg (n) Rec. Prec. Acc.

anger 42 21 21 32 10 0.76 0.50 0.50

disgust 50 25 25 32 18 0.80 0.62 0.66

enthusiasm 343 172 171 226 117 0.76 0.58 0.60

fear 20 10 10 6 14 0.20 0.33 0.40

sadness 194 97 97 103 91 0.61 0.57 0.58

Table 5: Results from emotions CNN

There are a couple points that may account for the somewhat weak visual sentiment analysis

results, especially for fear. First, note that the sample sizes are quite low, meaning the algorithms

do not have much to learn from. Second, it is important to notice how different the images in our

dataset are from images used for visual sentiment analysis in computer science. Figure 14 shows

images labeled as sad images in the Emotion6 dataset while Figure 15 shows images from our BLM
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data that annotators labeled as evoking sadness. Computer vision scholars have been able to build

relatively accurate (60-70% accuracy) binary emotion classifiers (Peng et al. 2015, Wang et al. 2013),

but the images they have used so far have a very simple composition. They usually do not have more

than one or two elements in the picture. On the contrary, politically relevant images that people

share online are a lot more complex. For example, in our BLM dataset there are images of cartoons,

images with several elements, and images that combine visuals with text. This means that larger

training sets of politically-relevant images and more complex models need to be build in order to

improve accuracy in predicting emotions that political images evoke: such as adding text, detected

objects, and detected facial expressions as features.

Figure 14: Sad images from the Emotion6 dataset

Figure 15: Sad images from our BLM dataset

6 Conclusion

The main takeaway from our paper is that computer vision methods using CNNs can produce very

accurate results, even when applied to messy, real world images, and even with a relatively small

number of manually labeled images to work from. While there are adjustments that we could

undertake in order to improve the results even further, such as including a face detection step in

the second computational experiment, and include some other image-level features to improve the

accuracy of the visual sentiment classifier, these preliminary results are encouraging. With samples

of between 100 and 2,000 tweeted images from a Black Lives Matter protest, we were able to (1)

identify whether the picture was of a protest, (2) identify whether the picture contained the singer
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John Legend, and (3) predict whether the picture would evoke one of five emotions.

We hope these results will encourage social science researchers who are asking important ques-

tions about the images, whether they want to derive a separate measure of interest from the data in

images (e.g., the number of protesters) or whether they want to study how images affect attitudes

and behaviors (e.g how images affect willingness to tweet about a social movement). Researchers

with thousands or even millions of images should not be intimidated by the prospect of having to

label those images in order to get to theoretical questions of interest. An investment in manually

labeling a random subsample of those images, combined with an investment in learning how to use

CNNs, will unlock huge datasets of images. In our project, we have gold standard labels for all of

our 9,500 tweeted images. But what if we had collected 200,000 total unique images? Instead of

painstakingly labeling all of them by hand with multiple annotators, we could use the algorithms

trained on a sample of images, asking the algorithm to automatically label the remaining images.

The final data would allow us to build analyses from a massive corpus of images.

7 Appendix I
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Figure 16: Training Loss of seven Convolutional Neural Nets trained for 2,000 iterations
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