From our lab

  1. Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., and Villen, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10, 676–682. PDF Supplementary_info RAW_data
  2. Edelman, W.C., Haas, K.M., Hsu, J.I., Lawrence, R.T., and Villen, J. (2014). A practical recipe to survey phosphoproteomes. Methods Mol. Biol. 1156, 389–405.
  3. Lawrence, R.T., and Villen, J. (2014). Drafts of the human proteome. Nat. Biotechnol. 32, 752–753.
  4. Martin-Perez, M., and Villen, J. (2015). Feasibility of protein turnover studies in prototroph S. cerevisiae strains. Anal. Chem. Mar 13 [epub ahead of print]

Our collaborations

  1. Helmlinger, D., Marguerat, S., Villen, J., Swaney, D.L., Gygi, S.P., Bähler, J., and Winston, F. (2011). Tra1 has specific regulatory roles, rather than global functions, within the SAGA co-activator complex. EMBO J. 30, 2843–2852.
  2. Beltrao, P., Albanèse, V., Kenner, L.R., Swaney, D.L., Burlingame, A., Villen, J., Lim, W.A., Fraser, J.S., Frydman, J., and Krogan, N.J. (2012). Systematic functional prioritization of protein posttranslational modifications. Cell 150, 413–425.
  3. Ranjitkar, P., Perera, B.G.K., Swaney, D.L., Hari, S.B., Larson, E.T., Krishnamurty, R., Merritt, E.A., Villen, J., and Maly, D.J. (2012). Affinity-based probes based on type II kinase inhibitors. J. Am. Chem. Soc. 134, 19017–19025.
  4. Pruneda, J.N., Smith, F.D., Daurie, A., Swaney, D.L., Villen, J., Scott, J.D., Stadnyk, A.W., Le Trong, I., Stenkamp, R.E., Klevit, R.E., et al. (2014). E2~Ub conjugates regulate the kinase activity of Shigella effector OspG during pathogenesis. EMBO J. 33, 437–449.
  5. Eaton, J.M., Takkellapati, S., Lawrence, R.T., McQueeney, K.E., Boroda, S., Mullins, G.R., Sherwood, S.G., Finck, B.N., Villen, J., and Harris, T.E. (2014). Lipin 2 binds phosphatidic acid by the electrostatic-hydrogen bond switch mechanism independent of phosphorylation. J. Biol. Chem. 289, 18055-66
  6. Chow, J.D.Y.*, Lawrence, R.T.*, Healy, M.E., Dominy, J.E., Liao, J.A., Breen, D.S., Byrne, F.L., Kenwood, B.M., Lackner, C., Okutsu, S., Mas, V.R., Caldwell, S.H., Tomsig, J.L., Cooney, G.J., Puigserver, P.B., Turner, N., James, D.E., Villén, J.#, and Hoehn, K.L.# (2014). Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylation. Mol. Metab. 3, 419–431. (*equal contribution; #co-corresponding)
  7. Eichhorn, S.W., Guo, H., McGeary, S.E., Rodríguez-Mias, R.A., Shin, C., Baek, D., Hsu, S.-H., Ghoshal, K., Villen, J., and Bartel, D.P. (2014). mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol. Cell 56, 104–115.